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Multiple Compton scattering in the forward direction*
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We prove that, to lowest order in a, the amplitude for the reaction y+ e ~ ny+ e, where n = 2,3,4,..., vanishes

when all n final photons have momenta parallel to that of the incident photon. We generalize this result to
scalar electrodynamics, to the scattering of massless pseudoscalar (scalar) mesons off massive fermions, and to
the scattering of massless scalar mesons off massive scalar mesons.

I. INTRODUCTION

k, = (k„ iw|}

k,. = (k~, iv),.)

incident photon 4-momentum;

(j = 2, 3, . . . , n + 1}, 4-momentum
of final photons;

In this paper we consider the process

y+e-ny+e (s =2, 3, 4, . . . },

where y is a photon and e an electron. We will
refer to this process as n-Compton scattering (for
n =1 it is simply Compton scattering}. We will
specifically be interested in the case when the e
final photons have momenta parallel to that of the
incident photon and will refer to this as n-Comp-
ton forward. We work in the laboratory frame of
reference where the initial electron is at rest and
use the following notation'.

In Fig. 1 we show the Feynman diagrams for double
Compton scattering2 to lowest order in n, i.e.,
including only the so-called "tree" diagrams. '

In Sec. II we will show that, in the tree approxi-
mation, the amplitude for reaction (1}vanishes
in the forward direction, i.e., when the final pho-
tons have momenta parallel to that of the incident
photon. When radiative corrections are included
the theorem no longer seems to hold. In Sec. III
we show that the vector nature of the photon and
the fact that the electron has spin 2 are not respon-
sible for the vanishing of the amplitude in the for-
ward direction. We do this by considering the
scattering of massless pseudoscalar (or scalar}
mesons off massive fermions and the scattering
of massless mesons off massive mesons, and
showing that, in the tree approximation, the re-

p=(o, zm) 4-momentum of target electron;
the electron mass is ~;

P' = (p', i&') 4-momentum of final electron.

By energy-momentum conservation it is easy to
check that when the final n photons each have mo-
menta parallel to the incident photon momentum
(we will refer to this as "forward scattering" from
hereon)

p=p' (2)

0, = k2+ks+ ~ +k„„.
We will find it convenient to introduce

k1 = -A'1

k,' = ki (j = 2, 3, &~ +1),
(4)

since in terms of the k,' the invariant amplitude for
process (1) is symmetric under permutations of
all n+1 incident and final photons. In terms of the
primed variables, relation (3) becomes

n+1

Pk;=0 (5)
2=1

P

FIG. 1. Feynman diagrams for double Compton scat-
tering to lowest order in a.
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spective amplitudes vanish in the forward direc-
tion, i.e. , when the final n massless mesons each
have momenta parallel to that of the incident mass-
less meson. In Sec. IV we generalize these re-
sults to scalar electrodynamics. All this seems
to indicate that our theorem may be more gener-
al than was at first thought and is not limited to
the scattering of photons off electrons. For all
five models we considered we have found that, in
the tree approximation, the amplitude for the
process

possible to generalize the theorem to include ra-
diative corrections since for virtual A. particles
k„'&0. In fact, as we discuss later, the theorem
does not hold when radiative corrections are in-
cluded.

II. A SIMPLE THEOREM IN QUANTUM
ELECTRODYNAMICS

We assume that the interaction responsible for
reaction (1) has the usual minimal form

A+B-nA+B (n= 2, 3, . . . ), (6) 2), =. ieg(x)r„g(x)A„(x): (e &0), (7}

where A is a massless particle and 8 is a massive
one, vanishes in the forward direction. As we
shall see from the proofs of our theorem for the
five models considered, the only important com-
mon features seem to be (i) the masslessness of
the A particles implying k„'=0 for real A par-
ticles, and (ii) the restriction to tree diagrams
which only involve real A particles. It is not

where &(x) and A„(x) are the fermion and electro-
magnetic fields, respectively, and y& (}J=1,2, 3, 4)
are the Dirac y matrices. Consider first the case
n =EN+1 where N=1, 2, . . . . It is quite straight-
forward to show that, in the tree approximation,
"the invariant amplitude" for reaction (1) when
the final 2N+1 photons are produced in the for-
ward direction is proportional to4

(8)

u' = &u„(m = 2, 3, . . . , 2N + 2 },
(9)

and we have introduced

(10)

where &" is the linear polarization vector of the
photon appearing at the m'th vertex of the Feyn-
man diagram. From relation (4)

Relations (13}-(16)are readily derived by making
use of the following facts:

(i) We work in the laboratory frame of reference
in which the target electron is initially at rest;

(ii) The linear polarization vectors c~ are real
and perpendicular to k;

(iii) all photon momenta are parallel;
(iv) energy-momentum is conserved.
Relations (13) and (14) imply that

(17)

&
p ) the electron spinor corresponding to momen-

tum p and polarization ~, satisfies
and

$, f"+g )(., =0. (18)

and

(8 ™)S»=0,

where

gp q(p-m) =0, (12)

In relation (8), Q~ indicates summation over all
photon permutations —incident as well as final
ones. It is very important to note that &„' „and

do not appear in relation (8). We will now
2N+2

show that

T (2N+ 1) 0 (19)

(m =1, 2, . . . , n +1);

(i, m =1,2, . . . , n+I);

(l, m =1, 2, . . . , n+1};

(13)

(14)

(15)

(16)

In deriving relation (8) we made use of the fol-
lowing:

fll j Py + gtl) fill 2 (~ lip „~ll j}

we find that

(20)

Divide n„n„.. . , n»„ into X+1 pairs as follows:
(s „n,), (n„n, ), . . . , (n „„,s,„). Note that the de-
nominator in relation (8} is symmetric under inter-
change of members within any pair. By summing first
over permutations of terms swithin pairs and using
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7 (2/v) 1) ( 2) lg (f 1, f n2)(fn3 f 4), (f n2N+1 f n2N+2)
p'

Sp. )'jap. ).
X

where Q„denotes summation over all possible photon pairings (n„n, ), (n„n,), . . . , (n»„,n»„) excluding
permutations within any given pair. It is easy to see that

T(2N+1)
( 2)N+1 Q (f 1, f n2}(fn3, f n4). . .(f n2N+1 . f 32N+2}

p( ~

p I I I
1 R- ).$S-,

(1))„' +&d„' )(Z„' +Z„' +1)),' +1))„' ) ~ ~ ~ (1))„' +&))„' + ~ ~ ~ +1))„'
3 4 1 2 S 4 1 2

=(-2) Q (f 1' f 2)(f 3' f 4) ' '' (f 2N+1' f 2N+2)
pip

X
Sp. g kSp. ),

(&))„' +Z„' )(V„' +1))„' )(1))„' +&a„' + +&1)„' ) (&d„' +&))„' + +&d„'
1 2 3 4 1 2 6 1 2

where gN- denotes summation over all possible photon pairings, excluding those that just correspond
to the permutations of the pairs (n„n2) and (n„n4) and also excluding permutations within pairs. Contin-
uing this process it is easy to see that T""'"can be reduced to

T(2N+))
( 2) +1 (f nl, f 32) (f 3 f n4) ~ ~ ~ (f 3N+1 ~ f "2N+2} Sp .)„j'fSp, )

where by Q, we mean summation over all possible pairings excluding those that just correspond to permu-
tations of the pairs (n„n,), (n„n,), . . . , (n» „n») and also excluding permutations within pairs. Finally,
using the notation Q, to indicate summation over all photon pairings excluding those that simply corre-
spond to permutations of the photon pairs (n„n,}, (n„n,), . . . , (n»„,n»„) and also excluding interchange
of members within a given pair, we can write

2N+2

Sp, ) /ST, zZ, =, ~'n,
7 (2 +1)

( 2) +1 (f 1 . f 2)(f "3 ~ f "4)~ ~ ~ (f "2N+1 f "2N+2)

=0

since by energy-momentum conservation [see re-
lation (5)]

2N+2

easy to see that the amplitude for the reaction

ly+e-ny+e (l +n =3, 4, 5, . . . ), (22)

(d O
/=1

(21) also vanishes when all (l +n) photons have parallel

The above proof applied to the case n =2N+1.
For n =2& the proof that the amplitude for forward
scattering vanishes is actually much simpler since
each of the terms in the amplitude corresponding
to the Feynman diagram of Fig. 2 separaIeIy van-
ishes. This follows directly by using relations
(11), (12), (15), (17), and (18).

As pointed out in Sec. I, when the invariant am-
plitude is expressed in terms of the f),

' [see rela-
tion (4)] it remains unchanged under permutations
of all n+1 incident and final photons. In this re-
spect, there is little difference between an in-
coming and an outgoing photon. It is therefore

k~
nt

knj n2

P

FIG. 2. Feynman diagram for n -Compton scattering
whenn = 2N . Note that one of the photons in the diagram
should be the incoming one.
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momenta. Except for minor changes in notation,
the proof of this result goes through unchanged as
for the case of reaction (I}. An interesting special
case of reaction (2) is

ny+e -ny+e (n =2, 3, 4, . . . ), (23)

corresponding to I =e. The fact that the amplitude
for reaction (23) also vanishes in the tree approxi-
mation when all 2n photon momenta are parallel
is a clear indication that a symmetry principle
is not involved in our theorem. Furthermore,
using the optical theorem, one can readily prove
that when radiative corrections are included the
amplitude for reaction (23) no longer vanishes. '

III. GENERALIZATION OF THEOREM TO SCATTERING
OF MASSLESS PSEUDOSCALAR (SCALAR) MESONS

OFF MASSIVE FERMIONS AND TO SCATTERING
OF MASSLESS SCALAR MESONS

OFF MASSIVE MESONS.

In order to study whether or not the theorem we
proved in Sec. II depends on the vector nature of
the photon we consider here the reaction

e+- NQ e +(N = 2, 3, 4, . . . ), (24)

where Q is a massless pseudoscalar meson and e
a massive spin--,' particle. We assume that the
interaction responsible for reaction (24) is given by

plitude vanishes in the tree approximation for
~=2, 3, 4. The generalization to larger N is some-
what more complicated here, but we have no doubt
that it is quite feasible.

To see that our result is independent of the spin-~
nature of the target particle we consider the
reaction.

P+y NP-+rp (N=1, 2, 3, . . . ), (29)

where P now represents a massless scalar particle
and y a massive one. We assume that the inter-
action responsible for this process is given by

See=:g(p~(x)y(x} P(x):. (30)

The notation is self explanatory. In the tree ap-
proximation, the invariant amplitude for reaction
(29) in the forward direction, i.e., when the final
Q's have momenta parallel to the incident one, is
proportional to

A(E) 1~ &u' (v' +&a' ) ~ ~ (&u' +&a' + ~ ~ ~ +&a' ) '
P ftl Nl tl2 fll N2

(31)

where ge indicates summation over all possible
permutations of the N+1 g's (incident and final
ones). Noting that (d„'„ is missing from the above
expression and that

(25) g~;=0, (32)

P(x) is the masslesspseudoscalar field and g(x)
is the massive spin--, field. We use the same no-
tationasinSecs. Iand II with k, (j=1,2, . . . , N+1)
referring to the massless P-meson 4-momenta. In
place of photon polarization vectors we now have a
z, matrix occurring at every vertex. Since how-
ever,

and

y, P+Py, =o,

y,})l, + g, y, = 0 (j= 1, 2, . . . , N + 1),

(28)

(27)

in analogy to relations (17) and (18), the proof that,
in the tree approximation, the amplitude for reac-
tion (24} vanishes in the forward direction carries
through just as in the case of quantum electrody-
namics. The denominators occurring in the invar-
iant amplitude are identical to those occuring in
relation (8). The numerator is simpler, however,
since y,'=1.

We have also considered the case when the fIJ)

particles are massless scalar mesons and the
interaction is given by

(28)

In this case we have shown that the forward am-

it is easy to show that

A'"' =0 (33)

Ig +y -nQ +rp (I +n =2, 3, 4, . . . ), (34)

also vanishes in the tree approximation when all
(I +n) @'s have parallel momenta. We have explic-
itly verified, however, that when radiative cor-
rections are included the amplitude for reaction
(34) with I =n = I does not vanish even though it
vanishes in the tree approximation. In fact, we
can use the optical theorem again' to show that
the radiative corrections to (34) cannot vanish
when l =ri.

We therefore see that, in the tree approximation,
the amplitude for reaction (29) vanishes when the
final Q's are produced with momenta parallel to
that of the incident one. It is interesting to note
that, while the forward amplitude for reaction (1)
with n =1 did not vanish, the forward amplitude
for reaction (29} also vanishes when N=1.

Since the invariant amplitude remains unchanged
under permutations of all incident and final P's
when it is expressed in terms of k,'. , it is easy to
see that the amplitude for the reaction
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IV. GENERALIZATION OF THEOREM
TO SCALAR ELECTRODYNAMICS

We now show that our theorem holds also in sca-
lar electrodynamics. This is a case of particular
interest since, unkike the previous models dis-
cussed, it involves an interaction with derivative
coupling.

We consider the process

y+v —Ny+@ (N=2, 3, 4, . . . ), (35)

where we have used

and

where & is a massive charged scalar particle. We
shall also here demonstrate that, in the tree ap-
proximation, the amplitude for reaction (35) van-
ishes in the forward direction.

As usual, we assume that the interaction between
photons and charged pions is given by the minimal
electromagnetic interaction'

g, =: .Iv (,)e„~( ) (a„V'(x))c(,))A„(x)

-e'y "(x)(p(x)Aq(x)A„(x): (e & 0). (36)

y(x) is a complex scalar field whose quanta are
associated with the charged mesons. Our notation
remains essentially the same as in previous sec-
tions with p and p' referringto the massive charged
meson's initial and final 4-momentum, respective-
ly. We work in the target-meson rest system and
consider only tree diagrams so that relations (2),
(3), (13), (14), (15), and (16) still hold.

In the forward direction, diagrams with any num-
ber of single-photon vertices corresponding to the
derivative coupling term in the interaction (36) give
no contribution to the amplitude. To see this we
note that the factor corresponding to a single-pho-
ton vertex associated with polarization vector ~ "&

and incoming and outgoing meson momenta, p„and
P„(see Fig. 3) is proportional to

the forward amplitude corresponding to such dia-
grams vanishes is essentially identical to the one
we produced when we considered reaction (29).
The only minor difference is that now we have to
deal with pairs of photons at each vertex.

V. CONCLUSIONS

For all five models considered we have essen-
tially shown that, in the tree approximation, the
amplitude for the process

IA+B —nA+B (I+n =3, 4, 5, . . . ), (37)

where A is a massless particle and 8 is a massive
one, vanishes in the forward direction, i.e., when
all initial and final A particles have parallel mo-
menta, . Since this is also true when l =n =2, 3, . . . ,
it is clear that a selection rule resulting from some
symmetry principle cannot be involved. The fun-
damental reason for the vanishing of the amplitude
in the forward direction still remains a mystery.
The only essential ingredients common to all mod-
els discussed were (i) the masslessness of the A

particle, and (ii) our restriction to tree diagrams
so that all A particle 4-momenta satisfied k„'= 0.

The proof of the theorem is quite elaborate and
subtle and it does not seem that the result could
simply be guessed by observation. Note, for ex-
ample, that the theorem does not hold for ordi-
nary Compton scattering corresponding to n =1
in relation (1). The theorem provides an impor-
tant general statement concerning the amplitude
for process (37) when the momentum transfer to
the B particle is zero.

In applying the theorem to quantum electrody-
namics the following points should be noted:

(1) The theorem applies to free electrons. If
the incident photon energy is large compared to
electron binding energies (the usual Compton
scattering regime) it is reasonable to ignore bin-
ding and the electrons can essentially be treated
as free.

(2) The theorem does not state that the process

y+e -ny+e (n =2, 3, 4, . . . ),

is absolutely forbidden for zero momentum trans-
fer to the electron. It just states that the amplitude

as well as relations (13) and (14).
We now finally show that, in the tree approxima-

tion, the term quadratic in A„(x) gives no contri-
bution to the amplitude for reaction (35) in the for-
ward direction. We can restrict ourselves to odd
X since for even N we must also have at least one
single-photon vertex. Odd N means that we have
to consider diagrams with —,'(N+1) two-photon ver-
tices. The proof that, in the tree approximation,

Pn„,

FIG. 3. Vertex for single-photon —charged-meson in-
teraction.
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vanishes to lowest order in n, the fine structure
constant. The process can and will occur, but
only through higher-order (radiative corrections)
effects .The theorem therefore implies that at
zero momentum transfer the cross section for
reaction (1) is smaller than sohat one u)ould nor-
mally expect by a factor of a -10

We have also shown that when radiative correc-
tions are included the amplitude for reaction (3'l)
no longer vanishes in the forward direction.
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