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Relativistic calculations of the I. = 0 energy levels of a qq pair bound by a linear potential are done both for

light quarks (the p system) and heavy quarks (charmonium).

The suggestion" that the )))(3105) and )))(3695)
are bound states of the charmed quark 6" and its
antiquark P has revived interest in dynamical
calculations of the masses of the qq bound states.
Detailed calculations have been done using the
nonrelativistic Schrodinger equation with a linear
confinement potential for the heavy (6" ) quarks"
and for the light quarks. " For the heavy-quark
calculations p posteriori justification of the non-
relativistic calculation was given e.g. by computing
the expectation value of P'/m' with the Schrfidinger
wave functions and finding that it is small, i.e.,
the system is essentially nonrelativistic. Our
relativistic calculation confirms this. The light-
quark system is a priori expected to be relativ-
istic, so the results of the relativistic calcula-
tions are of greater interest in this case.

Our approach is by way of the three-dimensional
formulations of the relativistic two-body problem
("quasipotential" approach). In this approach, '
one starts with the (formally) exact field-theoretic
Bethe-Salpeter equation for the two-body system,
and by an infinite rearrangement of the iteration
solution and a certain projection operation one
arrives at a three-dimensional Lippmann-Schwin-
ger type equation with relativistic kinematics.
For bound states, an equation like the momentum-

space Schrodinger equation, again with relativ-
istic kinematics, is obtained. In the Kadyshevskii
version' of the quasipotential approach this is

))V —22,')2 )2)= Jdk, V(P, k; )V)V„)k).

standard coordinate space Schr5dinger equation
by means of Fourier transformation with the
functions e'P'. To obtain a relativistic con-
figuration space version of (1), it is necessary
to find a new set of functions which are relativ-
istic generalizations of the nonrelativistic plane
wave functions. These are known from the har-
monic analysis' of the Lorentz group. They are

5(p, p)

Thus the Lorentz-invariant variable p has, in the
nonrelativistic limit, the interpretation as the
relative coordinate distance. These functions
satisf y relativistic orthogonality and completeness
relations'

Jtd'p 4*$ P)5$ P)=„(3 )'6(p'-p), (3a)

(3b)

Thus one can define the relativistic generalization
of the three-dimensional Fourier transform as

p=np p =(p'+m')' '

One can directly check that in the nonrelativistic
limit, m -~, these functions go to nonrelativistic
plane-wave functions:

In this equation W is the relativistic c.m. energy
(s = W'), p is the momentum of one of the particles
in the c.m. system, and E~= $'+m')' '. The
relativistic invariant momentum integration is

d k
(2g)3 {k2 +yp- 2)1~2

2 )2)= J )) , 2)kV )Vi2V

4$) = d'p 5*$,p)A (p),

(4a)

(4b)

The quasipotential V(p, k; W) is related to the

exact Bethe-Salpeter kernel in a rather compli-
cated way' which will not concern us. If (1) were
the nonrelativistic momentum space Schrodinger
equa. tion, one could immediately recover the

Y(p, k; W) = d'p'd'p g*{p,p' )V(p', p; W)g(k, p) .

(4c)

Taking these transforms in Eq. (1), and assuming
that the quasipotential is a local potential (function
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of p —p'), one obtains' the relativistic configura-
tion-space equation

8'-H0 p, ——V; 8' (I)g =0,
p

where H, is constructed such that

k(p, p}=2E&5(p, p}
Bp

choices of contour produce different integral
representations (of the same function):

R' . 2m' . t~)=— dt exp i p ——t+i sinh-
m k k m

n mW
P(p) =c exp ——mp—

2 k

(12a)

The required H, is

8 2$
'I, p, = =2m cosh ——+—sinh-

Bp &n f)p p m bp

1
A (P) = Awi(p)Y~—(~, 0)

p
(10)

The radial equation, for L =0, can be put in the
form

k pe+ / ) Q/Qp P (p}+ 1 + ed'/m) a/0Pik
m m m'

(2t /st) a/a P 42(P) = 0 . (11

Using the Laplace method we obtain an integral
representation for the solutions of (11). Different

where 6(8, Q) is the usual angular differential
operator

6(6, P)Y„(b, P) = —L(f, +1)Y (8, P) .

In principle, the quasipotential V(p, W) is deter-
mined by the field theory (exact Bethe-Salpeter
kernel) from which one started, but in practice
the only approach available is the perturbation
series, and all of the arguments for the quark-
confining potential are definitely nonperturbative;
thus we simply make the same ansatz for the
quasipotential as has previously been made for
the potential used in the Schrodinger-equation
calculations, ' '

V(p; W) =kp.

Of course the idea of quark confinement does not
restrict the potential at small separations, say
x & I/222, and one knows from the usual meson
spectroscopy that there must be short-range spin-
dependent (L 5, s, s, ) terms. Since the purpose
of this paper is not to do detailed phenomenology"
but rather to investigate the role of relativistic
corrections to any nonrelativistic quark-model
calculation with a confining potential, we will not
consider these additional terms here.

We turn now to the solution of Eq. (5}with the
potential (9):

mS'
0=const& dy cos y

0 k

2trPx exp — (coshy —1)
k

(13)

We first do the heavy-quark (iP 'F'} calculations.
The two parameters m and k are determined so
that the first two energies will be the 3.1 and
3.7 GeV masses of $I and g„respectively. The
results (obtained by numerical integration) are

m =1.16 GeV, k =0.205 GeV'

iV=3.1~, 3.7*, 4,2, 4.7, . . . GeV.

(14a)

(14b)

These results are almost exactly the same as
those obtained from a nonrelativistic-Schrodinger-
equation calculation' with a linear potential

m= 1.16 GeV, k=0.211 GeV',

H'= 3.10*,3.70~, 4.18, 4.61, . . . GeV .

In each case, the 3.10 and 3.70 GeV masses are
input, so that agreement has no significance, but
one observes that the effective quark mass is un-
changed and the effective force constant is changed
only by 3~/& to reproduce these same energy levels,
i.e., the system is essentially nonrelativistie.
And the predicted third level at 4.2 GeV is the
same in either calculation. At higher energies
the relativistic and nonrelativistic energy levels
do begin to diverge, but for higher levels, cou-
pling to various decay channels is likely to become
important, so the potential approach will break
down anyway.

For an example of a light-quark calculation we

mR' 2m
dy exp i ny — y- coshy

k k

(12b)

The first representation is displayed because
taking the nonrelativistic limit (m —~) reproduces
a standard integral representation of the Airy
function, the known solution of the nonrelativistic
L = 0 radial Schrodinger equation with linear poten-
tial. The second representation is used for numer-
ical computation because of the rapid convergence
of the integral. Imposition of the boundary condi-
tion Q(0) =0 determines the energies W from the
zeros of the function:
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m = 0.0644 GeV, k = 0.0364, (15a')

%=0.77~, 1.25~, 1.64, 1.99, 2.30, . . . GeV. (15b')

Because the first two energy levels are treated as
fixed input, while m and k are treated as variable
phenomenological parameters, the energy spectra
are again very much the same. The relativistic
nature of the system shows up in the substantially
different values of m and somewhat different values
of k required to fit the same energy levels in a
relativistic calculation and a nonrelativistic

will consider the spectrum of p, p' mesons. The
two parameters m and k are determined so that
the first two energies are the masses of p(0. '77)

and p'(1.25). The results are

m = 0.0918 GeV, k = 0.0336 GeV', (15a)

V=0.77*, 1.25*, 1.66, 2.03, 2.40. . . GeV. (15b)

The corresponding results from the nonrelativistic
Schrodinger equation are

calculation. "
Additional questions of interest to be investi-

gated in the relativistic quasipotential approach
are the energies of the 1.40 states, and the be-
havior of the wave function, particularly at the
origin which determines e.g. the e e' decay widths
in the nonrelativistic approximation. Neither of
these questions can be answered simply in the
context of the calculations presented here. For
the L ~0 energy levels a different technique for
numerical solution is required. More important
than this purely technical problem is the recogni-
tion that the position of the 1.0 levels relative to
the I.=0 levels is dependent on the short-distance
details of the potential, ' so more physical input
is required. With regard to the wave function,
recall that p =0 is not the same as r =0 (p and r
are the same only for p» 1/m; in fact p =0 cor-
responds' to r = 1/m), so a question of interpre-
tation is involved. These questions are under
consideration.
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~oNo significance should be attached to the values of m,
k determi. ned in these sample calculations since these
values will be changed when one includes additional.
constant and short-range terms in the potential.


