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Inelastic eikonal phenomenology in a stationary-phase approximation*
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A stationary-phase approximation to a functional-integral representation of model elastic and inelastic pion
amplitudes is shown to yield a phenomenology corresponding to the simplest possible unitary model. Possible

relevance at CERN ISR energies may be easily tested.

I. INTRODUCTION

One of the outstanding theoretical problems of
high-energy eikonal physics is the incorporation of
some measure of f-channel unitarity. An interest-
ing attempt in this direction is the recent paper of
Botke et al.,! wherein a version of elastic f#-channel
unitarity is used as an input in writing an equation
for the functional Fourier transform whose integral
produces the elastic scattering amplitude. Another
and partially related problem is the choice of spe-
cific model, any one of which is guaranteed to sat-
isfy s-channel unitarity at asymptotic energies.?
The present remarks were motivated by those of
Refs. 1 and 2, in particular by the desire to find
an alternate point of departure for the insertion of
t-channel unitarity, including sumsoverall¢-chan-
nel thresholds. The present, heuristic develop-
ment leads quite naturally to a choice between ver-
sions of eikonal phenomenology, with that model
containing the simplest formulation of s-channel
unitarity appearing as the preferred one, in the
limit of asymptotic energies. Such arguments im-
mediately provide a phenomenology for inelastic
reactions, given in terms of an experimentally de-
termined elastic eikonal function, and predictions
can be written for inelastic experiments yet to be
performed at CERN ISR energies. It is also inter-
esting to observe that the forms obtained have a
generic resemblance to those found in recent stud-
ies of phase transitions in quantum field theories,?
and in older calculations using a mean-field ap-
proximation in statistical problems.*

The starting point of these remarks is the obser-
vation that there already exists, in any nontrivial
field theory, a concise functional statement of the
corresponding eikonal function. For definiteness,
this quantity will be illustrated by the eikonal of
that theory previously derived,® approximated,® and
employed’ elsewhere. For simplicity, no attempt
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will be made to incorporate diffractive effects, al-
though that particular generalization could be esti-
mated by allowing neutral-vector meson production
in the model. The functional statement of this ei-
konal, which includes all tower graphs and their
higher ¢-channel threshold (checkerboard) general-
izations may be put in the form of an equivalent
functional integral. At asymptotic energies it is
then argued that, in effect, all inelastic pion emis-
sions from a given multiperipheral chain are re-
placed by a single pion satisfying a classical-like
equation of motion, in which rapidity and impact-
parameter variables enter in an essential way.

The elastic eikonal is treated similarly, as the
shadow of such effective single-pole-per-chain
emission. At least a rudimentary form of elastic
t-channel unitarity is maintained, while s-channel
unitarity is guaranteed by the eikonal formalism.
We briefly discuss, in Sec. III, a phenomenology
for these heuristic forms, and present a brief
summary in the final section.

II. FORMALISM

We begin with the briefest possible review of the
expressions describing elastic and inelastic reac-
tions in that eikonal model where a pair of fast nu-
cleons ¥ exchange massive, neutral vector mesons
(NVM) W,, which in turn exchange and emit arbi-
trary numbers of (scalar) pions n. The coupling of
Y to W,, is represented by the constant g, with the
coupling of W, to 7 by the constant A, according to
the interaction Lagrangian £/'=igypy Wy — (\ /2)aW?2,
Derivations have been presented elsewhere,5~7 in
detail, and it is therefore only necessary to explain
each of the quantities entering into the expressions
for eikonal versions of relevant quantities. At
large c.m. energies, s =- (p, +p,)%, and relatively
small momentum transfers, f=-(p, —p/)?, the
elastic, nonspinflip scattering amplitude is repre-
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sented by

T(s, 0= [ a%e'TE[1 - exens), (1)
where §2= -f, —t/s<<1, and normalization has
been chosen such that dog, /dt=(1/ns?)|T|?. One

also has

Oiot =% Im7(s, 0)

=2Refd2b[1—e"‘], @

oel=fd2bll—e"‘|2. 3)
and

oinzfd"’b[l —e ], @

with p =Imy. The statement of unitarity, in this
eikonal context, is given by the relation 0y, =0, +¢,.

The functional expression for the eikonal may be
stated in terms of the quantity

e"'["]=exp<—%f%0c'£;> exp(igafiflx,,[n]ﬁl),
(5)

where ix =F[7],.,. The Feynman graphs contained
in (5) correspond to the virtual exchange of arbi-
trary numbers of pions between all possible virtual
NVM’s, including self -effects given by virtual
pions emitted by each NVM. In (5), D,(x —y) denotes
the pion propagator, and n(2) represents a ficti-
tious, c-number, pion source whose only function
is to provide the appropriate pion linkages between
the NVM propagators, A.(x,y|r); the latter are to
represent relativistic (Feymann gauge: §,,A;) NVM
propagation in the presence of the external field
n(z). The quantities

Fu(W)=pl, [ dE8W =2, 480, )

denote classical currents of the fast nucleons, of
position 2z, , and momenta p, ,, elastically scatter-
ing according as p, +p, ~p; +b;, and with transverse
impact parameter b =(Z, -%,);.

It may be noted that (5) is that particular func-
tional representation which makes no reference to
the concept of functional integration. It stands as
an expression in its own right, and has spawned a
sequence of applications defined in terms of par-
ticular approximations.® One easily sees that all
the varied pion linkages are achieved by expansion
of the D, exponential, while expansion of the A, ex-
ponential corresponds to the inclusion of higher ¢-
channel thresholds, in the sense of connected con-

HECTOR MORENO AND H. M. FRIED 12

tributions to the eikonal. At the cost of having
specified the interactions of a particular theory,
(5) provides a representation for the eikonal which,
in principle, contains full s- and ¢{-channel unita-
rity.

Inelastic pion production within the eikonal con-
text—every pion so produced takes off a very small
fraction of the available 4-momentum —may also be
specified in terms of the F[«] of (5). For example,
it is not difficult to obtain an expression’ for the
total cross section involved in the production of n
pions,

1 . o o\ ’
o,(8)= — fd%(z IES?D‘*)E’) efrgF* ']

' =w =0 ’

(6)
where D, denotes the_positive frequency, mass-
shell, pion function, Di,(k)=—i(2m)™20(k,)6(k*+ p,?).

With (6), one may conveniently introduce the par-
ticle partition function (ppf)
0n(2)=)" 2", ™
n=1

so that

68 ,
Uin(z):fdzb [(exp (74 fé_;D(q.)G_ﬂ-,)—l}eF["]eF*[”]

. 4 9 *pr r
=[d2b[exp<tz fHD(ﬂH')eimeF r’]

- e-Zp(b»s)]_ (8)

[

0

Other quantities, such as inclusive cross sections,
may be defined in terms of functional derivatives
with respect to D(k), but we shall not consider
these here. From (5), (6), and (8) it is clear that
knowledge of the particle properties in the high-
energy reactions of this theory depends upon the
evaluation, or estimation, of F[r], and subse-
quently of the inelastic quantity

(5, 6 .
exp<lz f gl’h)g;,)e””e" 1

9

0

We now attempt to evaluate (9) and (5) by the re-
placement of functional differential operations by
those of functional integration. This is sensible
only if one has a prescription for the evaluation of
these functional integrals; and since the most com-
plicated form of integration known is Gaussian in-
tegration, the method is basically restricted to an
approximation such as stationary phase. It then
remains to argue that this mathematical restric-
tion has a reasonable physical interpretation, one
that may be expected to be valid in the very large
energy limit.
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A convenient way of introducing the appropriate
functional integral is via the relation

fd[wlexv(if j<p*éf¢3¢>
=C(t)exp<—%Tr lnB>exp<:t%ij“j>, (10)

where unpleasant questions concerning measure
are lumped into the constants C,=Cg,, which
automatically cancel in the final result, In this
way, (5) may be rewritten as

e""["]=C('+‘)exp(%Tran)fd[(p]exp(—zi fcpK<p>

><exp<f @ %)esm, (11

where F[r] =ig2f$llc[1r]3‘” , and K = (u,%? -9%)=D,7%,
Performing the indicated displacement, and then a
redefinition of variable, this becomes

J

e =Crhexp(3Tr InkK)

xfd[<p]exp[—§if(¢—ﬂ)K(<P- ﬂ)] e,

or
Ca‘)C{.‘)fd[w]fd[a]eXD[if(qo—W)a]
xexp(% f ocha> e, (12)

where (10 has been used a second time, in order to
acheive the simplest functional dependence upon the
source 7. An identical representation exists for

er*[n']=c(—+;c(-_l)fd[9]fd[ﬁ]exp[—i f(ﬂ—ﬂ')ﬂ]
xexp(-% f@:ﬁ) es*[e]’
13)

and both (12) and (13) may be substituted into (9) to
obtain the representation of that quantity,

[Ce+y| 2exp[-3Tr InD, - 3T InD¥ - 3Tr In( 1+ 22KD( KDy, )]

< [ do) | dls)expstols 52(6] =5 [ oKl 25Dy KBy KIS0

f

i .
xexp%i f 0K[1+2°D)K D, K] 6 +i2 f @K[1 +zzD(+)KD(+)K]"1D(+)K8}, (14

again employing (10) to perform the @, 8 functional integrals. Because Dy is on the mass shell, (14) sim-

plifies to

IC<+)I'2eXp(—%Trln|DcI2)fd[<p]fd[l?]exp{ﬁlrp]w*[co]}exr:(—gif 9K0+§if ¢K¢+i2f¢KD(+)K9>,

a form which, in effect, defines the action of the
products KD, upon K¢ and K¢ as zero; that is,
only fields which possess mass-shell singularities
no worse than that of a single pole are included in
the functional integrations. Just this restriction is
obtained in the stationary-phase approximation to
follow. There, at high energies, one may argue
that many virtual pions should be present; e.g., in
a simple multiperipheral model, each D, and Dy,
in (5) and (9) contributes to the eikonal at moderate
impact parameters a factor of Ins. Hence the
physical situation is akin to that of a strong-field
approximation, with very many quanta the neces-
sary prerequisite to classical-like states (of fixed
phase). We therefore assume that the fields ¢ and
0 should not vary appreciably from their appropri-
ate semiclassical values, ¢, and 6,. The latter
are each expected to be specified by a second-or-
der differential equation, so that ¢,and 6, each

(15)

—
contain but a single mass-shell pole.® The partic-
ular form of classical differential equation will be
given in terms of a self-consistent, mean-field
approximation, where both ¢ and 6 are specified
by average ¢, and 6, values of each field that can
be involved in all possible pion linkages.

Consider first the ¢ integration, and define

i
slgl=iz [ 6K Do Ko-3 [ oKo+5lo), 16
which is then to be approximated in the form
68
S ~@ +f - —_—
[el=slpo)+ | (¢ @ 5o

5%

P (¢ = @y). an

+4 [(o-00)

The stationary -phase condition for the ¢ integral of
(15) then becomes
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58 ; 0F
2% _0=iz feKD K-iK@p, +— (18
50, +) (2 5¢ 0=0p"

If we require® that ¢, and, subsequently, 8, are to
satisfy a classical field equation such that each
average field contains nothing worse than a single
mass-shell pole, (18) reduces to

K. py(x)=- (19)

;0%
5¢(x) 0=0,

Equation (19) defines a pion field influenced by all
the pions propagating into and/or from the same
NVM line, and in this sense the approximation is
self-consistent. The confluence of all such NVM
propagators then is used to represent the effects
of all f-channel thresholds. Equation (19) is a
highly nonlinear relation, which one may attempt
to realize in terms of a specific s- and b-depen-
dent model for A [¢]; here, however, only the
phenomenological consequences resulting from this
interpretation and physical approximation will be
explored.

One now shifts to the variable ¢’ =¢ - ¢,, and
again employs (10) to perform the ¢’ functional
integral, yielding for (15)

-1 L 1 . 5*F
Ciyexp(—zTr InD% —3Trin| 1 +iD,

89,09,

x fd[e]exp{s*[(pohzi f 0K0 + F+[6] % (20)
Performing the same steps for the 6 functional in-
tegral, one learns that 6,=¢%; and (20) then be-
comes

exp<—2p+iz f(pgKD(+)K<po>, (21

where, in the same stationary-phase approxima-
tion, but applied to the zero-pion-source expres-
sion of (12), one obtains for the eikonal

X ="iff[¢o] -3 f YK,

; 2
+2Tr 1n<1 +wcé—(:—°5%> . (22)
The p of (21) specifically denotes the imaginary
part of (22).

s-channel unitarity, which demands the form (4)
of the impact-parameter integral of (21), when
used in conjunction with (8) for z=1, will be satis-
fied by the equality of p and (i/2)f¢5*KD(+)K<po.
This latter condition acts as a unitarity restriction
on the possible solutions of the model field Eq. (19),
in much the same way as conventional unitarity de-
limits the possible solutions to any complete field
theory. In principle, both relations should be com-

patible (although this has never been demonstrated
exactly except for free fields); in practice one
uses either unitarity plus assumed analyticity, or
a succession of approximations to field equations,
or some mixture of both, in order to build explicit
if approximate solutions. The task is long and
arduous.

Fortunately, in the present model context there
is a fairly simple set of phenomenological tests
which one may first apply in order to determine
whether such detailed calculations of the model
b, s, g, A dependence—for this interaction Lagran-
gian or for any other, using the same methods —are
worth the effort. Such tests follow from the rela-
tion

0n@)= [ % e~ g2ee00_1 ], (23)

itself generated by the above model quantities and
restrictions. In the next section we discuss pre-
dictions that follow from (23), and examine the s
dependence in a simple eikonal model with p chosen
to reproduce elastic scattering data. If our semi-
classical method is at all reasonable, its oulput
must resemble appropriate measured quantities;
and if any such agreement does appear to hold, ex-
perimentally, it will then be worthwhile to under-
take a detailed study of the model’s equations, and
determine their b, s, ... predictions. Hence, the
remainder of our discussion is phenomenological,
based upon the mean mulitplicity properties that
any model with ppf of the form (23) must display.

It is interesting to note that (23) has just the form
of inelastic emission by the simplest of all unitary
mechanisms: Each multiperipheral chain emits
no more than a single pion. Other unitary schemes,
corresponding to varying numbers of pions emitted
per chain, have been discussed in the papers of
Ref. 2. What is interesting, novel, and perhaps
even correct about the result (23) is the suggestion
that only the simplest unitary theory is relevant
at asymptotic energies. At lower energies, of
course, one would have to include contributions
corresponding to two or more particles emitted
per chain. Equation (23) leads to the simplest sort
of representation, with all asymptotic inelastic re-
actions given in terms of the elastic eikonal func-
tion, and we now turn to some of the obvious im-
plications of such a phenomenology.

III. PHENOMENOLOGY

Perhaps the best empirical fit to high-energy
elastic data is given by an eikonal that obeys geo-
metric scaling,® and it is this form of elastic ei-
konal which we shall use to parametrize (23). One
chooses x as completely absorptive,
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—-ix=pld, )=Af[b/R(y)], (24)

where A is a constant, and the impact-parameter
scale R(y) contains all the rapidity dependence of
the problem. A convenient way to break geometric
scaling—should it turn out to be necessary at
higher energies—is to let A depend on rapidity,
and such forms were long ago introduced in black-
disk absorptive models.!'° Here, our remarks
shall concern the estimation of (23) with the aid of
(24).

The simplest quantities of interest are then

O = 2aRE (25)
where a = [d?x1 - e 4/®],

0,,= BR?, (26)
where B= [d2x[1 —e"24 7],
and

0o =0, —0,,= (22 — B)RZ, 27

When geometric scaling is valid, A, «, and § are
constants independent of energy, and each cross
section increases in the same way with increasing
R(3). Further, the topological cross section for
the production of 7z pions displays the same sort of
energy variation, ¢,=v,R%(y), with

Y =%(2A)"fdzx[f(x)]"e'“’(")u 28)

Such energy behavior has not been seen at Fermi-
lab energies, and (28 is therefore a prediction for
the yet-to-be-measured cross sections at CERN
ISR energies, where the elastic pp scattering is
quite adequately desrribed by geometric scaling.

Related predictions may be made for multiplici-
ties,

<n>=27“1 [ azxp, 29)
and
) (2= B2 [ anc o), 30

etc. For strict geometric scaling, it is clear that

all multiplicities and ratios of higher moments
turn out to be independent of energy.

Phenomenological tests of the semiclassical
formalism suggested in the previous section may
of course be carried out in terms of the parametri-
zations appropriate when geometric scaling is vio-
lated, A —A(y). If A increases with rapidity [as
suggested by the tower graph models,'® where A(y)
~xeY~xs?, x and ¥ >0, then one must also specify
f(x) in sufficient detail to compute the over-all y
dependence of each of these quantities. Many dif-
ferent models have appeared in the literature,!!
and there is little need to elaborate upon them here
except to observe the phenomenological tests of
our semiclassical formalism will undoubtedly be
more difficult, and less definitive, in the absence
of strict geometric scaling.

IV. CONCLUSION

The essential point of emphasis in this paper is
the natural way in which the simplest possible uni-
tary model arises in the consideration of inelastic
processes at high energies. One begins with a for-
malism containing full s- and /-channel unitarity,
and applies a form of semiclassical averaging to
obtain not just a simpler formalism, but the sim-
plest possible version of a unitary theory. A test
for the validity of this procedure is easily outlined:
If strict geometric scaling holds for the elastic
scattering amplitude but the CERN ISR energy
variation of each g, turns out to be different from
that of R®~0,,, then the underlying, semiclassical
approximation—which may be performed in any
nontrivial field theory —is wrong. Conversely, if
this simple o, test agrees with the prediction of
(28), there will follow the strong suggestion that
such an averaging approach is indeed sensible at
high energies, a statement with ramifications in
many related areas of physics.
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