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In isobar analyses, the amplitude for particle+ particle~particle+ isobar usually is taken to be independent

of the mass of the isobar, but Aaron and Amado have shown this approximation to be inconsistent with

unitarity. Here we continue that work by calculating numerically the absorptive part of isobar amplitudes in

the case of m N ~ma N using the recent world analysis of 200000 resonance region events.

I. INTRODUCTION

In two-body elastic scattering the data can be
fitted with any parametrization desired, but one
should always check that the amplitudes thus ob-
tained fall inside the unitarity circle. This step
can be omitted if one uses an elastic phase-shift
parametrization, since this builds in the unitarity
constraint. For three-body analyses there does
not exist a simPle formula (such as the elastic
phase-shift one) which builds in unitarity. Hence
it is important to check that results obtained with
other methods actually satisfy the unitarity con-
straints. This work is such a check of a recent
extensive and important analysis of the reaction

mN-wnN by Herndon et al. '

Final states with three or more hadrons are an
important source of information on the interaction
of unstable particles in particle physics. Data
analysis of such states, however, has proved a
formidable task. An important method in such
analysis is the isobar model. " In this model the
amplitude for the reaction a+5- 1+2+3 is written
in the form

&p, p„p, lT„lp& = g &p~lflp&~(p;, p, )
f Jk=r

(CQCllC)

For the case of wX- m~N, in the over-all center-
of-mass (c.m. ) system, a typical term from the
sum in (1) is represented graphically in Fig. &. In

the figure the isobar can be formed by either an
Nm or a mn system. The quantity G(p;, p&) describes
the propagation and decay of the (i, j) subsystem
and is written explicitly in Appendix A. An impor-
tant feature in almost all applications of the iso-
bar model is that the quasi-two-body amplitude

(p ~f ~p), which describes the isobar production

from the Nm system, is taken to be independent of
the two-body subenergy variable 0 for fixed over-
all center -of -mass energy 5'. The subenergy
variable which is just the square of the isobar
mass is defined by o~ = (P -P )' where P = (0, W).

In a recent paper, 4 two of us have investigated
the subenergy dependence implied by three-body
unitarity and showed that, in general, the a de-
pendence of (p„~f~p& may well not be negligible,
particularly when resonance bands are wide and
overlap strongly as is the case in intermediate
energy m production in mN collisions. The pur-
pose of the present paper is to study the
o -dependent part of f in that case; namely,
r+N —r+n +¹Single-pion production data at in-
termediate energies are in themselves an impor-
tant source of information concerning meson-bar-
yon resonances. One can obtain from their analy-
sis partial widths of known resonances and, per-
haps, discover new resonances which ~ight be
difficult to identify in an elastic phase. iift analy-
sis. Recent theoretical advances have generated
considerable further interest in this process. In
particular, a proposed connection between current
and constituent quarks' can be tested through the

Pi
(isobar)

FIG. 1. Graphical representation of isobar production
and decay corresponding to Eq. P) .
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where J is the total angular momentum, / is the
orbital momentum of the initial n'N system, and
l' is the orbital angular momentum of the final
particle-isobar system. In the LBL/SLAC analy-
sis it is assumed that the f 's are independent of
one another and that each f is a slowly varying
function of o and, therefore, can be approximated
by a complex constant at fixed total energy W for
fixed J, /, and l'. At each W the best values of
the f 's are determined by a maximum-likelihood
fit to the final-state distributions. On the other
hand, Aaron and Amado' have shown that if we
write

f„=Dispf „+iAbsf, ,

where Absf is the discontinuity of t in o, i.e. ,

1
Absf (o„)= —.P (o„+i@) f(o, -—iq)),

2g

then unitarity implies that Absf is a large and a
rapidly varying function of a' and depends on all
the f 8

's When resonan. ce bands overlap as they
do in the LBL/SLAC case, we expect Absf „to be
large and rapidly varying. Furthermore, Absf
satisfies schematic integral relations of the type
(the full equations are given in Appendix A)

Absf~=p fgGg
t ltlltC
limits

and adding analyticity to unitarity one has

P ",Absf "(v'}
&&c

threshold cx a

+"left-hand" cut contributions.

(4)

Equations (4} and (6) imply a rapid variation of
Dispf if Absf is large. ' It should be noted that
these variations occur in the physical region of

magnitudes and signs of amplitudes for pionic
transitions between hadrons. ' Equivalently, mod-
ified versions of SU(6) classify baryon resonances
and at the same time predict amplitudes for reac-
tions of the type nN-m&, mX- pjV, nN-&N, etc.'

En order to examine the cr dependence of the
isobar amplitudes we make use of the recent, ex-
tensive analysis of mN- mvN by Herndon et gl. ' In
this analysis the three-body final-state distribu-
tions in the energy range 1300 MeV~ W& 2000 MeV
are fit using an isobar model which includes the
particle-isobar states m~, pX, and e¹For a
given total isospin I, the amplitude (p„~f(p) is
decomposed into partial-wave amplitudes

the LBL/SLAC analysis.

II. P11 PARTIAL WAVE

In this paper we concentrate on the Pl 1

(l =0, J = ~, J = ~)mN partial wave because pion pro-
duction is large in this wave, resonant-band over-
lap effects are significant, and the angular mo-
mentum algebra is relatively simple. In a sub-
sequent paper we plan to return to a discussion
of all of the partial waves employed in the LBL/
SLAC analysis. %'e examine the production am-
plitudes in this channel in the energy range 1400
MeV ~ W ~ 1550 MeV. The important isobar am-
plitudes in this ease are the PS 11(xN in a P ll
state - eN in an S state) and PPII(vN- vn} which
we shall call f, and f~, respectively. According
to LBL//SLAC, p production is negligible in the
above energy range and we therefore neglect its
effect. Our f 's are exactly those dimensionless
quantities which LBL/SLAC plot on their Argand
diagrams.

To investigate the effects of unitarity we use the
LBL/SLAC results for the f8's (subenergy inde-
pendent) to find Absf (subenergy dependent} in
Eq. (4). We then compare the calculated Absf
with the LBL/SLAC result for f The LB.L/SLAC
assumption of constant f s on the right-hand side
in Eq. (4} is consistent if it generates a small
left-hand side. Our procedure is somewhat like
using ordinary two-body elastic unitarity to check
the validity of a purely real amplitude. If that
purely real amplitude used on the right-hand side
of unitarity generates a small imaginary part, the
real amplitude is approximately unitary. If the
generated imaginary part is large, however, the
full structure of some dynamical principle must
be invoked to obtain a unitary amplitude. Our re-
sults at W =1490 and 1540 MeV are shown in Figs.
2 and 3 where the real and imaginary parts of
Absf, and Absf ~, respectively, are plotted as
functions of subenergy. They have been calculated
using the LBL/SLAC results for f, and f~ in Eq.
(4). The latter amplitudes (constant as a function
of subenergy) are included in the figures for com-
parison. The function G used in Eq. (4) carries
the two-body information-standard nm, and mN

phase shifts have been used here, but the results
are qualitatively insensitive to variations in these
phase shifts consistent with experimental data.
The detailed formulas for carrying out these cal-
culations are given in Appendixes A and B. It
should be noted that while Absf ~ is small and we
may conclude that f~ = constant is consistent with
unitarity and analyticity, Absf, i.s large and rapid-
ly varying for W„„corresponding to the most pop-
ulated parts of the Dalitz plot, and thus the choice
f, = constant may well violate these principles.
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III. D13 PARTIAL WAVE

Although we have not carried out a unitarity
analysis based on the LBL/SLAC results for the
913 partial wave, using dynamical equations,
Aaron and Amado have obtained results for the full
D13 amplitudes which exhibit considerable suben-
ergy dependence. This dynamical scheme involved
solution of coupled-channel integral equations of
the Blankenbecler -Sugar' type which incorporate
both two- and three-body unitarity and analyticity. "
For the D13 case the coupled channels considered
were wn and pN (which here can be produced in S
waves). eN (which is produced in P waves) was
found to be relatively unimportant in the energy
range considered. The results obtained for the
elastic scattering amplitude were in good agree-
ment with experiment for energies 1400 MeV& W
4 2000 MeV."Within their model, the isobar ampli-
tudes for nN-mb and mN- pN were also predicted.
The results (unpublished} were that f z(DS13) was
large and approximately constant while f~(DS13)
was large and rapidly varying. Finally, in contra-
diction with the LBL/SLAC analysis, Aaron and
Amado found f~(DD13) to be very small.

IU. DISCUSSION

Is the LBL/SLAC analysis valid? The P 11 par-
tial wave discussed in Sec. II and the D13 partial
wave discussed briefly in Sec. III together account
for about three quarters of the inelasticity in the

energy region near 1500 MeV and in both cases
there is reason to suspect that the LBL/SLAC re-
sults violate unitarity. Possible anomalies in the
LBL/SLAC fit could arise from the nonunitary
nature of the parametrization. For example,
LBL/SLAC obtain the result that f~(DS13) and

f~(DD13) are roughly of equal magnitude near the
n'4 production threshold, i.e., 1450 MeV S W S 1550
MeV, while the dynamical calculation of Aaron and
Amado predicts f~(DD13) =0 in this energy range.
The latter result is the more reasonable in view of
the ranges of the forces involved, the nearness to
the wh threshold (- 1370 MeV}, and the fact that all
the obvious Feynman diagrams enhance rather than
suppress 8-wave production of n4. However, to
properly answer the original question of the valid-
ity of the LBL/SLAC analysis requires that the
analysis be repeated with careful attention to en-
forcing unitarity and analyticity. Our collaboration
hopes to perform such an analysis. With such
large and rapidly varying Absf it will be necessary
to use some other principle such as analyticity to
incorporate the variation of Dispf as well in this
analysis. In the meantime we would advise some
caution in using the LBL/SLAC results. "

In conclusion, our calculations indicate that the
subenergy dependence of the isobar amplitudes could
be a major effect in the analysis of mN- nnÃ, and
that future isobar analyses should allow for sub-
energy dependence when resonance bands overlap
so strongly as they do in the nmN case. We are
presently preparing for publication a more exten-

I
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FIG. 2. Real (shown by dotted line) and imaginary (shown by solid line) parts of iAbs f, vs Vf~ c.m. energy at (a)
W =1490 MeV and (b) N'=1540 MeV. Corresponding LBL/SLAC amplitudes are also shown.
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F)G. 3. Real (shown by dotted line) and imaginary (shown by solid line) parts of iAbs fz, vs mN c.m. energy at (a)
S' =1490 MeV and (b) 8' =1540 MeV. Corresponding LBL/SLAC amplitudes are also shown.

sive paper in which we shall derive in detail and
motivate the equations used in this paper, and in
addition shall check the f = constant approxima-
tion for all partial waves in the mN- mnN prob-
lem. " Clearly, much work is needed to gather
experience on the problems of implementing uni-
tarity and analyticity as discussed above and we

are addressing ourselves to these questions.
Note added in p~oof. Since completion of the manu-
script we have realized that the very rapid varia-
tion of Absf, comes from singularities on the
"wrong" Riemann sheet (studied extensively in the
past and related to what was then called the
Peierls mechanism}. Therefore these singulari-
ties are not in the physical amplitude. To ensure
this result one must exploit analyticity and dis-
perse the absorptive part [see Eq. (5} of the text].
This point has been made independently by Aitch-
ison a,nd Golding'7 a,nd by Badalyan et a/. in re-
cent notes. However, the relations of Eq. (4} are
still useful. Vfhen the absorptive parts are smalL

as in the case of Absf~, calculated above, one can
conclude that unitarity is not important and take

f~ to be constant in phenomenological analyses
with the understanding that there is still the pos-
sibility of nonsingular subenergy variation due to
dynamical mechanisms.
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APPENDIX A

In this Appendix we express in some detail the
content of Eq. (4} as applied in Sec. H. We first
rewrite Eq. (I}of the text more explicitly. In the
three-body c.m. system the amplitude T» for the
P -wave I = 2, J = 2 transition

r(p) +N(-p, A. ) -n(p, ) + v(p, ) +N(p„r),

where X and r are the ~ components of the nucleon
spin in the initial and final states, respectively,
is written

2 t ~J3

&p~, pm, p.rlT»lp»= Z ~ &p;ulf~lp» '"," "~„(p„p,r)+ &p,r)f, fp»
&,J&l RD~ pt q p R ~

3 e
~I2

(cyclic)

(A1)

where we have suppressed isospin indices, "and
we have adopted the convention that, unless stated
otherwise, all momenta labels represent three-
momenta. In the above equation

q&2 =o3/4 —4

qi& =[o~ -(M -u)'][o~ —(M+ p, }']/(4o,),

where i, j= I, 2 (i cj) and

(A2)
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(f, = (P, +P,)', i, j,kcyclic,
h(W} " sin'5»

l 3
- AE+jl ~23

(A6)

where pf and pt, are four-momenta. In Eq. (Al)

3 is the n'N phase shift in the b channel and 5»
is the mn phase shift in the e channel; 4„(p;, p3r)
is the mX4 vertex function given by

R,' = h(W)
sin'5»

3
712

(A6)

&)(pi&l Py'} = (2l~f lou)~t( P,-, W;) —~,(p„M),
&~3

(A4)

where W; =~o; and u(p, M) is the usual Dirac spin-
or of three-momentum p and mass M, " and the
vector V (IVI =q, ,) is defined in Aaron, Amado,
and Young. " We shall discuss the construction
of the n'N~ vertex function 4„ in detail elsewhere. "
Finally, the normalization factors R, and R~ are
given by

a(W) = ——'

(A7)

( p Sm, I p ISJM ) = (ISm t m A I ZM )Y't, (p) (A8)

and substitute the resultant expression into the
equation for the total 2 to 3 cross section,

dp32 plp2p3r 723 pX, A9
X, r

where the density of states factor is given by

These normalization factors have been chosen so
that our amplitudes f ~ correspond precisely to
those amplitudes which LBL/SLAC plot on their
Argand diagrams. If in Eq. (A1) we now decom-
pose the matrix elements into partial waves using

dI 3= 5 dPl dg2 dt35 tl —Q 5 2 —P )5'(t3'-M' 5 P-Pl-P2-P3) (A10)

we obtain

(f„=~+ (I ')+(2If~(l, l'}I'+ If, (l, l')I'+cross terms),
J', l, 1'

(A11)

where f~ and f, are the partial-wave projections defined in the text. From Eq. (All) it is clear that these
amplitudes are exactly those which LBLf'SLAC plot in their Argand diagrams.

Finally, after partial-wave analysis, we substitute Eq. (Al) into the unitarity relation

(ttlf„lA) (It';lA&-J(, II = 'IA &A(A IT„,. IA'&, . ',, .
with the density of states given by Eq. (A10) and the S matrix defined by

(o'IS„IP) = (~ I
I II8) + (2v)'i6'(P. -P 8)(~ IT„IS).

(A12)

(A13)

Using the methods outlined by Aaron and Amado, ' one obtains the absorptive parts of the quasiparticle am-
plitudes, f~ and f„given by the following set of equations:

Absf Ip„ I', I)= ' '
(
—}I [ (A„ lI"&f (II", I& I (II„ I , I")f ( ", t&'I,

with

(A14}

and

~,(p„ l, l") = dW,"W,"Jp," ' (l'p, IB (vh; eX)I/"p,")
Dalitz plot

cT

(p )I ill )
1 dw2w2'fg' „, "(l'p, IB ()fb;wrA)Il"p,"),

e'"» sin5

Dalitz plot gl3

(A15)

(A16)

where f,(l", l) and f~(l", l) are the amplitudes given by LBL(SLAC, and are by definition constant over the
Dalitz plot. (B (vA; eN)) and (B (vo, ; )fA)) are coupling-matrix elements which are defined in Appendix B.
The limits of integration in Eq. (A15) and Eq. (A16) are the boundaries of the Dalitz plots. The corre-
sponding equation for Absf, (P„ I', f) is given by

Absf, (P„ l', l) = ' ' Q1,~(P„ l', l"}f~(l",l), (A17)
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FIG. 4. 6~2 vs ~~ c.m. energy W~„. The phase shift
lies within presently accepted experimental values
tref. , P. Nath, in Experimenta/ Meson Spectroscopy-
&974, proceedings of the Boston conference, edited by
D. A. Garelick (A.I.P., New York, 1974), p. 224].

FIG. 5. 6f3 vs mN c.m. energy W ~ [.ref. , D. J. Hern-
don, A. Barbaro-Galtieri, and A. H. Rosenfeld, UCRL
Report No. UCRL-20030 ~N, 1970 (unpublished)j,

where

x (1'p, I B (zN; «) i 1"p)'), (A18)

introduces errors of less than 5}); at the energies
under consideration in the text. Our results are
given below.

egf- mA:

(l f), l
B'(.~; zX), lp, )

with

«'p. l B'(zeal; «) ll"p,'& = «"p," I
B'(.z; zN) Il p,&.

(A19)
The above equations represent the detailed ver-
sions of Eq. (4) of the test and were used to ob-
tain Figs. 2 and 3. In Figs. 4 and 5 we plot the
phase shifts 6» and 5» which we use in evaluating
Eqs. (A15}, (A18), and (A18}. The results of Figs.
2 and 3 are qualitatively insensitive to variations
in these phase shifts consistent with present ex-
perimental data.

APPENDIX B

The coupling -matrix elements arise naturally
from the disconnected part of the amplitude for
1+2+ 3- 1' + 2' + 3' when one combines unitarity
with the isobar model. They arise from the ma-
trix elements of the three-particle propagator in
the unitarity diagram in Fig. 6 when all three par-
ticles in the intermediate state are placed on their
mass shells. In this Appendix we give the results
for e/- n4 and m4- n&. In these results we have
made an approximation in evaluating the DNA ver-
tex function; namely, we rewrite Eq. (A4) as

where

= —2(2l' + 1)' '(1'100' l0)W(l' Ll-' l-,')

x(C, l') +C, P,),

C, ,
= a(zo)P) (zo),

P3

1. 3

z. =[(W-B.-~)' ~' l, '-l, '1(2p-p„

2 (F, +(o„)'

~)3=(P3 +2f)P)zo+P) +l) ) ',

(83)

( )

P, (z,) is a Legendre polynomial of order l,
(l'100~l0) is a Clebsch-Gordan coefficient and
W(l'1J; l-,') is a Racah W coefficient.

and neglect the terms of O(p, '/4~') —this neglect FIG. 6. Unitarity diagram.
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gA n'b:

(l'p, [B'(za; zb.)[lp,)

=4+ (2A + l)(IAOO[l'O)(IAOOI IO&II'(z &I; 2A)~(2 &I"-'A)(p. 'C2, . +pi' s( +pp«„)+C ~~p p*

(B4)

where

1 2

c,, =a(z,)c...
C, =h(z, )C.. .

c, =&(z,)s(z,)c, ,

z, =[(W ~, ~,)' —u' —p, ' p.'lisp—p„
E,2=(p, +2pp~zo+p2 +M )'

( )
1

1
(M'-g')

2 ((o, +E„)'-p,
'

(as)

is a Wigner 9-j symbol.
Finally, it should be remembered that because

of isospin coupling, '4 each coupling term should
carry an additional factor

( 1)T2+Tg T
( 1)T

%TED

&& [(2~'+1)(2~" + I )]"'w(7, Tp~„r'~"),

where 7' and v" are the quasiparticle isospins; &'

breaks up into ~, and ~„~" into ~, and 7„and I
is the total isospin. In Eq. (B2) y, = 1-, and in Eq.
(~4) X.=-'.
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