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We analyze deep-inelastic trident production, e+ p—e+ p*p~ + anything, in the approprate scaling region,
assuming the validity of the parton model and the bilocal algebra. It is shown that the measurement of the
difference between the scaling inclusive trident cross section of the electron and that of the positron will allow the
determination of a proton structure function V(x), which involves the cube of the parton charges, in
unexplored kinematic regions. This structure function obeys an exact sum rule, independent of the momentum
distribution of partons; the sum rule therefore holds for nuclear targets as well. Since V(x) is related to odd—charge-
conjugation exchanges in the ¢ channel, the Pomeranchukon and other C-even contributions are not present,
so that V(x) should have a readily integrable quasielastic peak. In the light-cone approach the same difference
of cross sections measures the symmetric function S,3(7), which cannot be obtained from electroproduction
and neutrino-induced-production data. So far as scaling is concerned, the two approaches seem to give

similar results.

I. INTRODUCTION

The scaling observed in SLAC-MIT electron
scattering experiments® has generated consider-
able interest in various models of hadron struc-
ture. The parton model,? which is based on a
pointlike structure of hadrons, had a notable suc-
cess in explaining various deep-inelastic phenom-
ena.® An alternative approach to the problem of
hadron structure is the algebra of bilocal opera-
tors on the light cone.* It is suggested that this
algebra has the same structure as that implied by
free or interacting quark field theories.* The bi-
local operators which arise in commutators of cur-
rents on the light cone*5 provide a succinct de-
scription of Bjorken scaling® in deep-inelastic
scattering. In the case of deep-inelastic electron-
proton scattering, where only local electromag-
netic currents are involved, the implications of
the bilocal algebra were found to be in agreement
with all the results of the parton model,? which do
not depend on the explicit assumptions about the
momentum distribution of partons.

In spite of all these successes, the recent ex-
periments at electron-positron colliding-beam
accelerators’ create considerable doubt as to the
meaning of the success of the light-cone algebra
and the parton model in describing deep-inelastic
scattering. These experiments indicate that the
ratio R =o(e*e” -y - hadrons)/o(e*e” - u*u~) in-
creases linearly with the center-of-mass energy
squared, at least up to 25 GeV?, rather than being
constant according to naive scaling expectation.
Such a nonscaling behavior is difficult to under-
stand using parton models, which, because of pre-
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cocious scaling in inelastic electron-proton scat-
tering, predict early scaling in e*e” annihilation
also. Although there seems to be a change in the
interpretation of nonscaling behavior of R because
of the discovery of new resonances,® no firm con-
clusions can be drawn at this stage. A possible
theoretical understanding of the behavior of R can
be that there seems to be a threshold near 4 GeV
and that new hadronic degrees of freedom are be-
ing excited.® In any case, the naive parton model
has got to be modified before it can accommodate
these experimental results.

In view of this situation it is, therefore, impor-
tant to obtain and test all the predictions of the
parton model as well as of bilocal algebra, par-
ticularly in unexplored kinematic regions and in
cases where the number of new assumptions is
minimal. With this motivation we study in this
paper the trident process

e+p—e+u*+u” +anything (1)

in an appropriate “scaling” region as a test of the
parton model as well as of bilocal algebra. Uniike
earlier tests!® using this reaction, which were
plagued by background and interference terms,

our aim is to provide a test which is free of these
difficulties. More precisely, measurement of the
difference between the scaling inclusive trident
cross sections of the electron and positron will al-
low determination of a structure function which de-
pends upon the cube of the charge of various par-
tons.! Such a difference in cross sections, which
could be measured in future colliding-beam facil-
ities,’? depends only on the odd-charge-conjugation
piece of the parton distribution functions
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V(x) =3 A SUyx)

=2 AU W),
a

U =3{U,(x) = Uz (0)],

where U,(x) is the probability of finding a parton
of type a with charge A, and fraction x of the pro-
ton’s momentum in the infinite momentum refer-
ence frame. Unlike vW£?(x), which is sensitive to
the squared charges of partons and which obtains
contributions from even-charge-conjugation ¢-
channel exchange terms, the new structure func-
tion should show a quasielastic peak; sum rules
involving the integral of V(x) can be expected to
converge in an experimentally accessible region.
Moreover, integrals over V(x) are determined by
quantum-number conservation rules (e.g., charge,
baryon number, hypercharge) and thus provide a
test for fractional charge without the need for mak-
ing additional assumptions about the parton distri-
butions,’® as is the case with vWg’(x). Further,

we note that since U/3%(x) are related in parton
models to the structure functions for highly inelas-
tic neutrino scattering, V(x) should be completely
determined by the results of the neutrino experi-
ments.

In the light-cone approach’* the difference in
cross sections of the electron and positron, which
involves a commutator of a bilocal operator with
a local operator, will measure the symmetric
scaling function Sy3(n). This function, which can-
not be obtained from the analysis of the electro-
production and neutrino-induced production pro-
cesses, can thus be measured from this experi-

do(e”) do(e*)

ment. Further, the particular form of scaling ob-
tained for the difference cross section provides a
severe test of the bilocal algebra. The form of
scaling obtained in bilocal algebra is similar to
that of the parton model. Although we use ordered
limits in our application of bilocal algebra, the re-
sults obtained are similar to those obtained with a
more general approach.!* Note that since both the
photons in the trident experiments are far off the
mass shell the singularities due to leading Regge
behavior are avoided.'®

In Sec. II we state the limits in which the differ-
ence cross section can be evaluated using the par-
ton model. Sum rules for the structure function
V(x) are discussed briefly in Sec. IIIl. The evalua-
tion of the cross section using bilocal algebra is
given in Sec. IV.

II. THE INTERFERENCE CROSS SECTION

The diagrams contributing to process (1) are
shown in Fig. 1. The Compton diagram has been
evaluated by using bilocal algebra'® as well as the
parton model."” However, as is obvious, the
Compton contribution is difficult to isolate exper-
imentally because of background diagrams and in-
terference terms. On the other hand, the differ-
ence of inclusive cross sections

do(e™ +p=e” +ut+u~ +X)

~do(e*+p=et+put+puT +X)
integrated over the relative phase space of the
muon pair is due to the interference of the ampli-
tude of Fig. 1(a) with that of Fig. 1(b) and Fig. 1(b’)

(see Fig. 2). The difference cross section can be
written as?®

(@b, /EN@p_/E @' /E") ~ (@®p,/E,)d®p_/E_)dp'/E’)

160 M

=(217)4 Pp q’(q—q')zq"’ Luﬂu(p+ Bp—u+p-ﬂp+u_p¢.p-gﬂu)wuua’ (2.1a)

where

Logy=3Trl(q" +p) 2 (BraB'y el vy +8Y 'y el'v ) +@ = D)2 (ByveBy By = Bysd'voa 'y,

(2.1b)

and the hadronic tensor W, is a particular discontinuity of the three-photon Compton amplitude

W oolPy 0, ) =082 [ty iz i 3197025 (Pl (T3, 0)) P)

The same amplitude, but with ¢’> =0, also con-
tributes to the inclusive bremsstrahlung experi-
ment discussed by Brodsky et al.'* We now pro-
ceed to evaluate this amplitude in the parton mod-
el. In this model the leading contribution to W,

(2.1c)

—

arises when all three photons interact with an in-
dividual parton and the contribution is given by the
kinematical factor multiplied by the scale-invari-
ant function V(x) (see Fig. 3). This result is de-
rived from the following considerations.
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(c)

(e

FIG. 1. Feynman diagrams contributing to trident electroproduction of massive muon pairs. By integrating over the
relative phase space of the muon pair, the interference between diagrams (c), (c’) and diagrams (a), (b) (b’) can be
eliminated. The interference contribution requires that all amplitudes have the same final state,

(a) In an infinite momentum frame if both space-
like photons (¢ — ¢’) and g have large transverse
momenta and are such that the outgoing timelike
photon ¢’ also has large transverse momentum,
then only those diagrams in which all the photons
interact with the same parton need to be consid-
ered. All those diagrams in which photons interact

with more than one parton are strongly suppressed.

This assumption is, in general, not satisfied for
inelastic Compton processes. In case of small

transverse momentum of the outgoing photon, mul-
tiple parton processes can be important even in the
scaling region.'®

(b) In order to neglect the interparton interac-
tions during the time period of photon-parton in-
teraction (impulse approximation) and the final-
state interactions (incoherence approximation),
we require that -¢?, -(¢-¢')?, 2P-q, and
2P-(q-gq’) all be large.

The standard assumptions of the parton model
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FIG. 2. A typical absorptive amplitude contributing to
the ¥ p —e¥u*u~"X cross-section difference, from the
interference of the diagrams of Fig. 1(a) and 1().

imply that we work in the following kinematic re-
gion:

-¢,q% -(g-9V,q ¢ > M,
2P.q,2P:(q-q')> M*,
with

(2.2)

x==(g-q'?/2P-(q-q') fixed.

The difference of electron and positron inclusive
trident cross sections scales and is proportional

to the cube of the charge of the partons. We now
proceed along usual lines to obtain the parton-
model expression for the tensor W,,,. Denoting
the fraction of the proton’s momentum in an infinite
momentum frame carried by parton ¢ as n; we can
write

1

Xm Ian'2<n,6(n(_x)>‘13|n>M:/ua’
n, i

(2.3)
with
la,|?=1.

The expressions for the Kinematic factor M,",ua for
spin-3 and spin-0 cases are

Ml =5 TrPoy o( P +d - (P, +0) %y, (P, +4)y,
+(Pi=q' )2y, (P -d' W, ],
(2.4a)

M =2(P, +q) [P, +q = q') (P, +4), 2P, +q), ]
+2(P = q')2((2P, +q - ¢') (2P, +q - 2¢') 2P}, ]
-l4g,,@P,+q9- 9], (2.4b)
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FIG. 3. Dominant parton-model contribution to the
interference amplitude in the scaling limit. The kine-
matical restrictions require that all three photons in-
teract with the same parton. Diagram c contributes to
spin-3 partons only.

respectively. From W, we can extract the struc-
ture function V(x)

V(x)=}: ’an[2<"l5(774 —x))\‘afn>

n, 4
= Z xaaU.-:(x)s (2.5)

the sum being over all partons and their antipar-
tons of different types denoted by «.

After integrating over the relative phase space
of the muon pair the difference in cross sections,
Eq. (2.1a), can be written as
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do(e”) da(e’)
(d3pl/El)d4ql - (dsp;/El)d4 (2,")4 P- pqm Z ITmt

AU (%), (2.6a)

where

T8 2= [ @070 47 = 4m 20 - ") Prsboy Dy Py =D o) o 0,
q" =p,—p..

The evaluation of | T, |? is straightforward, although cumbersome. Evaluate the leptonic trace (2.1b), the
hadronic traces (2.4), multiply the two, and then integrate over the relative phase space to get | Ty, [2.
The expressions are given in the Appendix for both spin-0 and spin-} partons. Here we concentrate on a
particularly simple kinematic region, namely,

2q-¢', q'2<<—(q—q’)2<<2P~p,2P-p’,2P-q',2p-q’,2p'-q', (2.7)

in which the formulas simplify considerably. We choose this region for illustrative purposes only—in gen-
eral, the full formulas of the Appendix must be used. In this region, we have

(2.6b)

| Tine |2 =—L[x2(5ut +20t = 2£%) + x(~t +4u +8v = 2tv — ty +10uy = Tuz = 120y +4uz)
3(-¢*)
+(—2tz +2uz — 2y +3z — 2¢z)], for spin-3} partons, (2.8a)

3= [=12¢x%(u + v) + x(14¢ = 9ty — Buy +2uz — 4vy +8uz - 4u)

+(Ty +8z — 6yz +82%)], for spin-0 partons, (2.8b)
where
2P-p=K?u, 2P-p'=K°v, 2P-q =K%t, 2p-q' =K%y, 2p'-q' =Kz,
2q-q' =K*y-2), q*=Kl, -¢=K(l-y+z+1), K'=-(¢-¢').

The different dependences of spin-0 and spin-3 terms on the invariants allow one, in principle, to distin-
guish the parton’s spin. We note that besides simplifying the formulas this kinematic region may satisfy
the important experimental requirement that the interference be a substantial fraction of the signal, i.e.,
the interference-to-signal ratio [do(e”) = do(e*)]/[do(e”) +do(e*)] be of the order of unity. Therefore, it
should be quite feasible to measure the odd-charge-conjugation structure function V(x)=27,1,*U,(x) from
the e~ - e* cross section difference by the relation

(2.8¢)

ldo(e™)/(d®p’ /E')d*q' —do(e*)/(d*p'/E")d*q’]
V(x) Z X 3Lr ( ) [8&4/(21[)4](1/P‘ Pq")lTim Ia . (2.9)

Equation (2.9) severely tests the parton model by requiring that the right-hand side be a function of x
alone.

In concluding this section, we note that it is possible to relate the structure function V(x) to the struc-
ture functions measured in deep-inelastic neutrino and electron scattering off protons and neutrons.® For
example, in the quark model, one obtains a general relation

1
) =105 (2P0 - P2 () = TR + FP) =35 [0, = U39 (2.10)
r

The last term drops for nonstrange baryons if one III. SUM RULES
assumes U,(x) =Ux(x) for such targets. Alterna-
tively, the last term can be expressed in terms of We now write down sum rules satisfied by the
AS =1 deep-inelastic neutrino scattering. Note structure function V(x). All these sum rules follow
that the integral Io‘ dx[U,(x) = Ux(x) | =S vanishes from quantum-number conservation. Specifically

for nonstrange baryons. we have
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Q=fldx 2 AU,

Y =f1dx D yUaux), (8.1)

1
B=f dx Z bU,(x),
o a

where Q, Y, and B (A,, y,, and b,) are the charge,
hypercharge, and baryon numbers of the target
hadron (parton) of interest. These sum rules de-
pend only on the odd-charge-conjugation part of
U,(x):

U = U, (x) - Uz(x)].

In general, it is possible to reduce A’ to a linear
combination of A,, y,, and b, so that the integral

1 1
=\ d 3 .
fo Vix)dx fo x Z AU (x) (3.2)

is determined by quantum-number conservation
alone.

This is in striking contrast to the sum rules in-
volving the electroproduction structure functions
vWE(x) and vW5"(x), defined by

W (x) =x Z 22U, (%),

(3.3)
W(x) =x Z N2U;(x),

where a is the isospin reflection of the parton a.
Recall that the usual sum rules for sums over the
squares of the parton’s charges involving vW,(x)
depend on a variety of assumptions.’® Since yWg
and vW$" depend on the combination U&= 3[U ()
+Uz(x)], they are unrelated to the conserved quan-
tum numbers. Sum rules involving vW,(x) are val-

J

id only with specific assumptions about the distri-
bution of partons in the nucleon.!
Sum rules for the odd-charge-conjugation struc-
ture function do not suffer from such difficulties:
(a) In all models with partons of charge 0 or +1
(e.g., Drell-Levy-Yan; Han-Nambu; ¢ model; etc.)
X2 =1, so that

1 1 for protons
f dx V(x)=Q={ (3.4)
0 0 for neutrons.

(b) In the standard quark parton model A2 =§x,
+2b,, so that

1 2 for protons
[ ax V(x)=%Q+%B={ (3.5)
0

% for neutrons.

Since the sum rule is independent of parton distri-
bution, similar results hold for nuclear targets as
well:

jldx V(x)=(3Z +2A)/9 (quark model). (3.6)

For nuclei with A =2Z, the quark-model sum rule
gives % of the corresponding result for integrally
charged constituents. The sum rules (3.4), (3.5),
and (3.6) thus provide a stringent test of fraction-
ally charged versus integrally charged quark mod-
els. These sum rules have the further advantage
that the tests can be performed on nuclear targets
as well, with the additional benefit of large cross
sections.

IV. BILOCAL ALGEBRA

An alternative approach to the question of scal-
ing in deep-inelastic processes is the algebra of
bilocal currents on the light cone. This algebra
postulates that when all possible separations are
lightlike

=yl =@=-vP=(x=uf=(y-uf=(x=-vP=(y-07=0, (4.1)

the commutation relations of the bilocal operators are those as suggested by the free-quark model?*:

[JL (X, u), J{, (y, U)] = ap{e(xo - 00)5(()(— U)z)}(if”,, - dfjh)[su upaJZ(y, u) +i€" uprJJt; S(y, u)]
+0 p{€(uo = ¥o)o((u - y)z)}(if“k +duk)[suup od6 (%, ) =€ o *(x, )], (4.2)

with similar relations for axial currents. The
limited validity of the commutator is implied by
the symbol =, denoting equality on the light cone.
Relations of this type have already been tested
successfully in SLAC-MIT experiments. In these
cases, however, the currents J} (x,u) and J? (y, v)
are ordinary local electromagnetic currents, with

r

x=u and y =v. These tests involve single commu-
tators in which the initial densities are local oper-
ators. Recently, several experiments?® have been
proposed to test the algebra of bilocal operators.
Unfortunately, all these tests are difficult to per-
form because of background contributions. We
now show that the interference cross section can
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be used as a test of bilocal algebra. Although the
cross section involves a retarded commutator of
a bilocal operator with a local operator, the test
is free of background complications.

We begin by ignoring possible singular terms in
the T* product which destroy the covariance of T
product. The T* is then replaced by T, and W,
becomes

w 41T2E2J‘d4yd4z gl yra 2=d ‘)9(3) )

x(P|[Jo(2), [, (9),7,@]]|P). (4.3)

In arriving at Eq. (4.3), we have used the spectrum
conditions, ¢§>0 and (g, - g4) >0, to replace the T
product by a retarded commutator, and the result-
ing product with another commutator. We now use
the usual stationary-phase argument in order to
conjecture that the integral in (4.3) is dominated
by the light cone with respect to all pairs of space-
time points. To achieve this, we first take —¢?,
q'?, and 2P q large with fixed ratios, keeping
~(g-q')? and 2P- (q-¢') finite. In the second step
we take the limit —(g-¢')?, 2P (g~¢q') -~ =, keep-
ing the ratio n=x=~(q - ¢')*/2P- (g - ¢q') finite.

The ordering of the two limiting procedures is im-
portant in this argument.?! Then causality implies
that all the three space-time differences in the in-
tegral (4.3) are lightlike. Therefore, we can use
the commutators of Eq. (4.2), and obtain

vpa

1 3(n)
Wuuu 2M mNuua ’ (4-43)
where
uua 2Pk [LpL—z(SuupoSao Bk_€uupc€cxo Bk)

- NpN_z(Suyp oSaoBk +€uupc€ao Bk)] ’

and
So(yyz)=Ju(y’Z)+Jo(z’y) .

S,(¥,2) contains the matrix @3, due to three elec-
tromagnetic currents. The SU(3) content of the
currents J,(¥,z) and the scaling function Sqs(n)

is given below:

Jo(¥,2)=3: ¥(¥)rR%(E):,
(4.6)

538‘8’(0).

Sq3(n) = —6<°)(17)+ S(‘”(ﬂ)+

Q is the charge matrix

2.0 o
Q=lo -1 o
0 0 -%

From neutrino data we know S‘3’(;) because it is
proportional to F)? — F;", and the combination
(3)S(°)(ﬂ)+(1/\/—)s(“)(n) because it is proportional
to FJ?+F;". But we do not know S‘® () and S®)(n)
separately. Therefore, $q43(17) cannot be evaluated
using electron scattering and neutrino scattering
data. This theoretically interesting function can,
however, be measured from the difference of
cross sections for incident electrons and positrons.
At this point, we should emphasize that although
the ordered limiting procedure is an important
part of the above argument, similar results can
be obtained in a different manner.?? We further
mention that since both photons are off mass shell
the complications due to Regge behavior do not
arise here. Note also that the result (4.4a), al-
though not exactly equal to the parton model result
(2.3), is nevertheless similar in structure to it.

(4.4b) We thus see that, so far as scaling is concerned,
light-cone analysis and the parton model give
= - - =g e
N=q'=nP, L=q+nP, R=q-q +nP, equivalent results. This point will be further dis-
Saosr =8xs8ok 8808 — 8ok » cussed in the following.
(4.5) The calculation of the difference cross section is
(P|S,(v,2)|P)= 2E (2 GrF Sqa( P+ (y = 2)) now straightforward. We substitute the expression
(4.4) for W, in Eq. (2.1) and, after integrating
_P, ° —inP - (-2) over the relative phase space of the muon pair,
2E, (21:)3 f_”dne Sqs(n), obtain
—
da(e”) do(e’) 8ot 1
(d3p’/E')d4q’ - (d’p’/E')d"q’ = (en)f P ,pqm 503(77)|Lm1 12 ’ 4.7)

where

| L.l =f aq"(q" +q"2_4m“2)5(q1 *q")(DspP-y +D-pbry =P+ ‘P-gau)qz(q

LaBqulua
-q'P2P-(q-q') ~

The evaluation of | L;, |2 is similar to that of |T;,, |2 in the parton model and is equally cumbersome. The
complete expressions are, therefore, given in the Appendix. Here we concentrate on the simple kinematic
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region (2.7)

29:q',q"*<<=(q—q'P<<2P‘p, 2P p’' 2P*q', 2p*q', 2p'*q’,

in which the expression for |L,,|? simplifies, and becomes

2__1_ 2
1= 3 qry @nut) .

]L int

(4.8)

This result, although not same as the parton-model result (for |T,, [2), should be of the same order of
magnitude. The scaling function Sg3(n) is obtained from the experiment by the relation

da(e”)

st = sy~ | / [ P | “9

The requirement that the right-hand side of Eq.
(4.9) be a function of 1 alone thus serves as a test
of bilocal algebra.

In conclusion, we note that the result (4.7) ob-
tained from bilocal algebra is similar in structure
to the parton-model result (2.6a). However, for
exact equality of the two approaches, we should
have (x=17)

SQ3(T))1Lmtl2=V(x)|T1mlz ’ (410)

where complete expressions, given in the Ap-
pendix, should be used for L and T. Since the
scaling functions Sg3(n) and V (x) are experimen-
tally observable functions, Eq. (4.10) could pro-
vide a possible test for the equivalence of the
parton model and the bilocal algebra.

V. CONCLUDING REMARKS

We have shown that the parton model predicts
a very specific scaling form for the interference
cross section for trident production and that the
right-hand side of Eq. (2.9) depends on the scaling
variable x alone and not on any other dimension-
less ratio of invariants. This provides a strong
test of the validity of the parton model. A similar
test of the bilocal algebra is provided by Eq. (4.9),
which can also be used to obtain the theoretically
interesting structure function Sgs(n). Further,
since the structure function V (x) is proportional
to the cube of the parton charge, it is possible to
obtain exact sum rules which would provide a tei

lT 127 2

a_ T
mtl - 3(—(12) (

where for spin-3 partons

r

of whether the constituents of proton have frac-
tional or integral charges. Since V (x) is odd with
respect to charge conjugation, these sum rules

are expected to converge in an experimentally ac-
cessible region. We further note that the results
of the parton model for the structure function W, , 4
are similar to those of bilocal algebra. We obtain
the relation (4.10), between V (x) and Sq3(n), for the
exact equality of the two approaches. The nominal
order of the magnitude of this process is down by
a factor of o@® as compared to the electroproduction
experiments. All these observations coupled with
the fact that there exists a simple kinematic region
in which the interference-to-signal ratio is maxi-
mal should make inclusive trident production a
feasible experiment for proton and nuclear targets.
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APPENDIX

Here we give the complete expressions for ]Tlm|2
and |L |2 which are involved in parton-model and
light-cone calculations, respectively. Some of the
variables in the following have been defined in
(2.8¢) and (4.5), and the rest will be defined
presently. We ignore the lepton and proton masses.
For |T . |? we write

P, T, +P,,T,+P, T +P,T, -2d,T, -2d,T,) (A1)

T, =[xu' +@21+2)(y =2)+2 (1 +1)] [ x?(6uv +2 tu) +2xu(l —z) - 2u ']
w2ty =2 (xt = 1) 2W (=1 +y =2 = 1) +uz (3L +2) +0¥z ) +xU't'[2(y —2) = 21"’ ]
+x QU —yz) [ x2 = 2L =) + 1Y = 2)] +xt'z[ xu" +Y (¥ = 2) + W] = xu” (= x0 +21") + X227 - Y2)
+xl'z[ xt2 +8(y —2) =2l —v)] +xty[ xu’ +2(y - z) - 211"]
+2xuz {x [H(y =2) =20 =v)]+ (¥ =2)? +4l"} +6L[x2(tvy = 1"2) + 1" 2] + 25z (u —v = £) ¥(y =2) +2U""],

(a2)
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T,=x(yz =21")[x(u-v)(4t —u+30) +t(y =2) + (u =0 )(~ 61 = 2y +2) + 21t ]
~6xl[x(tvy +1"8@ —uz)u -v) +1" QU +1y ~tz +uz —vz) +0Y (¥ —2) = 22(u = v)]
+xv'{x2[u(3t +8v) = 2v (t +2v)]
+x[(L+1)(4t +2u - 60) + (¥ = 2)(— 6 +2u) = (U =0)(21+2) = 2u(2l +Y +22) = 4ty] + 1" (2L +y +2)}
+x22u = v)(ou = 1") +xU't[z2(y — 2) = 2U1") = xu"z (xt’ +1'2) = 2xtz[ ¥ (v = 2) + 211"]
—xl'(u=-v)xv’' +2(y =2) = 20" ] +x2%22[ = 2xu + 2(L +2+ 1)] +x2 (= 2xu +)[x82 +t(y = 2) = 2L(u - v)],

T,=x[xu” +y(y =2) +2U"][4xv + 3y (@ —v) = 21"t' = 20(y =2) + 2l +tz - 4uy]
+x(vz = 20" x [ -v)(2t - ) +(t +2u)] - 21" (¢t - 2u) +2u(y - 2)}
+xy2{x [ 20t = du(u —v)] + 210} +2x% " (= Lt +ty —uy) +x 2%y = Y)Y %2 +4(y =2) = 2L(u - v))
+2xuy{x2 2 4 x[20(y —2) - 2L - V)] + (¥ —2)? +4ll"}
—6xl{x[tuz +tvy =1"t2 =y @ -v)] = I"v" +vy(y - 2)} ,

T, =xu"{2x% (3u - 2t) +2x[ 30 (L= ¥) +21" @ = v) =0 (¥ = 2) +2(t = 3u)] +2 (- 20 +3Y +2 +2)}
+xlUt[y(y —2)+ 20" | +x22%y (2 - 21)
+x(¥z = 20" {x [ -v)Qu~-t) -2 +Vu=-v)=t(y-2)}
+26Y2 U =v) (ot + 1) = xU (= v) u"z +y (y = 2) + 200" ]
+x[ Y@ =v)=2W][x0’ +2(y -2) - 211")
+xty[2(y —2) = 20" +x[ %82 4 4(y - 2) = 20 (u )] (2xvy +2U1" = 2yz) +x262 (2xvy +21"y)
=6xi{x[u=-v)ty —uz)+1"[ 3t@u—v) =12 = @=-v)] +utz]
+Y(=v)(y = 21) +1" (21t - 4lu +uy —uz —vy +vz) = tyz} ,
T,=T,=0.
For spin-0 partons we have
T, =[xv"+2(y —2z)+200"][ 4x2(tu + 2w ) — dxu(l +y) = 1" (1+2)]
+[xu” +y(y=z)+20" {x[2@=-v)=l0] = 1" +y)}
+[ = 2xuz + 1" (L +2)[{ 26262 4 2x[ 2t (y - 2) = Bl =v)] + (v =2 P 4 210"} |
T,=xu"[4x(lv = tz +uz) +21" (I —=2z) +4lz - 4z (y - 2)]
+x[t(@xt +3 = 2) = 21(u - v)] (- dxuz +4yz - 211"
+20"{ 8x%u(t +20) + 2x[ 21" (4 v = £) +2u(~ 3L +3 = 4z) = 3y (¢ +2u)] +2U" + 4y (L +22)} |
T =[xu" +y(y = 2) +2U" ][ 4x2Quv — tv) = 4xvy +1"(L =y =2) =2(y =2)]
+{2x282 4 3x[ £ (¥ = 2) = 2L = )] + (¥ = 2)? +4L"} [ 230y = 1" (L = )]
+[xv” sz(y—z)=20"{ 2x[ lu -y @ -v)] - 1"(1 =)} ,
T, =xu"{ 8x% (2u = t) +x[ 21" (5¢ - 2u) - 4v (3L +4y) +2z (¢t + 2u)] +21"(y = 1)}
+x0'{4x 2ty —y @ —0) = 2lu] +21"(L+y) - 4ly +4y(y —2)}
+x[2x82 4 t(y - 2) = 2l - v)] [ 4xvy + 21" (L +¥) - 4yz]
T, =z?[4xu-2(+z +1)]+ (yz = UM 4x@ +t) = (I +z = 1)
= 6l[2x (= t1" —uz +vy) +1"(L+22)] - 21" [2x0" +2(y —2) = 2U1"] ,
To=z2(4xv +21") + (yz = 2U" ) 4x @ -y +2) +2(L =y +1)]
~6U2x(tl" —uz +vy)+21"(y = 1)] - 21" 2x0” +y(y - 2z) = 2U1"] .

’

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)
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The propagators P,; (i,j=1,2) and other quantities are

Pi.l:diD! s
K? K2

d B WY iICE d = —

YT (q"+p"F 2 (@' =-pP
K? K? K?

K2
brtpip T P

tz=2lu=u', ty-2lu=u", tz -2l =0', ty=-2=0",

—~t+2u=-2v=t' 2l-y+2z+2=l  l=y+z+1=1",

The light-cone interference function is

2 _.—___8n
L |17 = @0/3) oy gy

where

(L, +L,+L,+L,) ,

(A12)

(A13)

(A14)

1 i
L =[——-——}{ (L-q'p'-q =Lp'q")R-pP+(2p'+q')+PpR* (20" +q')=R+Pp-q’']

L¥(q"+p'P

~(L-q'P-q'~L-Pq?) 2R pp'+q'|~ (p'+q'P@QR*pL"P)

+(L*q'R+q' =L Rq™®)P p'p+q' =P pp'+q' +P-q'q?/2)

+@q'p'q' =P p'q"?)RpL-(2p'+q")+L pR+(2p' +q’)+L*Rp +q’']

+(R.q’p.q'_R .pq’Z)(L.Pp’ .q’+L .p'P-q'_L.q’P .p')
+(R*q'P+q'~RPq'®)(-L+q'q*/2=L-pp’+q'=L-p'p-q")
+(p*a'p'*q'+q?q’"/2)|R*PL-q'~P+q'L*R~L*PR*(2p’ +q")]

-3q'*(L*PR*pp'+q’ +L-q'R-Pq?/2 +R-PL-p'p+q'=L-RP+q'q?/2~L-RP-p'p-q'),

L,=-L,(L~— N,R—P),
L3=L1(p~p,;ql.—-q’) ’
Ly==L(L+—=N, R—P, p—p' q'— —q').

(A15)
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