
PH YS IC AL REVIE% 0 VOLUME 12, NUMBER 7 1 OCTOBER 1975

Masses anfi other parameters of the light hadrons*

T. DeGrand, t R. L. Jaffe, K. Johnson, and J. Kiskis
Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 2 June 1975)

The masses and static parameters of the light hadrons (the pseudoscalar and vector meson nonets and the

baryon octet and decuplet) are calculated using the bag model. The effects of quark kinetic energy, bag

energy, strange~uark mass, colored-gluon exchange in lowest order, and energy associated with certain

quantum fluctuations are included. These are parameterized by four constants which have fundamental

significance and do not change from multiplet to multiplet. The fit to the spectrum is good. The ordering of
all the states is given correctly. The intramultiplet splittings are very accurate for the baryon decuplet and

reasonably good for the other multiplets. The isosinglet pseudoscalar mesons q and g' are treated separately
in light of the special role that gluon intermediate states play in these states. Magnetic moments, weak decay
constants, and charge radii are calculated. Vfhere comparison with experiment is possible, we generally obtain

improvement over the naive quark model. It is shown that exotic baryons do not exist as narrow resonances

in this approximation to the bag theory.

I. INTRODUCTION

During the past decade a quark theory of hadron
structure has been developed which is successful
in interpreting vast amounts of experimental data
in terms of a few extraordinarily simple ideas.
The ingredients of this theory are as follows:
Hadrons are composed of quarks —three per bar-
yon, two (quark and antiquark) per meson. The
quarks come in several "flavors", the three of
Gell-Mann and Zweig, ' augmented perhaps by new

quarks for new hadronic degrees of freedom such
as charm, ~ and in three colors. The quarks inter-
act among themselves relatively weakly by the ex-
change of an octet of massless, colored gluons
coupled in the manner of Yang-Mills' to their color
indices. The interaction must be weak at short
distances to explain scaling in lepton scattering
experiments; it must be weak near zero momentum
transfer to account for the lack of large renormal-
izations of naive quark-model estimates of transi-
tions among light baryons. The SU(3) symmetry
generated by the permutation of color indices is
unbroken. Quarks of different flavors may have
different masses to account for the observed break-
down of Gell-Mann's SU(3) and for the high masses
of states composed of charmed quarks —if that is
indeed what the J(3100) and lt(3700) are.

Finally, and essentially, colored quarks and
colored gluons are not themselves part of the phy-
sical spectrum. To accomplish this we assume
that the phenomenological fields which describe the
dynamics of quarks and gluons do not permeate all
space, but rather are confined to the interior of
hadrons. This can be understood in much the same
way as the phonon field of a crystal is defined only
over the region of space occupied by the crystal.
The quark-gluon degrees of freedom may similarly

characterize collective variables describing the
"low excitation" of hadronic matter. The only way
we know of to provide a description of this consis-
tent with Lorentz invariance (at least at the clas-
sical level) is by introducing a new term, -g„„8,8,
into the energy-momentum tensor of the theory.
6) is a function which is unity where the quark and

gluon fields are defined, zero where they are not.
B is a universal constant with the dimensions of
pressure. It is then an exact consequence of the
unbroken SU(3) color symmetry that all states have
conventional quantum numbers. It is tempting to
speculate upon an origin for this unconventional
term somewhere in the more conventional part of
the theory; however, this is irrelevant to our pre-
sent purposes. Having chosen this mechanism of
confinement we have progressed from a general
quark model to the MIT bag model. '

The object of this paper is to study the spectrum
of the lightest baryons (the pseudoscalar and vec-
tor-meson nonets, the baryon octet and decuplet)
in an approximation to the bag model which takes
into account all of the quark model features men-
tioned above. Previously' a "zeroth-order" treat-
ment of the baryon octet and decuplet was given.
In Ref. 5 the gluons were ignored entirely as were
quark masses and certain quantum fluctuations
which we now believe to be important and which
will be included here. Some features of that work
should be recalled for comparison with the pres-
ent: the one parameter, B, was used to set the
scale of baryon masses; the calculated magnetic
moment and charge radius of the proton were found
to be in good agreement with the observed values,
which are roughly three times the Bohr magneton
and Compton wavelength, respectively„. the mass-
lessness of the quarks reduced the nucleon axial-
vector charge (g, ) from the "nonrelativistic" quark
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model value of + to a value of 1.09. However, that
model possessed great degeneracies: The octet
and decuplet were degenerate as were the two me-
son nonets; furthermore, the meson and baryon
masses were in the ratio (&)' '=0.74 which is
roughly adequate for the vector mesons, but fails
badly for the pseudoscalars.

In the present work these degeneracies will be
lifted. It is important to keep track of the number
of free parameters. Here there will be four: the
bag constant, B; the quark-gluon coupling con-
stant, n, ~g'/4v; the strange quark mass, m„.
and a constant which parameterizes the zero-
point energy associated with the quantum modes
in the bag, Zo Zp is, in fact, calculable, but that
work is in progress and we shall treat it as a
parameter here. We will also explore the effects
of giving the nonstrange quarks a small mass, ~0,
but the spectrum is rather insensitive to the in-
clusion of such a mass and we do not fit it.

In the remainder of the Introduction me shall
review briefly the way in which the various effects
discussed above are handled in our model. Each
is considered in detail in Sec. II. We then return
to compare our approach with other quark models.

The bag model is defined by equations of motion
and boundary conditions. ~ For each field degree
of freedom there is an equation of motion inside the
bag and a homogeneous boundary condtion at the
bag's surface. In addition, there is another "quad-
ratic" boundary condition which assures that the
pressure of the constituent fields bal. ances the
pressure B locally on the surface. These equations
determine both the field motion and the motion of
the surface, and are difficult to solve in general.
Solutions with static, spherical boundaries ap-
propriate to particles at rest mere found in Ref.
5. This "cavity" may be populated with quark
(or gluon) modes satisfying the appropriate homo-
geneous boundary condition. However, the quad-
ratic boundary condition allows only quark modes
with total angular momentum &. We shall not re-
lax that condition here, and shall consider only
bags with static, spherical boundaries. In Sec.
IIA it is shown how the equation of motion and

homogeneous boundary condition fix the form of
quark wave functions in the cavity, and how the
boundary condition determines the frequency of
a quark mode in terms of the quark mass and

the cavity radius, R. This is very important
because it expresses the kinetic energy of a quark
mode as a function of its mass and R. Also in
Sec. II A the contribution of individual quark modes
to certain operators (i.e. , magnetic moment, axi-
al-vector charge) is computed.

In addition to the energy associated with occupied
modes in the cavity there must be an energy a —,'hem

(a) (b)

FIG. 1. Lowest order (in n, ) gluon interaction dia-
grams for a baryon. Mesons are similar. (a) Gluon
exchange; {b) gluon self-energy.

associated with each mode (unoccupied and occu-
pied) of frequency ~ (+ for bosons, —for fermions).
This gives rise to an infinite term proportional
to the cavity volume, which is absorbed into a renor-
malization of B, and a finite term in the Hamil-
tonain proportional to 1/R (R, = -Zo/R), which is
observable because R changes from hadron to
hadron. This effect is discussed in some detail
in Sec. II B and will. be discussed further in a forth-
coming publication. '

The gluon interaction is considered in Sec. IIC.
It is treated to lowest order in ~,. The relevant
diagrams are shown in Fig. 1. Its principal effect
is to produce a non-SU(3)-invariant spin-spin in-
teraction between quarks. Since the gluons are
also confined to the bag, the gluon propagators
shown in Fig. 1 include terms produced by the bag
boundary conditions. The interaction energy, Fig.
1(a}, can be computed exactly (analytically). The
treatment of the self-energy, Fig. 1(b), is more
delicate. A substantial fraction of the self-energy
is absorbed in renormalization of the quark mass
m, or m, . Including all of Fig. 1(b) would there-
fore be double counting. However, the gluon field
generated by the interaction, Fig. 1(a}, does not
satisfy the required boundary conditions. We have
therefore adopted the somewhat arbitrary pre-
scription of including only that part of Fig. 1(b)
which must be added to Fig. 1(a) to meet the gluon
boundary conditions. A more consistent procedure
would be to calculate the whole of Fig. 1(b) and
perform the required renormalization, much in the
fashion that Chodos and Thorn' have computed the
electrodynamic self-energy of massless quarks
confined to a cavity.

The result of Sec. II is an effective Hamiltonian
for hadrons including quark, gluon-interaction,
zero-point, and bag energies, in terms of the pa-
rameters 8, a, , Z„m, (m, ), andthe cavityradius
R. We next implement the quadratic boundary
condition. For angular momentum —, quarks in a
spherical cavity achieving the local pressure bal-
ance is equivalent to minimizing the Hamiltonian
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with respect to R. This fixes 8 for a given hadron
in terms of the other parameters and its quark
content. In Sec. III this apparatus is used to com-
pute the masses of the light hadrons. The masses
of the nucleon, 0 baryon, b,, and ~ resonances
are taken as input.

In Sec. IV the baryon magnetic moments, the
axial-vector couplings of octet P -decays, and
various charge radii are computed and compared
with experiment. Section V is devoted to a sum-
mary of our results and a discussion of some out-
standing problems.

Although the whole of this paper is presented in
the framework of the bag model, we believe the
analysis to be quite general. To see this consider
the terms in the bag Hamiltonian: First, consider
the quark kinetic energy, determined by its mass
and a boundary condition —which amounts to the
recognition that the quark is confined to a region
approximately the size of a proton. We expect
that any theory which is consistent with the con-
finement picture (quasifree quarks moving in a
finite domain) will behave similarly. If the qua. rks
are turned back at the edge of the hadron by a
strong confining interaction, the wave function will
be strongly damped in that region. The penetration
into the domain of the strong interaction will there-
fore be minimal. The linear boundary condition
provides a realization of this property for a Dirac
field. The quark momentum is large. It ranges
from 2.04/R for a massless quark to v/R for an
infinitely heavy quark. For A-1 F and a quark
mass of 300 MeV the momentum is approximately
500 MeV. It is therefore inconsistent with the un-
certainty principle to consider a nonrelativistic
quark model, recent resurrections not withstan-
ding'. Some measure of the quark kinetic energy
is essential. Second, let us consider the bag en-
ergy (&V). A similar term is necessary in any
confinement scheme in recognition of the fact that
the confining "potential" must itself be a dynamical
object which, in particular, will carry energy.
Models which ignore such contributions to the mass
are manifestly at odds with relativity. Further-
more, a prescription for reconciling the confining
potential locally with relativity is necessary. ' In

the bag theory this is provided naturally by the
nonl. inear boundary condition which locally deter-
mines the domain of the confining potential. The
third input is the gluon interaction energy. The
form and significance of this term is shared by

8most models. Finally we have the zero-point
energy. This is present in any extended system
when the dynamics is characterized by phenomeno-
logical collective variables describing excitations
with a scale related to the size of the object.
Again, phonons are an excellent physical example.

Zero-point energies are also encountered in the
only other relativistic extended model studied in
great detail, namely, the dual resonance model. '

Before passing on to the body of the paper we
wish to note that certain parts of our analysis
overlap recent work by others. Golowich" ha.s
pointed out the effect of a nonstrange quark mass
on the calculation of g, for neutron P decay.
Barnes' has included a strange quark mass in
the "zeroth"-order model of Ref. 5 and computed
its effect on octet baryon magnetic moments" and
axial-vector changes. His results do not differ
substantially from ours.

II. TERMS IN THE (PHENOMENOLOGICAL)
QUARK HAMILTONIAN

A. Wave-functions, quark frequencies, and single-particle operators

-~y zq= q, r =R. (2.1)

The lowest-mode solutions take the simple form,

N is taken so that f„,d'xqtq = 1:
2~(~ —1/R) +m /R

ca(e —m)

(2.2)

(2.3)

j,. are spherical Bessel functions and U are two-
component Pauli spinors. We choose to express
the frequency of the lowest mode in the form

~(m, R) =- —Jx'+(mR)'J'~'1
(2.4)

where x =x(mR), and obeys the eigenvalue equation

Here we shall discuss the wave functions which
will be used for the quarks. In doing so, we are
generalizing the discussion of Ref. 5 to allow for
nonzero quark mass. In the hadron states con-
sidered, the quarks will all occupy the lowest mode
for the free Dirac field in a spherical cavity with
radius R. Of course, as we will see, the actual
quark energy will change from state to state be-
ca.use the radius R will vary from hadron to had-
ron in order to satisfy the nonlinear boundary con-
dition of the bag model. This was mentioned in the
Introduction and will be discussed further in Sec.
III.

Here R will stand for a general value of the ra-
dius. The equation for the mode wave f'unctions is"

( iy V+ y'(u+m)q=-0,

which is solved with the linear boundary condition
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obtained from Eqs. (2.1) and (2.2},

x
mR [x y (mR)~]~ (2.5)

—24

22

A graph of the smallest positive root of Eq. (2.5),
x(~R), is presented in Fig. 2. Each occupied
quark mode of mass ~ in a cavity of radius 8
contributes a term u(m, R) to the energy of the
system.

Using the wave function Eq. (2.2) we may com-
pute various parameters associated with the quark
occupying this mode, such as its magnetic moment,
mean square charge radius, g, , etc. All of these
quantities will depend parametrically on x(mR}
and R, where x is given by Eq. (2.5). We list these
quantities, their expression in terms of the quark
wave functions, and the values computed using the
wave function Eq. (2.2) in Table I. It is interesting
to study the extreme relativistic and nonrelati-
vistic limits of certain of these. In the case of the
magnetic moment note that when ~ is zero, the
quark moment takes on the value used previously. '
For very large m it approaches the value 1/2m,
which is the magnetic moment of a free particle
with mass ~ or, equivalently, the magnetic mo-
ment of a massive Dirac particle moving in a non-
relativistic S-state. Consider, for example, the
case of a particle with mass ~ = 330 MeV, moving
in a hadron with the radius 1/R = 200 MeV (1 F),
for which mR=1. 15, giving g=0.54/2m. This dif-
fers significantly from the naive {nonrelativistic)
value. We take this as a further example of the
inadequacy of nonrelativistic quark-model calcu-
lations. Similarly, consider the axial-vector cou-
pling for neutron P decay. For massless quarks
this has the value 1.09. In the limit ~ -~ we find
g„= ~3 —the result of the nonrelativistic quark mod-
el. As noted by Golowich" a value of ~R-1 re-
produces the experimental value g.„=1.25.
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FIG. 2. Eigenfrequency x(mR) of the lowest quark
mode with mass in a spherical cavity of radius R.

B. Energy of zero-point fluctuations

We turn now to the field fluctuation energy. Pre-
viously' we considered only the field energy as-
sociated with the occupied modes in the cavity. It
is well known that in any quantum theory there is
another source of field energy, namely, the zero-
point energy of all the modes. In conventional
field theory, the "zero-point" energy which is
extensive is discarded since the volume filled by
the fields does not change in any process. In the
bag model, . since the volume depends upon the

TABLE I. Contributions of a single quark in the lowest cavity eigenmode to certain static parameters of hadrons.
The magnetic moment and charge radius are diagonal. The axial-vector charge connects either nonstrange quarks
(i =j; 4S=O) or one strange and one nonstrange quark (i =s, j=u, or d; 4S=1). Notation: A,

—= mR, x =x(mR) is the
root of Eq. (2.5), and n=R~(mR), where ~(mR) is defined by Eq. (2.4). Note 0. =A, +x .

Single-particle
operator Def ini tion

Value in lowest
quark eigenmode

Magnetic rnornent

p (m;, R)

Axial-vector coupling
constant (g, );,.

Mean square
Charge radius (r )

(f d'x-,'Px. q I Iuq(x).
bag 2

dsx q+ (x)aq (x)

J d'»
I x l':q'(x}q(x):

bag

R 4Q. +2k. —3
6 2n(0. —1)+&

( )
2 xi xg 2 (0'i —&&) + & i -&&

ga ij 3(x 2 x 2) [2~.(~ 1)+$,]lt2[2&.(&. 1)+$ .]1/2

2 n[2x (n —1)+4a+2A —3] —g&(4m+2~ —2x"- 3)(x )=R
3x [2c (c —1)+ X]2
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(2.6)

in a slab of thickness L (which is the only shape
cavity allowing an analytic calculation}. " When
the constituents are vector fields and Dirac fields
(but not if they are scalar fields) in the limit Q»L,
we find

~ 3 V &2 V
E,(vector) = Q' —,— (2 7)

,6V 7 ~' V
Eo(dirac) = -Q4

4 720 L,' (2.8)

The finite term is independent of the form of the
cutoff functionf, (~/Q} which in Eq. (2.6) is expo-
nential. It should be noted that &'/720=0. 0137 is
numerically small. In the case of scalar fields
there is also a cutoff-dependent term proportional
to AQ'. (A = V/L is the cross-sectional area of the
slab. ) It can be shown for arbitrary smooth sur-
faces that there is no term proportional to AQ'
for vector a,nd Dirac fields. Fortunately, our rel-
ativistic model contains only quarks and gluons
(Dirac and vector fields), so the problem of the
scalar field does not concern us. Therefore, the
sharp boundary does not introduce any new quan-
tum divergences in this approximation to the
quark-gluon bag. We also note that in the case of
the slab there are no terms proportional to
Q V/Lm, QV/L, or V/L~logQ. In calculations
done with spherical geometry these also seem to

mass of the state, the question of the zero-point
energy is less straightforward. Conventional
divergences are handled in relativistic field theory
by introducing a cutoff. Physical quantities which
are cutoff sensitive are isolated and taken to be
uncomputable parameters associated with the
theory (so-called "renormalized" quantities).
Quantities which are insensitive to the cutoff when
it is large in comparison to all relevant scales
are the predictive elements in the theory. We shall
employ the same procedure with the zero-point
energy (and all other short-wavelength sensitive
quantities) of the confined fields in the bag theory.
We may hope that short-wave sensitive quantities
will not be affected by the confinement of the fields
which is associated with a long scale, namely, R.
However, we are aware that the classical scale
which separates the inside of the hadron from the
outside is zero; that is, the surface is "sharp. "
Hence, short-wavelength quantum effects could
lead to difficulties near the surface. We have
found that these potential difficulties do not arise
in a study of the zero-point energy of massless
fields.

We have computed the zero-point energy with a
cuto5,

E, = Z,/R- (2 8)

Since not all constituents are massless Zp can
depend upon (mR). We shall neglect this depen-
dence since (1) most constituents are massless,
and (2) the form of Zo is the same for all hadrons.
It changes only with variation in R, which is gen-
erally not too large from one hadron to another,
except in the case of the lightest mesons. From
the slab calculation we may get a crude estimate
of the magnitude and sign of Zo. If in Eqs. (2.7)
and (2.8) we substitute L =R and V= ss-vR', and
take eight colors of gluons and nine (= three fla-
vors &three colors) for the number of quarks we
find

773

Z, (slab) = (8++9) =1.36.

Below it will appear that the value of Zp needed in
the phenomenology is

Zp- 2.0.

This is consistent with the crude estimate, but
of course a real calculation of Zp is needed, and
will eventually be provided.

C. Quark-gluon interaction (two-particle operators)

Here we calculate the quark interaction energy
due to their coupIing to colored gluons. The inter-
action will be calculated only to lowest order in

u, =g2/4x, which shall be the only parameter of
the interaction: The appropriate diagrams may be
evaluated exactly for a spherical cavity as a func-
tion of its radius. The gluon interaction will lift

be absent, but we have no general demonstration
of this. We shall assume that they are absent. The
divergent terms in Eqs. (2.7) and (2.8) are pro-
portional to V and independent of the shape of the
cavity. This is the "traditional" extensive diver-
gent zero-point energy. In its covariant form it
corresponds to an infinity in the stress tensor
proportional to g"' which is put equal to zero in
conventional theory by the introduction of a cut-
off-dependent counter term in the Lagrange den-
sity which is taken to cancel it exactly. In our
theory we merely choose the counter term to re-
normalize the divergence. The counter term is
therefore the "bare" version of the bag constant
B. If we wish, we may associate B with the quan-
tum fluctuations of the quark and gluon fields: The
fields are confined by their zero-point energy.

In the absence of a numeral calculation of E, in
the spherical case (which is currently in pro-
gress), ' we shall simply parameterize the finite
part of the zero-point energy by including in our
mass a term
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(2.11)

The index "a"denotes color and runs from 1 to 8.
E and B' are gluon electric and magnetic field
vectors. These boundary conditions are necessary
in order to confine the gluons to the bag and corre-
spond for confined vector fields to the boundary
condition Eq. (2.2) obeyed by the quark fields.

The electrostatic interaction energy of a static
charge distribution is

the spin degeneracies of our model, splitting the
nucleon from the 4 resonance, and the p from the

Such an interaction has been discussed often
in the past, "most recently by De Rujula Georgi,
and Glashow. ' The differences between previous
treatments and the one given here are, first, that
ours is entirely relativistic and, second, that we
are able to calculate the reduced matrix elements
of the interaction in all quark configurations (me-
sons and baryons), rather than fit them as param-
eters. We use no group theory since the radius of
the cavity changes from state to state: Higher-
order representation-mixing effects are implicitly
involved.

The lowest-order gluon-exchange graphs are
shown in Fig. 1. Since the quarks remain in the
lowest cavity mode, the current at the vertices
in Fig. 1(a) is time-independent. Consequently,
only the static part of the gluon propagator contrib-
utes in Fig. 1(a). This is not true for the self-en-
ergy diagrams: In Fig. 1(b) the intermediate quark
may be in any cavity mode. For reasons which
will be explained below we shall truncate this sum
and consider only the term in which the quark re-
mains in the lowest mode. The gluon propagator
in Fig. 1(b) will therefore also be the static prop-
agator.

To lowest order in a, the non-Abelian gluon self-
coupling does not contribute —the gluons act as
eight independent Abelian fields. The problem re-
duces to ordinary electro- (or magneto-) statics
with the boundary conditions on the surface, '

i E'=0, (2.10)

rxB'=0 .

nEs=-,'g' P g d'xE', (x) E;(x),
bag

(2.14)

QQ f*& Bi( )ii)('*). **
baga i&j

(2.15)

B( (E';) is the color magnetic (electric) field gen-
erated by the ith quark in the hadron.

The color magnetic field must satisfy

VxB] = j;, r&A

V B', =0, r&A

rxg B; =0, r=R

(2.16a)

(2.16b)

(2.16c)

where j ~ is the color current of the ith quark:

self-energy diagrams [Fig. 1(b)] which are included
in Eqs. (2.12} and (2.13). These diagrams con-
tribute to a renormalization of the quark masses.
A proper treatment would separate this contribu-
tion from the rest of Fig. 1(b) since its effect is
already included in the phenomological quark mass
we use. We have not attempted this analysis, but
realize that including some parts of Fig. 1(b) risks
recounting effects already included in the quarks'
masses. We have adopted the following minimal
prescription: Only those parts of Fig. 1(b) nec-
essary to enable E' and B' to satisfy the boundary
conditions, Eqs. (2.10) and (2.11) will be included
in our calculation. We have checked that including
more of Fig. 1(b) does not alter our spectrum sub-
stantially though it does (as expected} require rath-
er large alterations of the quark masses and of
Z 17

P ~

The consequences of our prescription for Fig.
1(b) are simply stated: It can be ignored for cal-
culation of magnetic energies since the B' field
of Fig. 1(a) satisfied Eq. (2.11) by itself; the static
term (quark remaining in the same energy state}
must be included in the calculation of electric en-
ergy. With these provisos Eqs. (2.12} and (2.13)
may be rewritten:

dE =-,'g' g f d'xz'(x) E'(*) .
bag

(2.12}
j',. =q& zA.'q,.

p (r)= ——r xo'] ~;
47t r'

(2.11)

(2.18)

Similarly, the magnetostatic interaction energy is

~.=--.'(;*g f d *~'(*) ~'(*), (i.(i)
a bag

where g' =4m@,. E' and B' are determined from
the quark charge and current distributions by Max-
well's equation and the boundary conditions Eqs.
(2.10) and (2.11).

Before evaluating the gluon field energy it is
necessary to discuss further the treatment of the

Here g,'(r) is the scalar magnetization density of
a quark of mass m; in the lowest cavity eigenstate.
The integral of I(&(r) yields the quark modes' mag-
netic moment:

y,(m;, R) = dr' p.&'(x'), (2.19)

which is listed in Table I. Equations (2.16) may be
integrated to determine 8;(x):
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Bq(x) = 2M, (r) + — ' —,' + r(f, ~ r) p(~, r)/raA» cr» p(m„R) p(m„r) 3X', .
4m r3 4m

where g(~, r) is the integral of g&(r') to a radius r, and

(2.20)

(2.21)

This expression for Bf may be substituted into Eq. (2.15}:

(2.22)

where
R

I(m~ R, m&R) = 1+2 —
4 g(~, r) ij.(m&, r) (2.23)

= I +(x~ sin'x, —2yq)
'

(x& sin'x& —~y&)

x (—gp( Jg —2x(xy sin x( sln~xy

+ —,'x; x~[2x, Si(2x() +2x~Si(2x~) —(x; +x,) Si(2(x; +xq)) —(x; —x~) Si(2(x; —x,)) J j, (2.24)

where y» =x» —sin@» cosx», x» is the root of Eq.
(2.5) for a given ~ R and

(~', +q) Ju& =0.
Squaring this and using

g (Z', }2 = ~ ,

(2.25)

(2.26)

we find

(2.27)

Likewise for baryons:

g ~;)R) =0, (2.28)

0

The color and spin dependence of Eq. (2.22) may
be simplified considerably. For a color-singlet
meson

Here A. =1 for a baryon, 2 for a meson. The only
parameter in 4E which is not dimensionless is R.
N;, is linear in o, and calculable from Eqs. (2.22)
and (2.24} and from the values of p, (m;, R) in Table
I. Equation (2.31) has the interesting property that
the sign of the energy shift is the opposite of that
found in atoms. This is because the quark colors
are "opposite" since the hadrons are color sing-
lets.

The magnetostatic energy shifts are easily cal-
culated for different hadrons. They will be dis-
cussed in Sec. III. To illustrate the effect of such
an interaction consider the splitting of the A and
Z hyperons. This mass splitting is due entirely
to the dependence of the magnetic interaction on
the quark mass: In the A particle the u and d
quarks are in a spin-zero state so that ~„-v, = -3,
while o„+o„=0so o, ~ (o„+o,}=0. The Z, on the
other hand, contains a u and d quark in a spin-
one state so Fr„o'„=1, while o, ~ (&r„+a'~) = -4.

%e turn now to the gluon electrostatic energy.
The color electric field of a single quark must
satisfy

whence

(2.29)

The final expression for the magnetic interaction
energy is

o.E„=Sapp (o, ~ o, )
" ' I(m; R, mg)

g)f

(2.30)

»&j

V E'; = jo»', r&R

vxE; =0, r&R

Pr. E; =0, r=R

(2.32a}

(2.32b)

(2.32c)

(2.34)

where jo;(r) is a single quark's color charge den-
sity

(2.33)
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Here p';(x) is the charge density of a quark of mass
m& in the lowest cavity eigenmode and satisfies

dr'p, '(r') = 1. (2.35)

The color electric field is obtained from Gauss's
law:

E', = ', r"p;(r),4n'y' (2.36)

(2.37)

For a color-singlet hadron QX'(H) =0. Therefore,
E' =0. Simply stated the color charge density
vanishes locally. From Eq. (2.14) we see n, Es =0.
Notice that it was essential to include the static
self-interaction (E; E;}to obtain this cancella-
tion. In the same manner note that the gluon elec-
tric field of a single quark will not satisfy the
boundary condition, Eq. (2.32c), while the sum
over all quarks does. It is this which has forced
us to keep the static self-interaction terms.

Even when the quarks have different masses, so
long as the masses are not too different, AE& is
very small. . For massless u and d quarks and for
a strange quark with m, & 300 MeV, the gluon elec-
trostatic interaction energy is always less than 5
MeV. We will therefore present the details of the
calculation of electrostatic energy in Appendix A.
We do include this term in our fits to the spectra.
If two quarks have greatly different masses, as is
possibly the case for charmed mesons and bary-
ons, this term may be more important.

where p&(r) is the integral of p,'(r) out to a radius
y'.

Now if all of the quarks in a given hadron have
the same mass, then p, (r) is independent of the in-
dex i and the total color electric field is given by

energies to the hadron's mass. If Np N pro alld

m, are the respective numbers and masses of the
nonstrange and strange quarks, and if ur(y) is the
frequency defined by Eq. (2.4), then this term is

Eo No——(,(ma, R) + N, (o(m „R). (3.3)

(c} The gluon interaction has color magnetic ex-
change and color electric parts as discussed in
Sec. II. The color magnetic exchange term will be
written in the form

(3.4)

EE b& (3.5)

where & is the color electric interaction energy of
a strange and a nonstrange quark including both

.2—
———One quark massless

Both quark moss m

Sa,MR

E~=a«Moo+aoPIo +a Pl,
by evaluating Z;&(o, a&)M, &

in each state. In Eq.
(3.4) M« is the color magnetic interaction between
two nonstrange quarks, M„ is that between a non-
strange and strange quark and M„, the interaction
energy between two strange quarks. The values of
Moo, Mo„and M„can be read off of Fig. 3. The
coefficients a„.depend on the state and are listed
in Table II. The color electric energy is given by

III. HADRON MASSES

We can now write down the expression for the
Hamiltonian which determines the mass of each
hadron. Each term was discussed in detail in Sec.
II. We summarize them briefly:

(a) The quantum fluctuations contribute two terms
which depend only on the radius of the hadron. The
volume term is

(3.1)

The remainder of the zero-point energy is

(3.2)

As the discussion of Sec. II has shown, we can
expect Z, to be positive and of order unity.

(b} The quarks contribute their rest and kinetic

pl,
0

FIG. 3. Magnetic gluon exchange energy of two
quarks as a function of mR. M is the quantity referred
to in Eq. (3.4). The solid line gives the interaction en-
ergy between equal-mass quarks (Mpp or M ) the
dashed line gives the interaction energy between a
massless quark and a quark of mass m (M + ).
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self- interaction and exchange graphs. The coef-
ficient b is one or zero depending upon whether the
quark content of the hadron is mixed or not. & is
given in terms of the dimensionless quark frequen-
cies and o., in Eqs. (A3)-(A5).

The mass of hadron of radius R is then given by

M(R) =E~+Eo+Eo+Ex+Es, (3 6)

where the individual terms are given by Eqs.
(3.1)-(3.5).

So far we have not used the quadratic boundary
condition of the bag model. ' This requires that
the quark and gluon field pressures balance the
"external" pressure B locally on the bag's surface.
It can be shown that for static spherical bags con-
taining quarks with angular momentum —,', the
quadratic boundary condition is equivalent to min-
imizing M(R) with respect to R. Thus the true
radius of the hadron, R„ is determined by
SM/SR =0 and its mass is given by M(RO).

In order to become more familiar with these
equations, it is useful to consider the nonstrange
particles (b.,P, ur, v) in the case that the nonstrange
quark mass is zero. Considerable simplification
results. All expressions are evaluated with mR
= 0, and x(mR} =x(0) =2.0428. Furthermore,
E~=O in all these states. Accordingly, we have

M;(R) = , rBR'+A, /R-, (3.t)

where

A (
= -Zo + N~ x(0) + a;Moo

~

A, is independent of R, so we can easily carry out
the minimization. The observed masses of the
4, p, and ~ can then be used to fix the parameters
B, Zo, and (y, .

The various mass splittings arise in the following
way: If n, were zero, baryons would be split from
mesons since baryons have three quarks and
mesons two. The 6 and the proton would be de-
generate as would be the p and p. However, when
we turn on the color magnetic interaction the 6 and
the proton are split apart since a =3 for the 6 and
-3 for the proton. The p and co remain degenerate,
but are split from the g. The ratio of the magnetic
interaction 2:-6 =1:-3for the (p, ~} and x follows
simply from the fact that the quarks are in a trip-
let state (o, c, =1) in the (p, u) and are in a sing-
let state (c, ~ o, = -3) in the x.

In order to break SU(3), we give the strange
quark a larger mass than the nonstrange quarks.
We have chosen this mass to fit the 0 . If the only
effect of this SU(3) breaking were in the quark
mass-kinetic term E+, the Z and A would remain
degenerate. However, the presence of the strange-
quark mass modifies the strange-quark wave func-
tion and therefore causes a secondary SU(3) break-

M(z») —M(z) =iaaf(:-») —M(:-)

is immediate.
It should be pointed out that these mass formulas

do not apply linearly in the baryon masses and
quadratically in the meson masses. All hadrons
are treated on the same footing.

Because the eigenvalue equation for x(mR) is
transcendental and because R and M, &

change in a
complicated (although smooth) way from particle
to particle, we cannot quote any universal mass
formulas based on group properties. Our results
are given for two cases in Tables IG and IV, and
for case A in Fig. 4.

Case A. Here the nonstrange-quark mass is held
at zero. 8, Z, and n, are adjusted to fit the 6, p,
and ro. The strange-quark mass is adjusted to fit
theQ .

Case B. Here the nonstrange quark mass is set
at 108 MeV. The other parameters are determined
in the same way as in case A.

The masses of the g and g have not been included

TABLE II. Parameters which specify the gluon mag-
netostatic and electrostatic energy of light hadrons. app,

ps and ass are defined by Eq. (3.4); b by Eq. (3.5).

Hadron Qpp aps ~ss

p
K*

K

-3
1
0
3
1
0

0
2
0
2
0

-6
0

0
0
4
4
0
2
2

0
0
2
0
0
0

-6

ing through the gluon interaction. This splits the
Z and A in the right direction, and in our case
with a magnitude about —,

' of the observed difference.
Various SU(3) and SU(6) mass formulas may be

obtained using Table II if one were to assume that
R does not change from state to state. For in-
stance, the "linear" Gell-Mann-Okubo formula for
octets and decuplets is equivalent to

~(Moo++, ) =Mo, .
This is well-satisfied for the baryon and vector-
meson octets, where m, R -1.5, but fails badly for
the pseudoscalar mesons, where m, R -1.2. The
SU(6) relation"
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TABLE III. Masses of light hadrons for the case mp=0. All masses are quoted in GeV, Rp
in GeV . The five contributions to the hadron mass, Ev, Ep, EQ E& and Ez defined by Eq.
(3.6) and preceding equations, are listed and compared with experiment.

Particle f exp Mb Rp EQ

P
K*

0.938
1.116
1.189
1.321
1.236
1.385
1.533

1.672
0.77+ 0.01

0.892
0,783
1.019
0.495
0.139

0.938
1.105
1.144
1 ~ 289
1.233
1.382
1.529

1.672
0.783
0.928
0.783
1.068
0.497
0.280

5.00
4.95
4.95
4.91
5.48
5.43
5.39

5.35
4.71
4 ~ 65
4.71
4.61
3.26
3.34

-0.367
-0.371
-0.371
-0.374
-0.336
-0.338
-0.341

-0.343
-0.390
-0.395
-0.390
-0.399
-0.564
-0.549

0.234
0.227
0.227
0.222
0.308
0.301
0.293

0,287
0.196
0.189
0.196
0.183
0.065
0.070

1.226
1.400
1.400
1.572
1.119
1.292
1.465

1.636
0.868
1.039
0.868
1.207
1.407
1.222

-0.155
-0.156
-0.116
-0.136

0.141
0.122
0.106

0.092
0.110
0.091
0.110
0.076

-0.415
-0.462

0
0.005
0.005
0.005
0
0.005
0.005

0
0
0.004
0
0
0.003
0

B'~ =0.145 GeV, Zp=1.84, o;c=O 55, ms=0. 279 GeV

in these calculations. Usual considerations would
require the g and 7t to be degenerate as are the
&o and p (see below). However, the q and g masses
are affected by an additional interaction, namely,
quark-antiquark annihilation into two gluons as
shown in Fig. 5. This occurs only between spin-0,
SU(3) —singlet states. We have not yet calculated

this interaction energy. It affects only the g- q
system. In Appendix B we discuss the expected
size of this interaction in our model and relate it
to the observed g and g masses.

From Fig. 4 we see that in the baryon decuplet
the fit is very good. The equal spacing rule is well
verified. In the baryon octet the Gell-Mann-Okubo

TABLE IV. Masses of the light hadrons for the case mp=0. 108 GeV. All masses are
quoted in GeV, Rp in GeV . The five contributions to the hadron mass, Ev, Ep, EQ
and E~, defined by Eq. (3.6) and preceding equations, are listed and compared with exper-
iment.

Particle Mev p Mb, g Ev E„

P
A

+

~p

P
K~

K

0.938
1 ~ 116
1.189
1.321
1.236
1 ~ 385
1.533

1.672
0.77 + 0.01

0.892
0.783
1.019
0.495
0.139

0.938
1.103
1.145
1.286
1.233
1.381
1.528

1.672
0.783
0.925
0 ~ 783
1.063
0.371
0.175

5.59
5.51
5.53
5.42
6.38
6.29
6.20

6.11
5.47
5.37
5.47
5.26
0.73
1.13

-0.348
-0.354
-0.353
-0.360
-0.305
-0,310
-0.314
-0.319
-0.356
-0.363
-0.356
-0.370
-2.688
-0.796

0.181
0 ~ 173
0.174
0.165
0.269
0.257
0.247

0.236
0.170
0.160
0.170
0.151
0
0.022

1.266
1.443
1.439
1.620
1.132
1.312
1.489

1.666
0.860
1.033
0.859
1.206
5.865
3.717

-0.160
-0.163
-0.120
-0.143

0.137
0.119
0.103

0.089
0.110
0,091
0.110
0.076

-2.807
-1.822

0
0.004
0.004
Q. 004
0
0.004
0.004

0
0
0.004
0
0
0.001
0

B ~ =0.125 GeV, Zp ——1.95 a'c 0 75, ms=0 353 GeV
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FIG. 4. Fit to the hadron masses with m0=0, with B, u~, &0, and m~ as shown. The actual masses are given by
dotted lines for comparison. The masses of the N, 6, 0, and (d were used to determine the parameters, all other
masses are predicted.

formula is satisfied very well. The mass of the
:- is about 30 MeV too low and the Z —A splitting
is about —,

' the observed value.
At this level of approximation, the (d and p re-

main degenerate. The observed splitting is about
13 MeV. Our f mass is about 50 MeV too high.
[Our Hatniltonian's eigenstates are pure strange
(&f&) and pure nonstrange (&o).] As usual, the
pseudoscalar mesons are the source of some dif-
ficulty. The K- z mass splitting we get is about

(b)

FIG. 5. Lowest-order gluon annihilation diagrams
present only for spin-0 flavor-SU(3) singlet mesons.
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210 MeV versus an experimental value of about
350 MeV. With zero mass for the nonstrange
quarks, the K comes out about 2 MeV too high and
the g is found at 280 MeV. As the nonstrange-
quark mass is increased (and the other parameters
are readjusted to keep the 0, b, , p, and u cor-
rect}, the v and K begin to drop together. In fact,
this is the only substantial change in the fit, as
can be seen from Tables III and IV. At a non-
strange quark mass of 108 MeV the m mass is 175
MeV. By the time the quark mass reaches 109.5
MeV the equation SM/SR =0 no longer has a root
for R &0 for the pion. The pressure is not suf-
ficient to balance B. Thus the m meson is no long-
er a state in our model. Actually this is encourag-
ing: The pion has always been difficult to reconcile
with a quark model. A pion made of two quarks
but nearly degenerate with the vacuum seems like
a step in the right direction. '9 Finally, it is also
possible to compute the masses of "exotic" had-.

rons. In Appendix C it is shown that all exotic
baryons are unstable in our model.

IV. MAGNETIC MOMENTS, AXIAL-VECTOR COUPLING
CONSTANTS, AND CHARGE RADII

The parameters of our model, a„Z„B,and

m, have been determined by fitting certain hadron
masses. The quark wave functions of any hadron
are determined by these parameters and by its
radius, as described in Sec. III. It is now possible
to put this information together with the formulas
listed in Table I and calculate various static (or
near static) parameters of the hadrons. We shall
evaluate matrix elements treating the bag as a
nailed-down cavity containing free quark fields.
The reader should be warned that we are not ad-
dressing the deep question of whether totally sat-
isfactory local current operators can be defined
for an extended object such as the bag. We do not
include order a, corrections to the parameters
calculated in this section. The effect of recoil on
matrix elements measured away from zero mo-
mentum transfer (for example, the charge radius} is
ignored, as is the slight difference in radius be-
tween initial and final states in hyperon P decay.
It is possible that some of these questions may be
addressed before a full theory of local currents is
developed.

list the ratio of the magnetic moments to that of
the proton to allow comparison with SU(2). Ex-
perimental data, where available, are also listed
in Table V. The nonrelativistic quark model also
makes predictions for magnetic moments. Its
predictions are obtained by sending the quark
masses to infinity then adjusting the strange to
nonstrange-quark mass ratio to fit the magnetic
moment of the A hyperon. The magnetic moments
of other hyperons in units of the proton's are de-
termined by this ratio. For a given ga/ii~ the
predictions of the bag model and the nonrelativis-
tic quark model for other hyperons are identical.
The advantage of the bag calculation is, first, that
p, ~/ii~ is predicted not fit, and, second, that it
makes sense to calculate magnetic moments with
less than infinite quark mass (cf. the discussion
of Sec. IIA)..

The bag model does less well on the over-all
normalization of the octet magnetic moments.
Previously' we found 2M~p~ = 2.6 (experiment is
2.79). The present model leads us to a larger
value of B' ' than in Ref. 5 and a consequently
smaller proton radius. Because of this p~ is
somewhat too small: 2M~ p~ =1.9. We regard this
as the most serious discrepancy among the pre-
dictions we are able to make. In comparison,
the nonrelativistic quark model allows for no con-
sistent prediction for the magnitude of p.~ since
quarks light enough to give a reasonable value for
p,~ certainly cannot be considered nonrelativistic
(see Sec. IIA).

B. Axial-vector coupling constants

The axial-vector charges of octet baryon P de-
cay can be calculated if their dependence on the

Hadron
Magnetic moment (p/p&)

Experiment Bag model SU (3)

-0.685

-0.240 + 0.021

0.93 + 0.16

2
3

-0.255

0.97

c (-3)2

2 c (-g)1 1

(1)

TABLE V. Baryon magnetic moments in units of p&.
The bag-model predictions are for m~=0.279. The SU(3)
predictions depend on the F/D ratio for the magnetic-
moment operator (c=-a[1/(a+F/D)l). The figures in
parentheses correspond to a (conventional) choice of
F/D —3.

A. Magnetic moments

Here we shall be brief since the subject has been
discussed by Barnes" and by Allen. " The magnet-
ic moments are computed from the radii of our
baryons (Table III or IV) and the first equation of
Table I. The results are listed in Table V. We

go

-0.53 ~0.13

-0.69 + 0.27

0.31

-0.36

-0.56

-0.23

1

C (3)
1-1-c{-3)

c (-3)2

1-1—c (-p)
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momentum transfer in the decay can be ignored.
This is probably a reasonable approximation phen-
omenologically since the matrix elements are not
pion-pole dominated. The contribution of an in-
dividual quark to the weak axial-vector charge is
listed on the second line of Table I. For a speci-
fic decay it is necessary only to add up the con-
tributions of the various quarks. Since the spin-
SU(3) structure of our baryon wave functions is
that of SU(6), the quark counting is identical to
that well-known model. The difference in the bag
model comes from the relativistic nature of the
quark wave functions. The lower components of
the Dirac wave function reduce the contribution
of an individual quark from unity (suitably normal-
ized) to 0.653 for a fully relativistic quark (m, =0).
This result can be read off of Table I for
x=2.0428. The factor 0.653 is therefore appro-
priate to rhS =0 transitions, which involve only
massless quarks. Thus, for example, the non-
relativistic quark-model prediction for neutron
p decay (n -pev) is reduced from —, to 1.09. Like-
wise for the decay Z -Aev, g, is reduced from
-', to 0.53.

In strangeness-changing decays a quark of mass
285 MeV changes into one of zero mass. The ap-
propriate reduction factor, read off of Table I, is
0.707. Thus, for the decay A-pev the nonrelativ-
istic prediction of (—,')' ' is reduced to 0.8'l.

Our results are most easily summarized and
compared with experiment by introducing the lan-
guage of Cabibbo parameterization. " There, in an
SU(3)-symmetric world, all octet p decays are fit
by two reduced matrix elements E, and D,. Each
measurement of g, determines a line (actually a
band when experimental uncertainties are included)
in the E„D,plane. This plot is shown in Fig. 6.
The overlap of the various bands determines a
best fit to E, and D,. The most recent values of
these are"

The relativistic correction of the bag model im-
proves agreement with experiment substantially
(e.g. , in the decays Z-Aev; n p-ev; A-pev),
though it goes the wrong way slightly for the decay
Z -nev. The limitation of the bag model in this
regime is apparent from Fig. 6. The corrections
reduce E, and D, in proportion. Thus, the non-
relativistic quark-model prediction may be shifted
along a line through the origin. Since the experi-
mental point does not lie quite on this line, no
choice of strange- and nonstrange-quark masses
will reproduce this point. Golowich" has chosen
to adjust the nonstrange-quark mass to fit g, from
neutron P decay. While this shifts the bag pre-
dictions slightly it does not substantially change
the over-all agreement with experiment.

C. Charge radii

Data on hadron charge radii are substantially
less numerous than either magnetic moments or
axial-vector charges. What data do exist are ob-
tained from measurements of the derivatives of
the elastic electric form factor at zero momentum
transfer. The proton's charge radius is measured

AxIAL-VEGTQR CHARGES oF HYPERoN 8- DEGAY

data (one standard

bibbo Pararneterization
nrelativistic Quark Model

g Model, Int S = 0
g Model, d, S = 1

I.O

E'~'=0.41+0.02, D'~ =0.83 y0.02.

The nonrelativistic quark model predicted"

ENR-2 DNR 1o 3 & o

The bag model does not predict a unique E, and D,
because of the SU(3) breaking induced by the
strange-quark mass. Instead we find for M= 0
transitions a reduction by a factor of 0.653.

E"'=0 44 D '=0 65
ft

' y g ' )

0.5

0.5 Da I.O

and for S=1 transitions a reduction by a factor of
0.707:

~s=x 0 47 D~s=i 0 71a ' ~ a

These values, together with the predictions of the
nonrelativistic quark model, are shown in Fig. 6.

FIG. 6. Axial-vector coupling constants for octet P
decays. Each experimental measurement (branching
ratio or angular distribution) determines a line in the
E~ -D, plane. Experimental uncertainty broadens the
line to a band. The data are sununarized by the Cabibbo
parameterization. Model predictions are summarized by
values of E, and D, as shown.
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to be

(r~')', ~' = 0.88 a 0.03 fm,

and neutron's is

(r„'), = -0.12 a 0.01 fm2 .
There is also a rather controversial measurement
of the pion charge radius'4

(r,2}',/' =0.78+0.10 fm.

The bag-model predictions for these may be cal-
culated from the third line of Table I:

(r ')~/2 =0 73 fm

(r 2}1/2 0

(r,'}'/'=0.49 fm.

The same effect which reduced the proton's mag.-
netic moment in comparison with Ref. 5 also re-
duces its charge radius.

V. CONCLUSIONS AND DISCUSSION

We have shown that the structure of the levels of
the lightest SU(6) multiplets for baryons and me-
sons can be well understood in terms of a limited
number of parameters, all of which have a funda-
mental significance and can be used to calculate
other hadronic states and processes. This should
be contrasted to other fits of the mass spectrum
which in general leave the reduced matrix elements
of differnece SU(3) multiplets as distinct, unrelat-
ed parameters. In our case the parameters are the
colored quark-colored gluon coupling constant, the
mass of the strange quark, the scale of the con-
finement potential (B), and the magnitude of the
zero-point energy. Among these, the latter will
eventually be related by calculation to the struc-
ture of the constituents. For the present it is fit-
ted. It is probably important to remark that the
energy scale is related to the confinement (8)
rather than to the quark masses. The quark mass-
es seem only to play a role in establishing the
magnitude of the SU(3)-symmetry violation. The
model includes non-SU(3)-symmetric spin-spin in-
teraction which accounts for the breaking of SU(6).
Not only does the model yield a reasonable mass
spectrum, but the magnitude of the differences be-
tween the calculated and actual masses are of the
size to be expected when one takes into account
higher-order effects using the same parameters.
That is, the fit is consistent.

Using the quark wave functions the calculations
of static parameters also produces a general im-
provement over the results obtained in nonrelativ-
istic quark models.

Then, what problems remain? Two important

extensions of this work are in progress. First,
the spectrum of the low-lying negative-parity bary-
on resonances (the L =1 70 of the SU(6) quark
model) is being computed. The study of these
states introduces no new parameters and provide
a crucial test of our ideas. Second, with the ad-
dition of a charmed quark of mass m„ the spec-
trum of charmed hadrons may be computed. We
regard this more as a test of the notion of charm—
that is, of a new flavor of quark interacting in
much the same way as the old—than as a test of
the dynamics of quark confinement.

Another problem is to evaluate the effect of the
surface fluctuations about the spherical shape.
These have been ignored in our calculations. We
must provide justification for this by taking them
into account. We must also study the q- q states
to which we have alluded. One must determine
whether the resonant effect present in the bag
(mentioned in Appendix B) works quantitatively.

Finally, as we have remarked, the magnetic
moment of the proton is too small (2 as opposed to
2.79). This is a consequence of the fact that the
magnetic moment of a quark is associated with the
overlap of the small and large components of the
Dirac wave function and this is rather small
(p =0.2R, for massless quarks). Since our radius
decreased from our earlier fit' (good for the
charge radius) our ma.gnetic moment has gotten too
small. It will be important to see if higher-order
effects will allow us to keep R roughly the same
and increase the 0.2.

APPENDIX A: GLUON ELECTROSTATIC
INTERACTION ENERGY

Here we complete the discussion, begun in Sec.
IIC, of the energy due to the "electric" gluon en-
ergy of quarks in the bag. If the quarks in a given
bag have the same mass, b, E~ is zero as shown in
the text. Here we consider the case where some
are massive and others not. Separating Eq. (2.14)
into interaction and self-energy parts, we write

Al)

where E;. is given by Eq. (2.36). The sum over the
color index, a, may again be performed with the
aid of Eqs. (2.26}, (2.27), and (2.29}, with the fol-
lowing result:

(A2}
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where X =1 for a baryon, 2 for a meson. f(x;, x, )
is analogous to llf;& which described the magneto-
static interaction. Although f(x„x&) may be writ-

ten in terms of elementary functions, the expres-
sion is intractibly long. We content ourselves
with the integral representation:

"d~
f(x„x,) =R ~p;(r)p, (r},

p

where

~[x,y —(sin'x;y)/x;y] —m[sinx, y cosx;y —(sin'x;y)/x;y]
(u[x; —(sin'x;)/x;] -m[sinx; cosx; —(sin'x;)/x;]

(A3)

(A4)

with x=(mR) given by Eq. (2.5), and v =~(m, R)
given by Eq. (2.4). p;(r) is the fraction of the
quark charge density within a radius r. f(x„x,)
was evaluated by computer.

We note that if the quark masses are the same,
then x, =x& for any i or j and Eq. (A2) implies
4EE =0 for either meson or baryon. bEE is not
zero for strange mesons, nor for baryons with
strangeness -1 or -2. In all of these cases, eval-
uation of Eq. (A2} yields

r E = —
3 '[2f(x„x,) f(x„x,) f(x,—x,)], —(A5}

where x, is the root of Eq. (2.5) appropriate to a
nonstrange quark, and x, is that appropriate to a
strange quark. To write a general expression for
the electrostatic gluon energy we need only mul-
tiply Eq. (A5) by a factor (5) which is 1 for ~S( = 1
mesons and S = -1 or -2 baryons and zero other-
wise. The assignments of 5 among the light had-
rons are listed in Table II.

APPENDIX B: q -q
' PROBLEM

It is well known that the g and g' have special
problems in the ordinary quark model. The same
is true in our case. If we treat the g and g' on the
same footing as the Q and v, then one state will be

g =SS,

and the other

1q' =
~~

(uu+dd),

in which case the g' will be degenerate with the m

(as the m is with the p). In fact the g' is very mas-
sive (958 MeV). The above prediction for ri is also
bad (693 MeV), as opposed to the experimental
number (549 MeV). These fits are considerably
inferior to any of those for the other states.

There is an effect which will raise the g' and low-
er the g and at the same time not give rise to a
large p, ~ splitting, nor make significant changes
in other states. The candidate is the annihilation

—(uu +dd —2ss),l6
1~ (uu+dd+ss}.

In fact, the diagrams are nonvanishing only in the
singlet state. In the present absence of an actual
calculation of the diagrams, let us simply postu-
late a large singlet matrix element which will mix
the states ss and uu+dd. If we do this, we may
obtain a prediction of one mass, given the other.

Thus, let us compute the energy of the quarks,
assuming only that the singlet matrix element
exists. By dimensional arguments in the limit
where we forget about SU(3} breaking, the matrix
element in the singlet state will be a/R where a
is a number (proportional to o.,'). Then, using
standard methods, the mass matrix will be

2 0
g

3 R
+ ~ABBR,

where

2m(mo R) 6MOO Zo

2~(m„R }—6M„-Z,&s=

process, shown in Fig. 5, which admittedly in-
volves diagrams of higher order in n, . Since the
gluons are exactly invariant under SU(3} the above
diagrams couple only to the SU(3)-singlet states,
and hence will imply a mechanism which acts only
on the SU(3)-singlet component of the states q' and

Further, because the gluons are vectors, the
above diagrams vanish in the vector-meson states.
Hence, they act only on the g and g'. Below we
shall suggest a mechanism may greatly enhance
the contribution of these diagrams above "normal"
fourth -order effects.

The above diagrams are diagonal in the SU(3) oc-
tet, singlet states, which in the exact SU(3) limit
correspond to the quark states
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We can now diagonalize M and compute M„and M~
by minimizing the eigenvalues with respect to R.
We determine a to fit M~ =958 MeV. We can then
compute M„. We find a = 1.54, a/R = 330 MeV for
the g', and M =463 MeV, in reasonable agreement
with reality (M"„'""= 549 MeV).

We finally mention the possible explanation for
the size of a. In our approximation the gluon prop-
agators in the diagrams of Fig. 5 are the ones ap-
propriate to a cavity with radius R. Hence, they
are represented as a sum over all the modes. The
gluon propagator contains two types of modes, TE
and TM. The lowest frequency of one of these
modes is 4.49/R. This frequency is close to the

frequency of nonstrange -quark -antiquark -meson
system, namely, 2x(2.04)/R =4.08/R. Hence, a
resonant effect may enhance the diagrams of Fig.
5 above their nominally higher-order value. This
point is presently under investigation.

APPENDIX C

We have omitted any reference to "exotic" had-
rons. These could be, for example, particles with
six quarks, two quarks and two antiquarks, etc.
Of course, the coupling to colored glue automati-
cally excludes noncolor singlets among these.
Even if we restrict our attention to nonstrange
particles, as many as twelve colored nonstrange
quarks could occupy the lowest mode. In the ap-
proximation considered before, ' the mass of these
multiple quark states was proportional to n' ',
where n is the total number of quarks and anti-
quarks in the lowest mode. Hence, there were a
considerable number of exotics, where the most
massive were the most stable. Including the ef-

feet of the quark-gluon interaction completely
changes this. Here we will discuss in detail only
the multiple quark hadrons. The color magnetic
interaction energy for an n -quark color-singlet
nonstrange baryon is

E M
= 2 [n (n —6) +J(I + 1) + 3I(1+ 1)]MOO,

where J is the total spin and I the total isospin.
All quarks occupy the lowest mode, so the allowed
values of n are 3, 6, 9, and 12. It is interesting
that this is negative only for the nucleon (n =3,
J = ~, I = ~). The lowest value of E„ for a possible
state of six quarks occurs with J = 1, I=0, and
hence E„=~~=0.26 R. Its mass would therefore
be

M, ='-, (4vB)' '(6x 2.04+ 0.26 —1.85)'I'

= 2.16 GeV.

I The allowed values of (Z, I} are (3, 0}, (0, 3),
(2, 1), (1, 2), (1, 0), and (0, 1).] Thus, this state
and all higher six-quark states are unstable. Pre-
sumably as a resonance, the width would be large
since no quarks need be created for the particle
to decay into two nucleons. It is also interesting
that the lowest six-quark state has the quantum
numbers of the deuteron. This adds considerable
weight to the picture of the nuclear force proposed
by Fairley and Squires. " Since in our previous
case, the most stable state was the twelve-quark
state, we also will compute its mass. Here n =12,
and we have a closed shell so I=O, J=0. There-
fore,

M» =-', (4vB)' '(12x 2.04+36x0.26 —1.85)'i'

=4x1.22 GeV.
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