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General SU(4) sum rules are obtained for bosons in the theoretical framework of asymptotic SU(4), chiral

SU(4) SU(4) charge algebra, and a simple mechanism of SU(4) and chiral SU(4) (3 SU(4) breaking. The sum

rules exhibit a remarkable interplay of the masses, SU(4) mixing angles, and axial-vector matrix elements of 16-

piet boson multiplets. Under a particular circumstance (i.e., in the "ideal" limit) this interplay produces
selection rules which may explain the remarkable stability of the newly found narrow boson resonances.

General SU(4) mass formulas and inter-SU(4)-multiplet mass relations are derived and SU(4) mixing

parameters are completely determined. Ground state 1 and 0 + 16-plets are especially discussed and the masses

of charmed and uncharmed new members of these multiplets are predicted.

I. INTRODUCTION

The discovery of new narrow resonances'
aroused an interest in classifying bosons in terms
of the 1581 representation of the SU(4) group. '
The 16-piet boson multiplet will be denoted by
B„„where s denotes J and o. denotes the phys-
ical SU(4) index, i.e. , o =m, K, q, q„D, E, and

(D,', D,') and E,' denote the charm carryin-g
I=-3 and I=O members and g„g„, and g,

' denote
the I= 0 nonstrange and uncharmed members of
the 15-piet and singlet, respectively.

One of the purposes of this paper is to give a
general derivation of SU(4) sum rules, previously
utilized' to explain the new narrow resonances,
which hold for any 16-piet SU(4) multiplet and ex-
hibit the following remarka, ble intexPlay of the
masses of a 16-piet multiplet B„„SU(4)q, -q,'-
g„mixing angles, and the axial-vector matrix
elements'; namely, if a 16-piet multiplet satisfies
the so-called "ideal'" nonet mass constraints
(we use the notation m,

' =m, ', etc.), v, ' = q,
" and

,', our sum rules +eq
g, -g,'-g„mixing angles take the "ideal" values and
the g„g„, and g,' will then belong to the "ideal"
configurations, ss, cc, and (1/&2)(uu+d2), re-
spectively, in the qq description of bosons.
Furthermore, our sum rules contain the following
selection rules: The couplings g, - any nonst~ange
meson+pseudoscalar meson (w, K) and 7i„-any
uncharmed meson+pseudoscalar meson (m, K, q)
are forbidden in our "ideal" limit, 7i, = g,

" and

g,' —K,'=K, ' —w, '. The leaka, ge from the "ideal
structure" of any 16-piet B,may be measured
crudely by the degree of deviation of the quanti-
ties g,

I' —m,
' and 4,' —=q,

' —2K,'+ m,
' from zero

Therefore, if we assign, for the sake of argu-

ment, the recently discovered narrow resonances
g(3105) and g(3695) to the 7i, members of the
ground state 1 (including p, K*, &o, and &p) and
its excited 1 state, respectively, we may ex-
plain the narrow"' widths of $(3105) and P(3695),
provided that these 16-piet 1 mesons satisfy
the "ideal" mass constraints well. Experimental-
ly the "ideal" constraints for the ground state 1
p' = &u' and P'-K*'=K*' —p', are indeed well sat-
isfied, and one may even suspect that the small
violation in this case can be blamed for the SU(2)
breaking which we have to neglect at present.
Theret'ore, the stability of $(3105) may be ex-
plained reasonably well by the above-mentioned
selection rules obtained in our approach. '

Our SU(4) sum rules also predict the SU(6)-
[perhaps now SU(8)-] like' (but more general)
intermultiplet mass relations among the 16-piet
boson spectra. Our sum rules determine the
masses of the charmed members D~ and I * of
the ground state 1 multiplet, once $(3105) is
assigned to its g, member. Then for any "ideal"
16-piet multiplet B „one can determine the
mass of each member of the B, if the mass of
m, is given. Even for non-"ideal" multiplet B„„
the masses of q„, D„and I', can be determined
if the masses of m„g„and g,' are given. The

g, -g„-g,' mixing parameters are completely
determined from our sum rules. In Sec. IIIB we
predict an intermultip)et mass relation among
the "ideal" 16-plets. Some speculation is added
to the 1 multiplet involving the P(3695). We
especially discuss the masses and mixing angles
of the ground state 1 and 0 ' mesons, which
were also discussed recently by Mathur, Okubo,
and Borchardt" by using an entirely different
SU(4) approach.
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II. DERIVATION OF GENERAL SUM RULES IN SU(4)

Our theoretical ingredients are simply as
follows'. (i) asymptotic SU(4), (ii) chiral
SU(4)Im SU(4) charge algebra, and (iii) simple
mechanism of SU(4) and chiral SU(4) SU(4) sym-
metry breaking.

To cope with broken SU(4) [which is certainly
more broken than SU(3)] we use asymptotic SU(4) ':

"The annihilation operator a„(k, X) of B„,with
physical SU(4) index o. and helicity X does trans-
form linearly [including SU(4) mixing] under SU(4),
but only in the limit k —~."

The q, -g„-gs mixing parameters will then be
defined, ' 'o among the physical operators a'„(k),
a'„(k), and a'„(k) and the hypothetical representa, —

tion operators a', (k), a', (k), and a~»(k), in the limit
k-by

s s Is s as

where

Q

pS p
IS

y' y"

n,' 1 0

P', = 0 c os/,

y', 0 sin,

0 cos8, -sin 8,

—sing, sin 8, cos 8,

cosg, ( 0 0

0 1 0 0

0 0 cosQ, sing,

0 -sin, cos

(2)

With the imposition of the commutation relations
[v, , v,.]=if,„v, ~d [v, , A,.]
=if;;,A~ (i, j, b = 1, 2, . . . , 15), our asymptotic SU(4)
leads to the following simple result [hereafter
denoted by result (a)]': "The vector and axial-
vector matrix element but taken only between the
states all of which have infinite momentum, such
as &B,(k, X) I V, and A, I Bs,(k, X)& with k-~, can
still be parametrized in broken SU(4) by the pre-
scription of exact SU(4) plus mixing. "

As the algebraic expressions of SU(4) and
chiral SU(4) S SU(4) breaking, we assume"" the
presence of the exotic commutation relations of
the form [i~„=(d/dt)v„], [V„,Vs] =0, and [V„,As]
=0, where (o., P) stands for such combinations"
as (K', K'), (K', D'), (K', F"), (F,D ), (D', w ),
(F, m ), (K, v ), etc. , i.e. , the combined SU(4)
structure of the SU(4) indices o. and P does not
belong to a 15-piet of SU(4). [V„,Vs]=0 and

[V„,A8]=0 are weaker assumptions than the usual
pure (4, 4*) + (4*,4) breaking.

The realization of all the exotic commutation
relations [V„,VB] =0 (in the limit k- ~) among all
the possible single particle states of B leads
to the following four indePendent SU(4) con-
straints' involving the masses and SU(4) mixing
a,ngles:

E2 K2 D 2 +2s s s s (6)

A. C,C, =-1

We obtain" asymptotic SU(4) relations [i.e.,
special cases of the result (a)] of the matrix ele-
ments of A.„-, i.e.,

-&K!(k) I A. —IKl& =~ & ~.'(k)
I A, -

I ~l&

and

v2
&&!(k)IA, -I ~l& =&D.'(k)IA. -ID&&, k- ~,

and also the intermultiplet mass relations

These SU(4) mass relations are exact (they
are not the first-order perturbation-theoretic
formulas) and should hold in mass-squared form. "
Equation (3) is the direct extension of the familiar
SU(3) mass formula. We need, however, one more
constraint to determine completely the g, -g,'-g„
mixing parameters from the masses ns', Ks',

/2 2
s ~ and pcs
We now realize the exotic commutation relations

[V,A8]=0 and [V„,A8]=0 among all the possible
states & B,(k, A)

I
and

I B,(k, A)& with C,C, = -1 and
a.iso among & B,(k, X) I

and
I B„(k,A. )& with C,C„=1

in our asymptotic limit k- ~.

(o")' n. '+ (P')'n, "+(r')'n. .' = -'(4K.' —~.'),
-W2

(3)

(5)

Ks ms
——Kt —~t2 2 2

Ds tt's = D t Wt ~

2 2 2 2

By repeating the same procedure among 16-plets,
sometimes in a hybrid way, we obta. in general
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intermultiplet mass relations,

K,' —v, '=const (s is arbitrary),

ments: If the "ideal" nonet mass constraints" for
the 16-piet B~ » g,"=m, ' and g,' —2K, +g, '=0,
are satisfied or imPosed, we can easily see' from
our sum rules that

D,' —m, '=const (s is arbitrary}. (8)

These are the SU(6)- [now perhaps SU(8)-] like
mass relations which should be valid among 16-
piet mass spectra. We note that K' —m =K* —p'
=K**'-A,' are well satisfied. ' No fruther con-
straints are obtained from [V„,A&]=0 for the
case C,C, =-1.

B. C,C„=1

X'e=—P' —v 2P', =0,

A,„—= (g, IA, -I m„'(k))=0 (k- ), C,C„=1,

c,„-=(q„IA,-I v„'(k)) =0 (k- ), c,c„=l,

(12)

(13)

(14)

Define A.,„—= (g,(k)IA„-I &„'), B» =(g,'(k)
I
A —

I &») ~

—&2m,'and X'8 ——p' —v 2p', and X~&—= y' —&2y,'. We
then obtain" the following constraints upon the
matrix elements of axial charge A, & involving the
states g„g,', and g„:

(10)

and another mass constraint" which should be
added to Eqs. (3)-(6),
n'X'~ X~ (ri,

' —m, ') (g,"—q„')

+p'X~ (q, "—v, ')(q„' n,')-
+ y'X'~8(q„' —n, ') (7l,

' —g, ")= 0 . (11)

We call attention to the geneva/ nature of our
constraints, Eqs. (9) and (10). The right-hand
sides of these equations do not depend on u and
both s and u are arbitrary, provided C,C„=+1.
No further independent constraints are obtained.

While Eqs. (3), (4), (5), (6), and (11) represent
the constraints upon the masses and g, -g„-g,'
mixing parameters of the 16-piet B, and Eqs. (7)
and (8) are the intermultiplet mass constraints,
Eqs. (9) and (10) provide the constraints, involving
the masses and mixing angles of the 16-piet B
imposed upon the axial-vector matrix elements,
A,„, B,„, and C,„ involving the states q„q,', and

Other matrix elements, ( B, I A, I B„(k})with
k- ~, are related to A,„, B,„, and C,„by SU(4)
rotation according to our general result (a).

III. "IDEAL" 16-PLET MESONS-

SELECTION RULES AND MASSES

A. "Ideal" structure and selection rules

Our set of constraints exhibits the following
remarkable interplay between the masses, SU(4)
mixing angles, and the axial-vector matrix ele-

sine=v —,', sing =-, , and / =0. (15)

(Iy C,C„=Z

According to our result (a) (in the limit k- ~),

(n-I Awol K') = c,„—2 r, ( , n,„Ap,+B,„+y,c,„),
(16)

We call the mixing angles which satisfy Eq. (15)
"ideal" mixing angles, 8„g„nad g;.

Correspondence to the quark picture is as fol-
lows. 3 From the configuration $8
=v 6 (uu+dd —2ss), Q„=v' —,

' (uu+dd+ss —3cc),
and Po = 2(uu+ dd+ ss+ cc), the first rotation by
the angle P, brings P» to the pure cc state, while
the subsequent rotation by 9, brings Q, and Qo to
the pure ss and (1/&2)(uu+dd) states, respective-
ly. This configuration is called "ideal" and in
this configuration the mass relations w, '= g,

"and

g, —2K,'+m, '=0 are satisfied, and furthermore,
the particular axial-vector matrix elements, A,„
and C,„, vanish.

With PCAC, A,„=O implies the vanishing of

g, - m„'+ p couplings. ' For s =1, in the ideal
nonet limit p'= uP and Q' —2K*'+ p' = 0, A,„=0
implies that Q- pm(u =1 ) and @-Bw(u =1' )
couplings, etc. , are zero. The smallness of
these couplings is impressively indicated by ex-
periment. " For s=2" and u=0 ', the approxi-
mate experimental' realization of ideal con-
straints, A, '=f' and f"—2K**'+A,'=0, implies
the vanishing of the f '- vv coupling consistent
with experiment. "

The vanishing of the matrix element C,„ leads
to the vanishing of the g„- n„'+w couplings. If
we assign g(3105) to the q, member of the ground
state 1 meson, then g(3105) pw(s =u=1 ) and

$(3105)- Bm(s = 1,u = 1' ) couplings, etc. , vanish
in the "ideal" limit. By SU(4) rotation we dem-
onstrate that the g„-uncharmed B„+pseudo-
scalar (m, K, q) coupling also vanishes in our ideal
limit as follows.
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& n..I
&

& I ri.&
= —(r.&Kl I &xo I n.&+ ~.& n..I &,o I K.'& ),

2

(17)

& n..l &„In.'& = (r.&K.'I &~ol n.'&+0.& n-I &rolK.'&)
2

(18)

&n- I&& I n..&
= —(r.&K.'I &roI n,.&+r.& n..I &,oI&.'& ) .

2

All these matrix elements vanish in our "ideal
limit, "because then C,„=O and y, =0. For the
g(3105) this implies that its decays into K)K
(Ks* is the I= —,

' counterpart of the B meson), Qrj,
(oq, P~q, and (usq (Q~ and u)~ are the q and g'
members of 1" ), etc. , are forbidden in our
"ideal" limj. t.

(ii) C,C,=-J

Analogous to Eqs. (16)-(19), we obtain (k- ~)

{n..I&x+IK&(k)&=~2~.&K,'I&.+IK, (k)& (2.o)

Thus in the "ideal" limit for the 16-piet B„,(i.e.,
y, = 0), {g„l AE+ I K, & always vanishes for any t.
In the case of q„=g(3105), this implies that the
g(3105) decays into KK, KK"*(1420), KK„(K„is
the 1= —,

' member of 1'' meson), etc , are .all for-
bidden.

Therefore, we have demonstrated that the cou-
plings, g„-any uncharmed boson+ pseudoscalar
(v, K, g), are forbidden" in our theoretical frame-
work, as long as the 16-piet B„,belongs to an
"ideal" nonet. Vfe note that this selection rule is
a theoretical consequence and is not a consequence
of particular postulate' or a rule. '

Since the ground state 1 seems to satisfy the
ideal nonet mass constraints very well [after
making an allowance for the SU(2) breaking in

masses], its q, member may exhibit a surprisingly
narrow width in spite of its large mass, according
to the selection rules derived above. Therefore,
if SU(4) is correct we may expect the existence of

such high-mass narrow resonances as g(3105) and

g(3695), if some low-lying 16-piet mesons satisfy
the "ideal" mass constraints well.

B. Mass formulas for "ideal" 16-plets

With the "ideal" mixing angles [Eq. (15)] and the
"ideal" mass constraints, g,"=m, ' and g,

' —2K,'
+w, ' = 0, Eq. (5) leads to an ideal 16-piet mass
formula,

q„'=2D,' —m,
' (B, is ideal).

This serves to determine the mass of charmed
meson D, once m, and g„are given. Equation (6)

2 — 2= 2 2P. -Pi =p3 —p2 . (24)

We may then speculate that the I=1 members
of vector-meson multiplets (p„p„.. . ) satisfy
the equal mass spacing, "p„'= p, '+a'(n —1),n

=1, 2, . . . , where a' is a constant and =1.97 GeV'.
Recently a rather broad resonance $(4150) has
also been reported in the e'e reactions. %"e note
q'(4150) —g'(3695) = g'(3695) —g'(3105) is also
satisfied reasonably well. It may then be natural
to identify P(4150) as the g, member of the mul-
tiplet involving p, (3907). Then the assignments
may be as follows:

g, (3105) P, (3407?) $,(3684) g, (3941?) g, (4183) ~ ~ ~

j j j
p, (770) p2{1600) ps{2127) p4{2547) ps{3907) ~ .
While the (p„g,) and (p„g,) families should have
the "ideal" structure, other families will deviate
from the "ideal" structure rather significantly.
The mass values of g, and g, are obtained assum-
ing "ideal" structure from Eqs. (21) and (22) and

then predicts the mass of I', by I','=D, '
+(K,' —w, '). Note that K,' —m, '=K' —w' [Eq. (7)].
Suppose that another 16-piet I3, is also "idea.l."
Then g„'=2D,' —n, ' and we obtain a simple "inter-
ideal multiplet" mass relation using Eq. (8),

q„' —q„'=w, ' —v, ' (B, and B, are "ideal" ).
(22)

Since 2"mesons satisfy the "ideal" mass con-
straints reasonably well, "we can determine the
mass of the g, member of the 2" 16-piet by using
Eqs. (21) and (22), i.e., g,'(2'') —P(3105) =A,'
—p'. We predict q, (2")=3.28 GeV.

Suppose now that $(3695) belongs to the g, mem-
ber of an excited state of the ground state 1
16-piet. Then this multiplet should satisfy a, fa, irly
good "ideal" configuration. However, the assign-
ment of the observed p'(1600) to the I= 1 member
of this 16-piet leads to a noticeable contradiction
with Eqs. (21) and (22), namely

g'(3695) —g'(3105)
p"(1600) —p'(770)

Therefore, this assignment of p' implies that the
multiplet deviates significantly from the "ideal"
configuration and P(3695) cannot be stable. Then
it seems more realistic to assume the existence
of the third p meson corresponding to the narrow
resonance $(3695). Our "inter-ideal multiplet"
mass relation, Eqs. (21) and (22), places the mass
of the above-mentioned third p at around 2.127
GeV. It is amusing to notice that p, =-p, (770) and

p, =- p'(1600) and p, —= p(2127) satisfy an equal mass-
squared spacing
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thus they only serve to give some feeling about
the mass values. g, and g4 will have broad
widths. "

gg 2' n.
' —n.

" (25)

(26)

and

(27)

Substituting the values of 8, Q, and g corrected
by Eqs. (25)—(27) into Eq. (5), we then obtain a.

mass formula for the aPPxoxinzately "ideal" 16-
piet B„

(D,' —K,')(q, ' —", )
les 4 (K2 ~2)+L(~r2 v2)s (28)

which serves to determine D„when v„g„q,', and

g„are given. The term ~(q,
"—v, ) in Eq. (28) is,

of course, very small.

B. Mixing angles and masses when both f and 0 are small

A well-known exception to the approximately
"ideal" structures of observed bosons is the ground
state 0 ' meson. One of the "ideal" constraints,
g,"=m, ', is badly violated. The mass structure of
0 ' meson suggests that both P and 8 [which cor-
responds to the SU(3) q-q' mixing angle j are small.

In this section we study the mixing angles and

mass formulas when both g, and 8, are small. We
obtain in a self-consistent manner

s 3(l2 2) Pi (29)

IV. REALISTIC 16-PLET 1VIESONS-FORMULAS FOR

THE MIXING ANGLES AND MASSES

A. Approximately "ideal" case

We now solve the constraints equation, Eqs. (3),
(4), and (11) in the case when the 16-piet B„,
approximately satisfies the "ideal" nonet mass
constraints. We thus seek to compute the first
order correction to the "ideal" structure. The
first ordey -deviations from the "ideal" mixing
angles given by Eq. (15) are

-v 2(K,' —v, )
38, cos(g, —g, )(q„' —q, ')

tan(y, —y, )(r),
"—g, ')

(n„' n.—')
(31)

V. NUMERICAL RESULT—MASSES AND MIXING ANGLES

OF THE GROUND STATE 1 AND 0 ' 16-PLETS

In all our calculations we have neglected SU(2)
violation. Since the result involves leakage fac-
tors, g,"—n,

' and 6,'=g, ' —2K, '+m, ', for the
approximately "ideal" case, our numerical result
is sensitive even to the SU(2) breaking. Another
source of difficulty in obtaining accurate results is
that the center mass values of the input broad
resonances ( p, K*, etc. ) are not well known.
When comparing our result with experiment some
allowance should be made to take into account the
theoretical and experimental uncertainties men-
tioned above. In the following computation, we
have adopted (rather arbitrarily)" the following
mass values of 1 mesons (see also Sec. VIA);
$ = 1.015, K* = 0.898, p= 0.772, (u =0.780, and

P, =3.105 GeV.
From Eqs. (25)-(27) we then obtain 68= 1.9;

5/=0. 97, and )=1.2x10 ' rad. The deviations
from "ideal" angles are indeed very small and we
obtain (ideal values are 8=35', /=30', and (=0)

8=37.2', Q =31.0', and /=0. 069'.

From Eq. (28) we obtain the mass of a, charmed1,D*, intermsof themassesof p, K*,
and P(3105). From Eq. (6), the mass of another
charmed 1, E*, is then determined,

D* = 2.245 GeV and F*= 2.29 GeV . (34)

By now using the intermultiplet mass relation,
Eq. (7),

D+2 P2 D2 ~2

we can predict the mass of a charmed ground
state 0 'meson D from Eq. (35), and Eq. (6) then
determines the mass of its I=0 counterpart E.
%'e obtain"

Again from Eq. (5) we obtain a. mass formula for
the 16-piet B„when both 8, and g, are reasonably
small,

(n..' —n.")[n,' —4(D.'+~9K.' —';v, ')1

1(4K,' —3q, ' —m, ')(q, "—q,')(q„' —v, ')'
6 (q,

' —., )'

(32)

(y y) (g~ 7 )(4 ) (30)
v 2 (n, '-n. ")(n.'-~.') '

D=2.11 GeV, E=2.16 QeV. (36)

Finally from the value of D the mass of q of
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the 0 ' 16-piet can be determined by using Eq.
(32).

At present we have two candidates for the ri'(0 ').
The usual candidate is the X(958) but its J"c cannot
at present exclude" the possibility of 2 . E(1420)
can also be a 0 ' meson. Actually E(1420}sat-
isfies the Schwinger's mass formula" better than
X(958). We thus consider the two alternatives. "

We take m=0. 137, K=0.496, g=0.549, and
g'=X=0.958 or g'=E(1420) =1.416 GeV. 8, P,
and g are determined from Eqs. (29)—(31}. The
mass of 7i,(0 ') is determined from the mass for-
mula Eq. (32) using the value of D(0 ') obtained
in Eq. (36). Equation (32) gives two values of q,
(since it is quadratic in q, ) and we select the
physically acceptable solution. The result is
shown in Table I. In Table I the + signs should be
taken in the same order and the values of D*, I'+,
D, and E are fixed, once g(3105) is assigned to the

q, member of 1 16-piet (ground state) as dis-
cussed above. We note that the alternative assign-
ment of q'=X(95&) or q' =—E(1420) produces a large
difference in the predicted mass of 7),(0 ') which
will be of experimental and theoretical interest.
[See also the concluding remark VIB.]

It is interesting to notice that the 0 ' 16-piet
is rather close to "ideal" with respect to the
angles P (i.e., ri, (0 ') is almost a cc state),
whereas it deviates very significantly from "ideal"
with respect to the angle 0 (note that 8; =35').

VI. CONCLUDING REMARKS

A. Width of $(3105)

In Sec. III, we have demonstrated the existence
of selection rules" for the couplings, g„-any
uncharmed meson+pseudoscalar (w, K, ri), in the
"ideal" limit of the 16-piet B,. The narrow width
of $(3105) may indeed be the consequence of the
well-known almost "ideal" structure of the ground
state 1 mesons.

As discussed in Secs. IV and V, we may actually
evaluate the deviation from the "ideal" structure
in terms of the "leakage" factors, g,"-m, ' and

In Ref. 3 we have made a crude phenomeno-
logical estimate of the hadronic decays of $(3105)
which take place through the small leakage from
the "ideal" structure. For example, we have made
an estimate on the partial decays $(3105)- Bw(a&ww), pw(www), KK, etc. However, the nu-
merical values of our leakage factors are sensi-
tive even to the SU(2) violation neglected. More-
over, the center mass values of input broad res-
onances such as p, K*, etc. , are not well known.
Therefore, we should not take the numerical re-
sult listed in Ref. 3 too seriously. The numerical
values of 1 meson masses used in Sec. V pro-

TABLE I. Predicted masses, D~ and E* of 1 and
D, E, and g of 0, and the SU(4) mixing angles
($, 0, $) of the 0 ' and 1 16-plets. The input is the
mass of $(3105). The mass of g~ and the 0 + SU(4)
mixing angles depend on the assignment g' —=X(958) or
g' —= E(1420). The + signs should be taken in the same
order.

0 +

D =2.11 GeV E = 2.16 GeV

D* = 2.245 GeV g' =X
= 0.957 GeV

E*=2.29 GeV

P(1 ) =31.0'

g(1 ) =37 2

g, =2.72 GeV

Q =+21.90'

0 = ~10.4'

$(1 ) =0.069' g =+3.4'

g' =—E(1420)
=1.416 GeV

g, = 3.04 GeV

Q =+36.1'

0 =~6.2

g =+0.20'

duce, for example, the smaller values for all
the partial widths of g(3105) than those listed in
Ref. 3. To achieve more accurate results, we
probably need to answer the important question,
i.e., what is the dynamical origin of the violation
of the "ideal" structure T This may especially be
the case for the ratio I'(P, - pw)/NP- pw) dis-
cussed in Ref. 3, since both I'(P, - pw) and
I'(P- pw) vanish in our "ideal" limit.

B. q'(0 ')=L(958) or E(1420)?

At present, the choice, q'(0 ') —=X(958) or
E(1420), remains to be settled. '4 Schwinger's
nonet mass relation" favors E(1420) over X(958).
According to our result in Sec. V, the choice may
be settled by studying whether the ri, (0 ') has a
mass close to 2.72 GeV or to 3.04 GeV. Another
implication of the choice is on the g(3105)- ri, (0 ') +y decay. For the choice q' =-E(1420), the
decay g(3105)- ri, (0 ')+ y will be much less impor-
tant (by the suppression due to phase space) com-
pared with the case q'=X(958) and will be hard to
detect. Since all the mixing angles are fixed for
the 0 ' 16-piet in Sec. V, we can treat the 1
-0 '+y decays in detail using asymptotic SU(4).
We hopt to report our result in the forthcoming
paper. " ¹tesadded in Proof

A. By taking a physically plausible limit in-
volving ri„'- ~ (which is consistent with the ob-
served heavy mass of the 7i„) in our sum rules,
we have recently found ' that Schwinger's
nonet mass formula may always be valid for any
16-piet, if the g„ is heavy, i.e., if it is close to
a cc state. The ideal nonet mass formula, is valid
only when the g„ is very close to a cc.

B. Therefore, the choice q'=E(1420) is now

more favored than g' =—X(958). For q'=-E(1420) we
have estimated" the rate of $(3105)-g, (0 ') +y
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to be around 10 keV, which seems to be consistent
with present experiment.

C. Mass formulas and mixing angles

Finally, our way of deriving the masses of 16-
piet mesons is different from the approach taken
by Okubo, Mathur, and Borchardt, ' although the
actual values obtained are rather close. Okubo
et al, ' assume that the mass splittings arise from
an interaction H;„, = T'+ nT" where T' and T"
belong to the same 15-piet of SU(4) and they as-
sume the same value of n for both the 1 and 0 '
16-plets.

In our derivation, the tota/ Hamiltonian H is ex-
pressed in terms of the physical (i.e., "in" or
"out") fields,

v „~(k)a'„,(k)a„,(k)d'k

where ~,(k) = (k'+m „,')'", and we seek for the
constraints' "'"on the masses m „,from the
exotic commutation relations, [P„,p&] =[&'„,A8]
=0, which represent the algebraic expressions of
our simple mechanism of SU(4) and chiral SU(4)

S SU(4) breaking. In our asymptotic limit k- ~,
the constraints obtained are e&act and the mass
formulas should always take the mass-squared
form including baryons.

It is amusing to notice that our value of the mass
of q, (ground state 0 '), q, (0 ")= 3.04 GeV for
the choice q'(0 ') —=E(1420) =1.416 GeV, is close
to the value 3.05 GeV of the paracharmonium I
of Glashow et al." Estimates of the partial rates
of the decays of g, (0 ") into K~K and K**(1420)K
using our mixing angles derived in Sec. V, from
the SU(4) related decays K*-K7t and K**-Km,
yield F(g, (0 ') -K*K)=4.4 MeV or 4.6 keV and

F(7),(0 ')-K**K)—2.9 MeV or 104 MeV depending
on the choice of g'(0 ') —= X(958) or q'(0 ') =E(1420).
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