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The cross section for elastic scattering of photons on a static Coulomb potential, Delbruck scattering, is
calculated in the lowest-order Born approximation. Using conventional Feynman techniques and gauge
invariance we obtain expressions for the real and imaginary parts of the scattering amplitude for polarized
photons. These rather complicated expressions contain multidimensional integrals which have been evaluated
partly by analytical and partly by numerical methods, and Delbruck amplitudes have been obtained for
various scattering angles and for photon energies eo varying from zero to several GeV. The results confirm
earlier calculations at very low energies (co & 1 MeV), confirm the imaginary parts but disagree with the real
parts previously obtained by Ehlotzky and Sheppey for co & 20 MeV, and confirm the high-energy results of
Cheng and Wu to lowest order. A comparison with some recent experiments is shown.

I. INTRODUCTION II. CALCULATION OF THE DELBRUCK AMPLITUDE

DelbrQck scattering is the reaction in which
photons scatter elastically in a static Coulomb
potential. The process is impossible in linear
electromagnetism, but as was first pointed out

by DelbrQck' in 1933, it is possible in relativistic
quantum theory because of vacuum polarization.
This relation to nonlinearity and vacuum polariza-
tion has inspired many authors to work on the
process. We shall not mention all of them here, '
but important contributions have been made by
Karplus and Neuman, ' Rohrlich and G10ckstern, 4

Kessler, ' Zernik, ' Ehlotzky and Sheppey, ' Costan-
tini et al. , and Cheng and Wu. ' The DelbrQck
amplitude is, however, rather complex and dif-
ficult to calculate, so DelbrQck cross sections of
experimental interest were known only for ener-
gies below 20 MeV (cf. Refs. 5, 6, and 7) and for
very high energies (cf. Ref. 9). The motivation
for the present work was therefore primarily to
find the cross section for a wider range of ener-
gies, but we also considered it useful to provide
a check of previous results by an independent
method.

In Sec. II we construct the DelbrQck amplitude
using the usual Feynman techniques. Gauge in-
variance is applied to write the amplitude in a
convenient form, and we show how the sevenfold
integrals involved can be reduced to fourfold ones
by analytic integrations. The remaining integrals
are integrated numerically.

In Sec. III we present the results. Values for the
real and imaginary parts of the linear polarization
amplitudes are given for some photon energies and
scattering angles. Finally in Sec. IV the results
are compared with experimental numbers.

We use units in which k=e=1, and for a particle
with momentum k and energy (d we define the
four vector k= (k, k4)-with k, =i&a.

A. Gauge-invariant expression for the amplitude

To low'est order in the electron charge e the
DelbrQck amplitude is described by the box dia-
grams in Fig. 1, and it is of order e'Z', where Z
is the atomic number (note that diagrams with
three corners do not contribute according to
Furry's theorem). Using the Feynman rules we
may write the cross section in the form

S=k-k',
and II,,~ are components of the fourth-order

(4)

k
X

k
X

(b)

FIG. 1. DelbpQck diagrams. The interaction with a
Coulomb field is indicated by an X. The incoming and
outgoing photons are marked by k and k'', respectively.

where a =~i37 is the fine-structure constant, x, is
the classical radius of the electron, and the am-
plitude a is

a = -ie&e~P, ~ .
Here e,. and e~ are the polarization vectors, for
linear polarization, of the incoming photon with
four-vector k and the outgoing photon with four-
vector k', respectively. The tensor P,-,. is

nz dq 1
Pfg 5 2 2 II 'y44(k k tf)

8m q jq —b j

where 6 is the momentum transfer
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vacuum-polarization tensor II»z, (k, k', q) with
q4=0 and w= +'. This tensor is

II,1,(k, k', q) =G2, 1,(k, k', q) —G2, g, (0, 0, 0),

where

G2, z, (k, k', q) = T„„~,(k, k', q) + T,„~,(-k', k, q)

+ T„1,,(k, q, k') (~)

1 1 1 1T„„1.(k, k', q)= d'pTr y„. y„y y,"2y p+m "iy (p —k')+m 2y ~ (p —k' —q)+m 2y (p —k)+~ (7)

The tensor G„,)„in Eq. (5) contains three terms
which, respectively, give the contributions from
the diagrams in Fig. 1 in a straightforward way.
As is easily seen from (7) each term diverges
logarithmically for large p, but, as is well known,
the divergences cancel in G„, & . However, con-
vergence does not guarantee correctness, and one
may easily show that G„,~ is not gauge-invariant.
The correct, gauge-invariant, vacuum-polariza-
tion tensor II„„„,is obtained in Eq. (5) by a sub-
traction procedure. Various arguments lead to
this procedure", ' some details are given in Ref.
11.

The general tensor II&, ~, is in Eq. (3) special-
ized to the case of DelbrOck scattering, with two
Coulomb field interactions and no energy trans-
fer.

The form (5) of II„,)„ is, however, not very
convenient for our purpose. Cancellations are
usually harmful to the accuracy in numerical cal-
culations, and we therefore adopt another method
which was first employed by Karplus and Neu-

. man"" for photon-photon scattering, and later by
Shima" for photon-splitting calculations, and also
by Costantini et al. '

%'e introduce the notation

k ' =k k =k', k ' =q, with k( )=0. (5)

The corresponding polarization vectors e ' satisfy
e ' - k ' = 0 and e4' = 0 for i = 1 and 2. Since II&„,z
is a tensor depending on k, k', and q, it can be
written in the form

3
II (k(1) k(2) k(3)) ~ gi jlmk(i)k( j)k( l )k(m)pvXa v X o

i,j,l, m=1

3

+ C,&„v &g, + C2&„g&v ~+ C36„,5v

where A, B, and C are functions of invariant products It' '
~ k ' . Gauge invariance implies

(10)
and these identities can be used to express all 8 and C coefficients in (9) in terms of the A' s. The impor-
tant advantage of this method is that the A coefficients come from the most convergent terms in the P
integration in (7), and they are not influenced by the subtraction of G„,„(0,0, 0) in (5).

For DelbrQck scattering we need

(1) (2)
ev ~pv44

i=2,3;j= 1,3; l,m= 1,2
/(jim( (1)k(i)$(e( )k(j))2k(1)k( )y m~ /l (

(1m) e(2)) (kl)/(m)

l,m=1, 2

II(j(e(')k«))(e(2) k(») + C (e(»e(»)
i=2,3;j=1,3
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and we therefore must express the coefficients B,", B,", B", , B", , B", , B6, B", , B", , and C, in terms of
the so-called leading coefficients A' '. This calculation is shown in Appendix A. The result is

e„e'II„„=ee'f(okk'S +q [kqA ~33+ kk'A2'3 —ur (A. +A 33')]+kq[kk'A '~3+(u S +k'qS ]+k'q[kk'A2123 ~2S ]j
—(ek')(e'k) [uPS»+ q'A""+ kqA""+ k'qA""] —(ek')(e'q) [ur'S»+q'A'"'+kqS, ]
—(e'k) (eq) [(u'S„+q'A'"'+ k'qS, ] —(eq)(e'q) [(u'S„+q'A'"' —kk'S, ], (12)

with

2

$.if 1 2

A, l=l
(13)

G„„,.(k, k, q) =P 7(„",„.(k, k, q),
i= 1

with

(14)

Ti',l~, (k, k', q) =T„,g, (k, k', q),

T~„„l~,(k, k', q) =&,'„~ (-k', —k, q),
Ti„'„l„,(k, k', q) =T„"~~,,(k, q, k') .

Now each tensor T„'„z,can be written in a form
similar to (9), and consequently we have

(15)

Note that relations between the A' s, which may be
derived from crossing symmetry (cf. Refs. 3 and

8), are not useful for our numerical calculations.
The number of different A's appearing in (12) is
26 and we shall show how to compute these quan-
tities.

Since the coefficients A. which are defined by
Eq. (9) are not affected by the subtraction of

G„„~,(0, 0, 0) in (5), they may be calculated di-
rectly from the tensor G„„„,given by (6). This
equation may be written as

where

N, =T &~, (y ~ ~ )y-. [y ~ (~ k)-
x [iy ~ (P —k' —q) -m]y, [iy (p —k) —m]j,

(18)

P = l" 0+ l ' 0'+l(')q (19)

D, =&,(q —2q Q+ uP p, ,), Q= e,k —a,'k', (20)

and l&", X„w„z,', and p, are dimensionless
functions of x, y, and z,' p, depends in addition
on &u/m and the scattering angle tl. Explicit ex-
pressions are given in Appendix B1.

Now, changing to a new variable p'=p —P, in
(17) we obtain the simple denominator (p" +D,)»,
and it is easily seen that the only term in N, which
contributes to the A's is

N", = Tr(y&(y ~ P,)y~y ~ (P, —k')y&y

~ (P, —k' —q)y, y .(P, —k)j
=Tr(yuy„y, y8y~y&y y~jP, ~P~~P,"&P,"~, (21)

with
3

Afflict

~ Ahf lm
n (16)

(22)
where now the A„"' pertain to

It remains to calculate the A„"' for n=1, 2, and
3. Actually the case n=2 need not be considered
separately, as we shall see later. The 26 values
of ijlm appearing in (12) are 2111, 2112, 2113,
2121, 2122, 2123, 2133, 2311, 2312, 2313, 2321,
2322, 2331, 2333, 3111, 3112, 3121, 3122, 3123,
3132, 3133, 3311, 3312, 3321, 3322, and 3333,
respectively.

B. The integration over the loop momentum p

The tensor T„"J~,is given by Eq. (7). In order
to integrate over d p we introduce three Feynman
parameters x, y, and z, and thus

The trace in (21) is a sum of 105 terms, each
being a product of four Kronecker 5's containing
pairs of all indices. The terms, where any pair
of the letters p, , v, X, a appears on the same
Kronecker 6, do not contribute to the A' s, and
there remain 24 contributing terms. Collecting
these terms we find the relevant contribution
a,' ' to A,"'~ from N» and after integration over
d'P,

J d't'
=

ir'
(~'+D,)'

the expression for A, becomes

(1)T„,), =6
1 Nldx dJ ds Pp

[( P ),+I) ]4,

(17)

A'f™=g'm' dv-a"' D, '
1 1

where we have written

(23)
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d7 = dx dz . (24)
Writing the amplitude a in the form

The a', ~' are real polynomials in x, y, and z, and
the relevant ones are given in Ref. 11 together
with the corresponding coefficients a,'~'; a,'~™
is not needed.

C. Integration over the momentum transfer q

The DelbrQck amplitude is now given as a sixfold
integral by Eqs. (2), (3), (12), (16), and (23). We
shall perform the integration over d'q in (3).

3
a = -ze, e,'P„= P„, (25)

we find

im dv q'A„(q) + B„(q)
(»)' g' q (q-L)'(q'-2q ~+~'g')'

(26)

Here &(q) and B(q) are, when the index n is sup-
pressed,

A(q) =n, e ~ qe'. q+o.,e e'k q+o. ,e ~ k'e' ~ q —o.,e' ~ ke ~ q+&u'o. ,e ~ e'+a, e ~ k'e' k,
B(q) =P,e ~ e'k ~ qk' ~ q++'P, e ~ qe' ~ q —P,e' ke ~ qk' q —P,e ~ k'e' qk ~ q+(HAPP, e ~ e'+P, e k'e' k)k ~ q

+ (uPP4e ~ e' +P,e ~ k ' e ' k)k' q+ &u'P, e ~ k ' e ' ~ q+ v'P, e ' k e ~ q+ u&'P, e ~ k' e ' k + co'P»e ~ e' . (28)

The coefficients n, and P„which we really should have written n";, P", , follow from the a„"'". They are
polynomials in x, y, and z, depend on the scattering angle 6, and are given in Appendix 8 for n= 1,3.

We can now do the q integration in (26), where evidently the B„(q) terms are the most complicated ones.
To simplify the denominator we introduce two Feynman parameters u and v, and we obtain integrals of
the form

ly &i& qiqg q —qi +my y

which give

7l (I' gu i g~(go + 6.g&g /3]'(8t )

Thus the final expression for P„becomes

P Pe, e [& Pn +g(n) +& Jtn'I+ jn ]+e.k ei .k[g(n) +& g(n) + Pn)])
7T (d

(29)

with the integrals (suppressing the superscript n)

1

0

and the denominators

M =V), +(I - v)1,], ,

I.= A,u'v'+ 2(-k4u +h, /2)uv +h,u(1 —u),
(31)

1

J, = vdv(y, +y,v)M '",
0

1 l
J3= Q dQ 5dv L

0 0

(3o)

+ (t, + t,u)uv + t,u'v']I. '",
1

J5= Q 4&2 v dv( y, + y, v + y,v')M '",
1

J6= Q dM vdv[t, +t,u+ t,u'

+ (t9+ thou)uv+ t~~u v ]L

1

J, = u'du vdv[t, +t,u+t, u'

where

h, =4 sin'(-,'8), g, = p, Q'/(g',

&.=4 —&)'/~', &, =p, —&'/~',

It, = Z ~ (i —Q)/(u'.

(32)

The remaining coefficients y„z, , and t„which
are functions of x, y, z, and I9, are given in
Appendix B4.

In the expression (29) for P„we have so far
only defined the relevant quantities for P, and P, .
Considering P„which originates from diagram b
of Fig. 1, one might believe that P, equals P]
since the complete integrated contributions from
diagrams a and b evidently are equal. However,
with our method P, is computed from the tensor
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II~, ~~ of Eq. (9) before it is allowed to set A. =cr =4,
and consequently P, is different from P, . As is
shown in detail in Ref. 11 the difference is small,
and P, is equal to P, given by (29), except that in
the expression for J, in (30), yo' and y,

' must be
replaced by y =o. ' +2o. ' S' y = n" Y' ' [cf
Eq (B. 5)], respectively.

D. Real and imaginary parts, singularities

The formula (29) defines P„as a three-dimen-
sional integral over x, y, and z, and the integrand
contains quantities J, which themselves are one-
or two-dimensional integrals over u, or u, v. The
dependence of J& on u and v is shown explicitly in
(30) and (31), and it is seen that the integration
over v is straightforward in all J,. 's. It is possible
also to perform the u integration analytically, but
we did not find it convenient to do so since it would
complicate considerably our numerical treatment
of the remaining integrations. It is, however,
convenient to separate the real and the imaginary
parts of the scattering amplitude at this stage
while we are still using analytical methods. It is
seen from Eqs. (30) and (31) that the J s may
have imaginary parts if the factors M and L which
occur in the denominators are negative. More
precisely, according to the usual prescription for
defining imaginary parts by replacing the electron
mass m by m-ie, where c is small, the quantities
M and L become complex, and the imaginary parts
can be shown to be

Imllf = -2cmv(A. uP) ', ImL = -2emuv(AuP) '.
Non-negligible imaginary parts in the J's occur
only where M and L have negative real parts. This
condition is equivalent to h, ~0 [cf. Eq. (32)], as
may be seen after the v integration has been done
in (30).

We now have to integrate the variables x, y, z,
and u separately over the regions hy &0 and h. y

&0
[cf. Eq. (32)]. It is fairly easy to show that for
photon energy w &2m we always have A, &0, that
is, a real amplitude, but for w&2m the relat;ion
h, =0 defines quite complicated surfaces within
the volume of integration. We shall not show these
tedious calculations here. Details may be found
in Ref. 11, where expressions for the real and
the imaginary parts have been given explicitly.

We shall briefly discuss the singularities of the
DelbrOck amplitude since they are of interest for
dispersion-relation calculations. Singular points
in the amplitude must originate in zeros in the
factor q (q —Z)'(q~ —2q Q+&'p)' which appears in
(26)

Since we have a three-dimensional integration
over d'q there is generally no singularity for
q = 0 or q = A. Singularities may occur, however,

for q=0 if 6 =0, or if co'g =0, and for @=4 if also
A' -2b, Q+ ugly =0. Singularities will also occur
for q = Q if e'h =0 since q~ —2q Q + uP p. = (q —Q)'
+ M9lg ~

We find that the case 6=0 does not give any
singularities since, if Z =0, the numerator in (26)
is proportional to q for small q [cf. Eq. (28)).
The cases v'p, =0 and Z' —2Z Q+u&'p =0 both lead
to a singularity for

m'+ 4(u' sin'(8/2) f (x, y, z ) = m' +72f (x, y, z)

=0 (33)
where f(x, y, z) is a function that varies between
0 and &. The case co'A. , =O leads to a branch point
at & = 2m. Thus the scattering amplitude as a
function of complex u' has a branch point at
~ =4m, and if the momentum transfer 5 is a
constant, this is the only singularity. However,
if ~' varies for constant scattering angle 6, we
find from (33) a branch point at e' = ~ '
=-2m'(1 —cos6) '. Using dispersion relations at
constant E9 we therefore have a right-hand cut
beginning at co' =4m', and at a left-hand cut be-
ginning at cu'=co '. The latter has not been
taken into account in the calculations of Ehlotzky
and Sheppey. '

E. The numerical calculation

It follows from (29) and (30) that after the v

integration in (30) has been performed analytically,
and the real and the imaginary parts of the am-
plitude have been separated, we are left with four-
dimensional integrals. These are integrated
numerically by the method of Gaussian quadra-
ture. The integrand in (29) is not suited for im-
mediate numerical treatment since cancellations
between individually divergent terms occur, and
inconvenient square-root factors, such as V u,
also appear in the denominators. These factors
may be eliminated by a change of variables, and
the cancellations can be taken care of analytically.
After these modifications the numerical integration
works well, especially near the forward direction
where it is sufficient to compute the integrand for
only about %=300 different combinations of values
of the four variables to obtain an accuracy better
than 5 /&. The accuracy is estimated by observing
the convergence of the results as the number N
increases.

As the scattering angle is increased, particularly
at high energies, complications increase because
there are large cancellations between terms orig-
inating from diagrams (a), (b), and (c) of Fig. 1,
respectively. We were, however, able to calculate
the amplitude for all values of energy and angle
that were of interest to us, but since a typical
time for one calculation of the integrand was
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0.03 sec on the UNIVAC 1)08 computer, we evi-
dently could not aim for a systematic tabulation of
the cross section. Selected values of the DelbrQck
amplitude are given in Sec. III.

III. RESULTS

The nonrelativistic amplitude is real, and by
straightforward expansion in powers of u&/m we

find that the coefficients of the terms of the two
lowest orders vanish, so the amplitude is of order

Elementary integrations" give for the quan-
tities f and g in (34)

We shall express our results in terms of the
amplitudes for linear polarization, and we there-
fore discuss the polarization formalism first.

f= uP(59+ 14 cos8)(32 x72m') ',
g= —14(u'(32 x 72m') ', (40)

A. The description of polarization

The Delbrttck amplitude a is, according to (25)
and (29), of the form

a =fe ~ e'+ge ~ k'e' (34)

a~=

a ~~=fcos 8 —g sin' 8,

where a~ is the amplitude for the case where
e =e' and both are orthogonal to the scattering
plane, and a,

~

is the amplitude when both e and e'
are in this plane. The unpolarized cross section
is from (1),

—= —'(nZ)'r '(f a ['+
[ a

g [ ) . (36)

To describe circular polarization we use the
complex vectors

e,=(e, sic, )/v 2, (37)

where e, and e, are the linear polarization vectors
in or orthogonal to the scattering plane, respec-
tively. There are four helicity amplitudes, a,+,
a, , a, , and a, where a„ is obtained from
(34) with e = e, and e' = e,'*, and the other ampli-
tudes are defined similarly. It is easily shown
that the spin-nonf lip amplitudes are

where e and e' are polarization vectors for linear
polarization, and f and g are functions of &v and 8.
This form is obvious since a is linear in e and e',
and the only other vectors in the problem are k
and k'. It is convenient' to choose the polarization
vectors either in or orthogonal to the scattering
plane. 7'fe then have only two nonzero amplitudes,

which confirms the results of Costantini et al.'
For the forward direction the cross section is

given by a~=f alone, and for &u»m we have

Imf »Ref, so we only have to calculate Imf.
The calculation is not very difficult, and we re-
cover the known expression, first obtained by
Rohrlich and G10ckstern,

7~ 2& 109a=imf= ln ——
9mm m 42

which is proportional to the pair-production total
cross section, as is well known.

C. Numerical results, low energy

Since the low-energy cross section is well estab-
lished, calculations in this energy region furnished
a convenient test for the numerical program. We
computed the linear polarization amplitudes a~
and a~~ defined by Eqs. (34) and (35), and in Table I
we show a comparison of our values for Rem with
the values obtained from the low-energy formula
(40) for the forward direction. Note that
a=a =a~~ for 0=0, and that a is real for m &2m.
It is seen that the low-energy formula gives
surprisingly good results also for & =2m.

In Figs. 2 and 3 we show the angular distribution
of a, and a~~, respectively, for some energies
e &m. For large-angle scattering we have a con-
siderable departure from the low-energy approxi-
mation (40) already for e~ O. lm. Note that
a~&a~~ for w &m, while this inequality is reversed
for m &m for almost all scattering angles.

D. Numerical results, intermediate energy

In the following we show some results for the
DelbrGck amplitude for photon energies (d =1.33,

a„=a = —,'(a„+a ),
while the spin-flip amplitudes are

1a, =a, =-,(ay —a ).
B. The very low and the very high energy regions

(38)

(39)

R~ num 0 le

TABLE I. The forward Delbriick amplitude a „„~
which is calculated numerically, and the low-energy
approximation a&, ——73m (72x 32m ) . The photon energy
is (d.

In order to check our calculations with known re-
sults we performed analytically the integrations
of the amplitude for the low-energy case, ~ «m,
and for the case of high energies in the forward
direction, m»m, 6I=O.

0.2
1.0
2.0
2.6

].27x]0 2

3.16x 10
0.13
0.241

1.27 x 10 2

3.17x 10
0.127
0.214
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1.0
TABLE II. Real parts of a ~ and a~~ for cu =1.33 Me V

as a function of the scattering angle 0.

0 (deg) Rea~ Rea~~ 6I (deg) Rea & Rea)(

w Qs
lO

0.4

0.2

0 —-'
10 30 50 70 90

8 (degrees)

10
20
30
40
50
60
70
80

0.170
0.119
0.080
0.053
0.035
0.024
0.011
0.005

0.179
0.134
0.098
0.074
0.057
0.045
0.036
0.030

90
100
110
120
125
130
140

0.000
-0.004
-0.007
—0.010
-0.010
-0.010
—0.011

0.026
0.023
0.020
0.018
0.017
0.015
0.014

FIG. 2. The angular dependence of the Delbruck ampli-
tude a~~. The forward low-energy approximation a~, is
given in Table I. From the upper to the lower curve
~/w, =0, 0.2, 0.5, and 1.0, respectively.

7.9, 9.0, 10.83, 15.1, and 87 MeV. These values
have been chosen since they are relevant for
actual experiments. Comparisons with the ex-
periments are shown in the next section.

In Table II the real parts of a~, and a~ are given
for w = 1.33 MeV. Imaginary parts are negligible
for this energy. In Table III a~~ and a are given
for (d =7.9 MeV, and in Tables IV-VII these quan-
tities are given for w =9.0, 10.83, 15.1, and 87
MeV, respectively.

The numbers in Table II have an accuracy of
about 5-10/~. This also applies to the imaginary
parts given in Table V, while the real parts are
accurate within 10 /~ for scattering angles below
10', but the error might be of order 20%%uq for

E. Numerical results, high energy

For high energies the forward asymptotes were
first calculated by Rohrlich and 610ckstern. The
imaginary part of the amplitude is given by (41),
while the real part is smaller by a factor of ln~.
Later Cheng and %'u' obtained the approximations

Ima~= Z(u[ln(m/a) +2~](9mm) ',
Ima g: Ima + &u (9wm)

valid for momentum transfer 6 in the region

(42)

(48)

larger angles. The accuracy in Tables OI, IV,
VI, and VII is about 10'%%uq for all numbers, where
errors are not explicitly given.

The results for m smaller than 20 MeV can be
compared with the numbers obtained by Ehlotzky
and Sheppey. ' The imaginary parts are in good
agreement with our results, but the real parts
disagree. This was to be expected since Ehlotzky
and Sheppey, in their dispersion relation, neglect-
ed the contribution from the left-hand cut, which
was discussed in Sec. IID above.

1.0

0.8

(m /u) «6 «m,
while

Ima~= 1.18(&o/m)(b/m) ',
Imat~= 2.46((u/m)(b. /m) ',

for

(44)

(45)

(46)

ui Q6
l5

0.&

02

0 ~ ~ I

10 30 50 70 90
e (degrees)

FIG. 3. The angular dependence of a~ (cf. Fig. 2).
From the upper to the lower curve a/m =0, 0.2, 0.5,
and 1.0, respectively.

m «4«e. (47)

6 = m(m/(u)'", (48)

and the corresponding values for Ima~ found by
numerical integration and from (42) are shown

We tried to check these formulas. In Table VIII
we show values of the forward amplitude a com-
pared with the approximate a„, of Eq. (41). It is
seen that they approach each other rapidly, and
within our accuracy they are equal for ~~ 40 MeV.

In order to check (42) we chose the momentum
transfer to be
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TABLE III. The quantities ai and aii for photon energy co = 7.9 MeV.

0 (deg) Rea ii
Ima ii Rea i IIHa i

25
35
45
60
75
90

120
140

0.154
0.094
0.064
0.040
0.026

Q.0183
1.07x10 ~

8.32x10 ~

0.221
0.124
0.077
0 044
0.027
0.0184

1.1p x 10-'
8.9x 10 ~

0.068
0.035

0.0189 x 10 ~

(8&1)xlp ~

(1.8 + 0.7) x 10 3

-(1.7+0.5) xlp ~

-5.2x10 3

-6.2xlp 3

0.063
(2.4+0.3) x 10 '

(9+2)x 10 3

(5~10)xlp 4

-4.5x10 3

-6.2xlp ~

-7.4xlp 3

-7.6 x10

a = m(&u/m)'" (49)

and + = 1920 MeV formula (45) gives Imai =1.18
while we find Imai =1.33. The difference is not
significant since it is smaller than our estimated
error. Since more than four minutes was spent on
the computer for just this calculation we did not
pursue the computation in this region.

in Table IX. Apparently the convergence to the
asymptotic limit is very slow, but this conclusion
is not definite since it is difficult to give a, pre-
cise estimate of the accuracy; it is certainly better
than 10/G.

We also computed the difference Im(aii- ai). For
6 given by (48), Eq. (44) gives Im(aii —ai}
=&a(9vm) ', and since now 8= (m/v)'", Eq. (35)
yields ati-a~= -gsin'8. The results are shown
in Table X, and it is again seen that the conver-
gence to the asymptotic limit is slow. It should
be noted that pola, rization effects are very small
at these angles and little dependent on energy
since Im(a, i- ai)(imai) ' is small (approximately

,—'0), and almost energy independent.
The high-energy intermediate momentum trans-

fer region defined by (41}could not easily be
reached with our method. With

Rayleigh and nuclear resonance scattering. All
these effects are coherent and cannot be separated
experimentally, except for high energies where
DelbrQck scattering dominates. We shall not go
into details here. Except for nuclear Compton
scattering which reduces to the very simple
Thomson amplitude [cf. Eq. (I)],

mA~= -r, e ~ e', (50)

TABLE V. The quantities ai and aii for ~ =10.83 MeV.

the theory for the other processes is quite compli-
cated and far from complete. We only refer to
the discussion in Ref. 11 and in the experimental
articles of Basavaraju and Kane, ' Schumacher
et a/. ,"Hardie et a/. ,"Kahane and Moreh, "and
Jackson et aL" In the experiments of Moffat and
Stringfellow" and Jarlskog et al.' the photon
energy is high, and DelbrQck scattering therefore
dominates. The experiments mentioned here are
selected because they are the most accurate tests
of the DelbrQck process.

Basavaraju and Kane, "and later Schumacher
et al."measured the DelbrQck cross section at

TABLE IV. Real parts of ai and aii for x =9 MeV.

L9 (deg) Reaii

25
35
45
60
75
90

120
140

0.065
0.033
0.018

(6.8 ~ 2.0) x 10-3
(1.3+1.0) x 10 '

(-1.75+0.50)x10 3

-0.0046
-0.0055

0.145
0.088
0.059
0.036
0.023
0.017
0.0096
0.0074

III. COMPARISON WITH EXPERIMENTS

In actual experiments DelbrQck scattering is
produced in the Coulomb field of atomic nuclei.
Since these have finite mass M, nuclear Compton
scattering is possible, and we may also have

0 (deg)

0.01
0.5
1.0
1.5
2.0
3.0
5.0
10
15
20
25
30
4p
50
70
9p
120
150

6.54
4.73
3.55
2.71
2.15
1.51
0.80
0.26
0.13
0.097

0.036
0.026
0.012
0.0034

-6xlp 4

-0.0047
—5.3x 10 ~

Ima i
6.52
6.03
5.15
4.33
3.64
2.59
1.39
0.41
0.17
0.090
0.05
0.036
0.014
0.005

-0.002
-0.005
-0.007

-7 x 10 3

Rea )[

6.54
4.99
3.88
3.04
2.46
1.79
1.02
0.41
0.23
0.17

0.086
0.064
0.039
0.023
0.014
0.0086

6.2xlp 3

rma
ii

6.52
6.17
5.48
4.78
4.17
3.20
2.00
0.85
0.46
0.29
0.20
0.15
0.08
0.053
0.03
0.015
0.0093

7.4xlp 3
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0 (deg) Ima ~ Rea
t(

Ima
()

TABLE VI. The quantities a~ and a
~~

for ~ = 15.1 MeV. TABLE VIII. The forward Delbruck amplitude a and
the high-energy approximation a z, given by (41) for
photon energy cu =21.2m and 34.5m.

10
20
40
60
75
90

120
150

0.21
0.061
0.011

1.5x 10 ~

-8x10 4

-2.1 x 10
—3.7x 10
-4.5x 10

0.32
0.075
0.013
8x10 4

-2,6x10 3

-4.1 x 10 3

—4.6x10 3

-4.2x10 3

0.29
0.125
0.041
0.021
0.014
0.010

6.4x 10 3

5.0x 10

0.80
0.26
0.073
0.030
0.018
0.012

6.9x 10
4.7x10 3

TABLE VII. The quantities a~ and a~~ for u = 87 MeV.

0 (m„,) Ima g Rea((

1
1.89
3
4 24

13.9
96
75
59
47

14.9

8,1

101
81
65
53

~=1.33 MeV. At this energy the amplitude has
only a small imaginary part, and for scattering
angles la;rger than 90 the spin-flip amplitudes
A, of Rayleigh and DelbrOck scattering should
inte rfere destructively. For the latter process
Basavaraju and Kane give ReA, =-0.0060m, for
Z =82, 0=120', while Schumacher et al. find
ReA, =-(0.0090+0.0020)r, for Z =82, 8=150'.
From Table II we find that A, = (aZ)'roa„ is
ReA, /r, =0.0048, 0.0050, 0.0045, and 0.0045 for
Z = 82, and for L9= 110, 120, 130, and 140',
respectively. The disagreement with the experi-
ments is evident.

Also Hardie et ai."made their experiment at
&=1.33 MeV. We are grateful to Professor
Hardie who provided us with the Rayleigh ampli-
tudes calculated by his group. Using these values,
the Thomson amplitude (50), and our Table II we
find the scattering cross section:shown in Fig. 4.
For comparison we also show the theoretical
cross section if the DelbrQck process is neglected
and the experimental values. It is seen that while
the inclusion of DelbrQck scattering definitely
improves the agreement between theory and ex-
periment for L9 smaller than 60', we have consid-
erable discrepancies at larger angles. Note that
for I9= 120' the spin-flip Rayleigh amplitude dom-
inates. The Thomson amplitude is about half of
it while the DelbrOck amplitude contributes only
about 10%. At the present stage of the theory for
Rayleigh scattering it is therefore likely that the
discrepancies between theory and experiment for
large angles at w = 1.33 MeV are due to errors in

the Rayleigh amplitude.
We next consider the experiment at + =7.9 MeV

of Kahane and Moreh. " At this energy and higher

Rea Rea I,. Ima

21.2
34.5

6.55
11.87

5.99
11.17

6.53
14.5

5.98
13.93

TABLE IX. The small-angle Delbruck amplitude a ~
calculated numerically and a ~ calculated by Cheng and
%u [cf. Eq. (42)]. The momentum transfer is
& =m(m/~)'".

Ima i Ima i~w

275
4&

1000
2000
3000
4000
7000

10 000
20 000
30 000

212
334
990

2200
3480
4800
8930

13 200
28 100
43 600

252
386

1080
2340
3650
5010
9250

13 700
29 000
45 000

energies Rayleigh scattering is negligible, and
for angles below about 80 DelbrQck scattering
gives the dominant contribution to the cross sec-
tion. Now Kahane and Moreh find that the best
fit to their experiment is obtained if the real part
of the DelbrOck amplitude is zero. Comparing
with the real parts given in Ref. 7 they find a con-
siderable disagreement. As is seen from Table III
the real parts obtained by us are not negligible.
In Fig. 5 we show a comparison between the ex-
periment and our theory. We see that while for
the element Ta the agreement is quite good for
all angles, the experimental values are consistent-
ly (but not much) below the theoretical ones for
Th and U for 6 smaller than 90'.

In an experiment at & = 10.83 MeV Jackson
et al."have obtained good agreement with the
theory. At the time this experiment was published
our DelbrQck results were available only for
8 & 90, as may be seen from Figs. 5 and 6 in
Ref. 18. Using Table V we now find theoretical
values also for I9=120'and 150', and in Fig. 6 we
show extended versions of the figures just men-
tioned. For lead the agreement between theory
and experiment is ve ry good except for 9 = 50 and
60', where there is an unexplained bump in the
experimental cross section. The agreement is
good also for uranium except that the theory seems
to give too low values for large angles. In par-
ticular, we note that the real part of the DelbrQck
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TABLE X. The difference a~~
—a ~ calculated for small

momentum transfers A =m(m/~) as a function of
photon energy ~. The Cheng and Wu results (a~~ -a~)
are obtained from (43). 100 .—

R/m Im(a
~~
-a~) Im(a)) -a~) 50-

275
400
800

1000
1500
2000
3000
4000

6.8
10.7
23.7
30.5
47 4
64.4
99

134

9.7
14.1
28.3
35.3
53
70.5

105
141

amplitude is essential in order to obtain agree-
ment at the smaller angles.

The results of Kahane and Moreh" and Jackson
et al."do not give a definite answer with respect
to the real part of the DelbrQck amplitude. In a
private communication Moreh has very recently
informed us that his group is obtaining new re-
sults at m =9 MeV. We have calculated the real
part of the DelbrQck amplitude for this energy
(Table 1V), and we hope that this experiment will
help to solve the problem of the real part.

Moffat and Stringfellow" performed a DelbrQck
experiment on uranium for ~ =87 MeV and scat-
tering angles 6=1.89 mrad and 4.24 mrad. They
derived the cross section in two ways (in order to
subtract the background), first by assuming Z'
dependence of the cross section and then, in a
less reliable way, by assuming an angular distri-
bution suggested by Bethe and Rohrlich. " The
results are shown in Table XI together with our
theoretical numbers. The agreement is not very
good, but the accuracy is not sufficient for any
definite conclusion.

We finally mention the experiment of Jarlskog
et a).' at photon energies from about 1 to 7 GeV.
As has been shown by Cheng and Wu' Coulomb cor-
rections are very important for this case, and our
calculations are only useful as a check of the
high-energy approximation of the lowest-order
(in Z) cross section (cf. Sec. IIID).

The fact that Coulomb corrections are large at
high energies and momentum transfers 4»m casts
some doubts on the usefulness of the lowest-order
DelbrQck cross section also at lower energies.
Generally one should expect Coulomb corrections
to increase with the momentum transfer since
small impact parameters imply strong fields. It
is therefore natural that the correction to the
high-energy forward amplitude is small, as was
first noticed by Rohrlich. ' This amplitude is pro-
portional to the pair-production total cross sec-
tion, which gets its main contributions at high

20-

2-
u
0
u

0.5-

02-

0.1

20 40 60 80 100 120 140
8 (degrees)

FIG. 4. Elastic scattering of 1.33-MeV photons by a
lead target. The solid line is the calculated cross section
with the values of Table II for the Delbruck amplitude,
while the open squares give the calculated cross section
if this amplitude is suppressed. The full circles with
error bars give the experimental cross section of Hardie
et al. (see Hef. 16).

500 ~

200 .

100—

50-

20 .

10—

o'| 5
D

2-

20 40 60 80 100 120 140
8 (degrees)

FIG. 5. Elastic scattering of 7.9-MeV photons. The
theoretical cross section (solid lines) is compared with
the measurements of Kahane and Moreh (see Ref. 17).
In the figure the curves a, b, and c refer to targets of
tantalum Z =73, thorium Z=90, and uranium Z =92,
and the corresponding experimental values are shown by
open circles, solid circles, and open squares, respec-
tively.
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2000

1000—

lA

~ 500-

TABLE XI. Delbruck experimental and theoretical val-
ues for the quantity a =(do/dQ)(o. Z) 4ro at cu =87 MeV.
Our calculations give a&, aE& and aE&~ are derived ex-
perimentally by Moffat and Stringfellow (see Ref. 19) by
assuming a Z4 dependence or a Bethe-Rohrlich —type
(see Ref. 21) angular dependence of the cross section,
respectively.

oQo a
200-

100—

0 {m„,)

1.89
4.24

2

6300 +630
2580+ 260

~Ei2

5175+ 497
1112+200

2
QEP

6827 + 616
2167 + 196

50-
I I ~ I ~ ~

20 40 60 80 100 120 140 160

e (degrees)

FIG. 6. Elastic scattering of 10.83-MeV photons. The
solid circles and squares with error bars give the experi-
mental cross section of Jackson et al. (see Ref. 18) for tar-
gets of lead and uranium, respectively. The solid lines
a and b show the theoretical cross sections, respectively,
for these materials. The dashed lines a and b are the
calculated cross sections with the Delbruck amplitudes
suppressed. The cross section for lead is also shown,
by open circles when only the real parts of these ampli-
tudes are suppressed, and by open squares when the
amplitudes of Ehlotzky and Sheppey (see Ref. 7) are used.

energies from low momentum transfers. In this
connection it should be noted that because of the
intimate relation between the pair-production cross
section and the DelbrQck amplitude, ' one should
expect large Coulomb corrections in high-energy

wide-angle pair production (and bremsstrahlung)
experiments on high-Z nuclei.

If we use the Coulomb corrections to the pair-
production cross section as an indicator of the
corrections to the imaginary part of the DelbrQck
amplitude, then the exact pair-production calcula-
tions of Q'verbf(, Mork, and Olsen" imply that
considerable positive corrections may occur for
low energies, & about 1-2 MeV. The corrections
should decrease with increasing energy, having a
minimum in absolute value at about 5—6 MeV.
However, it seems to be very difficult to give
even a rough estimate of the corrections for the
general case.
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APPENDIX A: ELIMINATION OF THE COEFFICIENTS 8 AND C

Gauge invariance implies that

(1)
&P IlgI y0 =~,

where Il„,q, is the vacuum-polarization tensor. Inserting the expression (9) we find

3
A'~'~ (k~'~ kl') k'J k ' k ' ~ (B' k~'la" k +B' k "k"k '+B' k '~ k ' k ")

V X 0 + ~ 1 V X. 0 2 V X. 0 3 lJ X 0

(Al)

i=1,2; j, l, m=1, 2, 3 l, m= ]

i=2,3; l=1)2,3

(k~" k~'~) (B' ' 5, g
k~'~ +B,"5„k~y~ + B, & y, k„~) + C, k~'~ ~ y, + C, k~g'~ 5„+C, k~,'~ 5, q

——P . (A2)

This equation leads to 36 relations between the A' s, the B's, and the C's, since the 27 coefficients of the
A„' kq' k must vanish separately for all different values of i, j, and k, and also the nine coefficients of
A,') &q must vanish for all values of i and all three different permutations of v, p, and o.

In the same way we can derive 72 additional relations from the identities

(2) (3)III vx (A3)

Fortunately, we only need a small number of these relations to eliminate the nine & and C coefficients ap-
pearing in (ll). In picking relations for these eliminations we shall take care to avoid relations which will
introduce additional factors of q =k~'~ in the denominators in the terms of the integrand in Eq. (3), and pos-
sible convergence difficulties.

The relations following from (A2) are of the type
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(k(1) k(2)) g2112 +(k(1) k(2)) A3112 +fl12 +fl12 01 2

and from a total of 17 such identities (see Ref. 11 for further details) we obtain

@11 *12~2111 ~23~2311 ggl2 *12g2112 + ~3~3122 + ~3~3132P p 1 P ~ +~
~21 *12~2121 + *13g2311 + ~3~2331 ~22 ~12 ~2122 *13~3122P l p 1 P P
~21 ~13~2113 ~3~2123 ~3g2133 ~23 *13(g2313 +g3123) ~3~2333

6 Y 6 P X +

fl31 P23 (/2313 +/3123) P33 +3133 +33 —p12 (+2313 ++3123) p33 A3333
6 6

P12P13~2113 +P12P23 ~2123 +p12p33A2133 +p13p23 (A2313 +A3123}~p13p23A3 133

with p" =k ' k('). Inserting (A4) into (11) we get (12).

(A4)

APPENDIX B

. The functions

The denominator in E(I. (7) is a product of the factors

a, =p'+m', a2 =(p —k')'+m', a3 =(p —k' —1f)2+m', and a, =(p —k)'+m',

and when Feynman parameters x, y, and z are introduced a new denominator

[a,z + a2(y —z) + a3 (x —y) +a, (1 —x)]'
appears. In (17}this is written as [(P—P,)2+D,)'. Straightforward calculations give

l(,"=1 —x, l2(" =x-z, l3(" =x-y, ))., =(x-y)(1-x+y), ((, =(I —x)(1 —x+y) ',
)(,'=(I —x+z) (1 —x+y) ', y, , =[m2+4(o'sin'(8/2)(1 —x) (x-z)] ()).,uF) ' .

Using (7) and (15) we find in the same way for T(3)„,

I,' =(1 —x), l2 =z, l33 =y, )( =y(1 —y),

((3 =(1 —x) (1 —y) ', ((3 =z/y, (J3 =[m2+4uPsin2(()/2) z(l —x)](X3~~2) ' .

2. The a,.' and P,.' (the superscript is omitted below)

We use the notation x' =(1 —x), y' = (1 —y), z' = (1 —z), t=x —y, t'= 1 —t, s=x —z, s'=1 —s, S=sin(e/2).
Then the coefficients a,' and P,

' are

G, =32t't, a, =-32x'f't ', a, = 32sPt', a, =Bt(1 —2t)(xs'+ 3x's) +2a,S', a, =-Btt'(I —4x's),

P, = —32x'ts(1 —2t) +Bx't(l —4t) —Bts', P, = 16x't'(x' —z) +—16t'(x' —2z) s' —2P,S,
P, =-Bx't(1 —2s+4x's) —Bts'(1 —2x'+4x's)+16S'x'[x's(1 —3t) —xst'+ ts'],

P, = Bx't(1 —2s +4x's) —8ts'(1 —2x'+ 4x's) —169[xtss'+ x'(1 —3t)ss'+ ts" —x's'],

p, = —16x'ts'+40x'tss'+ Bts" —Bx't(1 —2s+ 4x's) —Btss'(2 —3x+ 4z),

P, = Bz&[(x' —z)(1 —2x) + s(3 —2x)], P, = Bx"s(1 —3t) + Bx'(ts' —xt's),

p, = Bxtss' —Bx'(1 —3—t)ss' —Bts" +Bx's', p2= —32z'x's, p»=2p, S'.
3. The a~ and P3 (the superscript is omitted below)

(B3)

The notation is as in Appendix 82:
a, =-32y'y", a, =-32y'y'x', a, = -32yy"z, a4 =64yy'x'z —16y's+By(2 -3z) —8[yx'+z(l —2x)]+2S'a,

a, = -Byy'(1 —4zx'), P, = -64yy'zx' —Bx'(y —2z) —Bzy', P, = -32yy'ss' —2S'P, ,

P, = -32yzx'(x' —z) + 16zx'(1 —2x) —Bzy' —Byx'+ 16S'x'[zx'(1 —2y) + yx'(1 —2z) —xzy'+ xyz'],

P, = 32yzx'(x' —z) —16zx'(1 —2x) + Byx'+ Bzy' + 16S'z [yx'(1 —2z) + zy'(2 —3x) —xy'z '], (B4)

P, =-Byx'(1+z) —Bz'x'(4y —5) +Bzy'(1 —2z)(x —2z) —Bzx'[z'(1 —2y) —2y'(1 —2x)],

P, = -Byzx'(3 —6x+ 4z) —Byx'(1 —2x)(1 —2x+ z) + Bzy', P, = Bzx"(1 —2y) + Byx"(1 —2z) —Bxx'y'z + Bxx'yz ',
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p, = Byx'z(l —2z) + Bz'y'(2 —3x) —3xy'zz', P, = 32zx'ss', P,o= 2S'P, .

4. The coefficientsy, , s, , and t,.

With n, p, S, z, and K' given above, and Y=a —1 —(z' —1) eos8, Y' =z' —1 —(z —1)eos&we have

zo = (P2+ P» eos 8)/2» z~
= -P»» yo = n»4+ 2o»2S» y~ = o»2 Y» y2 = —n»» + o»2 + o»3 + o»5»

y, =(~ —1)o., +(~' —1)n. —(&+&' —2)o', y4=-(& —1)(&'- )o'i» to=30»o» i= S'(&s-&.)

t, = —12S'p, » t~= 3(p, Y —p4Y')» t~= -12S p, (a+ x' —2), t, = —3p, YY', t6=3p9»

t, = 3(P, —P,) + 6S'(P, —P,), ta = -3P, —12S'ti, , t, =3 [(x—1)P, —(v' —1)P6+ P, Y- P, Y'],

tqo = -3(K+ K —2)($2+ 4pqS ), tqq = -3(K —l)(K —1)p2 —3pq[(K —K') + 4(K —l)(K' —1)S ] .

(B5)
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