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Quadratic relations a~ong observables in p-p scattering
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The 25 observables which describe p-p scattering are related by 16 independent quairatic relations. A method
is developed for determining these quathatic relations. Provided a certain condition is satisfied, the particular
set so determined and the results of 15 planned experiments at Argonne National Laboratory yield a unique
solution for the 25 observables and, up to a common phase factor, for the five amplitudes.

I. INTRODUCTION

Halzen and Thomas' have given a complete set
of observables for p-p scattering. Since there are
five amplitudes, there are 25 observables. The
amplitudes are complex numbers, but their over-
all phase is not observable, and therefore only
2x 5 —1=9 of the 25 observables can be indepen-
dent of each other. Thus there must be 25-9 =16
independent quadratic relations among the 25 ob-
servables. In this paper we work out one such set
of 16 relations. The method applies to any similar
problem.

II. THE METHOD

A*A B*A C*A D*A

A*B B*B C*B D~B

A*C B*C C*C D*C

A*D B*D C*D D~D

where, for example

A*A = —,'(&11&~+&v, 1&r+(lv, & +(v, o,) ),

D~D = —,'((ll)" +(v, 1) —(lv, & +(v, v, ) ) ~

Then, one can form identities such as

(A*A)(B~B)=(A~B)(B*A).

(5)

(6)

The work begins by considering some pure final
state

Aao. + BaP + CPe+DPP .
The direct product states in (1) are composed of
the spin states of the two protons, where a and P
are the nr = ~-,' states. One then works out the final-
state expectations values for the complete set of
16 operators formed by the direct product of the
spin and identity operators for the two proton sub-
spaces

(v v~& =I(00; ap) +1(0j;ap) +I(i 0; o'p)

+I(fj;ap), (7)

where z and P can be 0, 1, 2, 3, while i and j can
be 1, 2, or 3. The I(a'P', aP) are the center-of-
mass observables defined by

There are 120 of these, of which all but 24 are re-
dundant; of the 24 identities, six are of real and
18 of complex quantities. One derives a quadratic
relation by substituting the required parts of Eq.
(5) into Eq. (6) and applying the equation of Halzen
and Thomas:

(11)r

(v, 1&

(v„ 1&~

(v. 1&'

(v, v, ) (v, v„)~

(v„v, & &v, v, )

&v, v, & (v, v, )

(v.v.&'

&v„v,&~

(v, v, &

I(a'P'; oP) =-,' Tr(Mv i vs Mtv, vs), (6)

where M is the scattering matrix and ao is the
unit matrix. Then, with a superscript I denoting
initial- state expectation values,

4 4

where, for example,

(11&~=A*A+ B~B+C*C + D~D,

(v, 1& =A*C+ B*D+C*A+D*B,

(vg v, &
=A*A —B*B—C"C+ D~D,

and solves these 16 linear equations for the 16
quantities

(3)

(v vq&" = Q Q (v .v, &'I(a'P', aP).
a'-0 8'- o

The initial beam consists of statistically indepen-
dent particles, so that

&vp~&' =&v(&'&v~&';

for Eq. (7) we have chosen a pure state, thus
(v, &' =1 and (v&&' =1 for some i and j. There are
nine possibilities in all, so that finally we derive
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(6+ 2 x 18) x 9 =378 quadratic relations by this
method. Not all of these can be independent. We

apply the Schmidt-Hilbert orthogonalization
scheme, as adapted for testing independence of

nonlinear equations, ' to the 378 quadratic relations
and verify that there are exactly 16 independent
ones. Of course there are many such s~ts and we
have tried to find a "nice" set of 16.

III. RESULT

The result in terms of I's defined in Table I is given by the following independent quadratic relations.

(r, +I,)'-(I, +I„)'-(I,—I„p-(I„+I„)'=0,

(I, —r„)(r„+I„) (I, +r-„)(r,+I„) (r, -r„-)(r„+r„)=0,
(I +I, )(I +I, )+(I —I )(I, —I, )+(I —I )(I +I )+(I, +I )(I, —I, )=0,

(I, +r, )(r„+r„)+(r, r, )(r„—r„)—(-I, —r„)(r„+r„)-(r, r„)(r, —I„)=o—,

(I, + I )(I +I„)—(I +I„)(I +I„)+(I,—I, )(I, —I )+(I„—I„)(l, +I„)=0,

(I, +I,)(r, —I,.) -(I,+I„)(I,+I„)+(I,-r„)(1 —I,.)+(I,. 1„)(1„-I„)=o-,

(I, + I,)(r„+I..) -(I, —I,)(r „+I,.)+(I,+ r„)(r,.+I„) (I, - I „-)(I, I„)=o,—

(I2 I9)(I3 I15) (I2 I11)(I6 I 15) (I8+ I23)(r 13+ I20) —(I10+I17)(r14
—I16) = 0

(I —r,)(I, —I, )+(I +I )(I„+I,)+ (I, + I, )(I, —I„)+(I, +I )(I +I„)= 0,

(I, —I,)(I, —I ) —(I, +I )(I, —I, ) —(I —I„)(I, —I„)+(I,+I, )(I +I„)=0,

(I, —I )(I +I, )- (I —I„)(I„—I ) —(I +I, )(I, +I, ) —(I, +I, )(I, +I, ) =0,

(I2+I5)(I8- I21) -(I2-I 11)(I9+I23)-(I4- I22)(I.2+ I16)- (I6-I15)(I13+I20)=0,

(r, r, )(r, +I„)-(r, +r„)(r,-I„)+(I,+r-„)(r„I„)+(I,+r-„)(r„r„)=o,-
(I.+ I„)'—(I + I,.)' —(I, —I,)' + (I, —I.,)' + (I,.+ I,.)' —(I.,+ I„)'= 0,

(Ii —I24) +(I2+I 7) —(I4+I 3) +(I8 —I25) —(I15+I 8) +2(ri —I24)(I9 —Iio) =0

(r, +I,)'- (I, —I,)'- (I, —I»)'- (I, —r22)'+(16 —I»)'+(I»+ r„)'- (I„+I„)'+(r„I„)'=o. -

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

IV. APPLICATION TABLE I. Notation for center-of-mass observables of
Halzen and Thomas.

The polarized proton beam at Argonne National
Laboratory will be used to examine p-p elastic
scattering with these constraints:

1. The incident beam will not be polarized in its
direction of motion.

2. Any direction of polarization is possible for
the target.

3. The polarization of the scattered beam (the
high-energy beam) will not be observed.

4. The polarization of the recoil proton will be
measured, but not in the direction of its motion.

There will then be 15 possible experiments.
These correspond to the laboratory observables of
Halzen and Thomas, which are listed in Table II
together with their relationships to the center-of-
mass observables. 8~ is the recoil angle.

There are nine center-of-mass observables
which are determined directly from the measured

I) —-I (0, 0; 0, 0)

I2 =I(0,y; 0, 0)

I3 =E (0, z; 0, z)

I4 =I (0, z; 0, x)

Is =I(0,y; O, y)

I,=I(o, x;o, x)

Iv =I (z, z; 0, 0)

Is =I(x, z;0, 0)

I& =I(y, y; 0, 0)

I« =I(x, x;0, 0)

Egg =I(y, 0; 0, y)

I» =E(x, o;0, x)

I&3 —-I (x, 0;0, z)

Ei4 =E(0, z; z, 0)

I„=-I(y,x; 0, x)

I&6=I(x,y; 0, x)

Iiv —-I (x, x; 0, y)

Ii8 ——E(y, x; 0, z)

I(g =I(x,y; 0, z)

I20 =-I(z, y; 0, x)

I„=I(z,x; o, y)

I&2 —-I(y, z; 0, x)

I
&3

=I (x, z; 0, y)

E,4 =I(x,x; x, x)

I25 =I(x,x; x, z)
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quantities:

I„ I2, I~, Ia, I9, I,o, I„, I„, and I2, . (2V)

The six remaining measured laboratory observ-
ables are linearly related to 10 center-of-mass ob-
servables:

I I I I12 I13 I15 I 16 I 18 I 19, and I».
(28}

The six linear equations, alone, are not sufficient
for the unique determination of these 10 obser-
ables.

We now show that if a certain condition is sat-
isfied, the use of the quadratic relations allows
the unique determination of all 25 center-of-mass
observables. The five amplitudes can then be cal-
culated up to a common phase factor.

The eight quadratic relations (14) through (21}
may be viewed as eight equations linear in the 12
unknowns:

I3j I4j I6j I12 j 13j I14j I15j I16j I18j

I„, I„, and I„. (29)

The coefficients of these unknowns are linear
combinations of the directly determined center-of-
mass observables listed in Eq. (2V) and of one ad-
ditional unknown, I».

Using Eqs. (28) and (29) it is seen that the eight
quadratic relations (14) through (21) and the six
linear equations in Table II which involve the mea-
sured I., (I = 1, . . . , 6) form 14 equations linear in

the 12 unknowns of Eq. (29). The coefficients,
apart from those depending on I», are all known

from the experiments.
A more convenient set of unknowns is

I(0, 0;0, 0) =I(

I(n, 0;0, 0) =I(0,n;0, 0) =I(0, 0; O, n) =I(n, n; O, n) =-I,
I(O, n; O, n) =I5

I(s, L;0, 0) =-I8

I(n, n; 0, 0) =-Ig

I(s, s; 0, 0) =I&0

I(n, 0; O, n) =I)(

I(s, s; O, n) =-I&7

I(s, l; O, n) =I23

L ( =I(0,s; 0, s) =I4 sing& —I& cosgR

L ) =I(0, l; Oj s) =I3 sing@+ I4 cosgz

L3 =I (n, s; 0, s) =-I&5 cos g& —I&& sing&

L4 ——I(n, l; 0, s) =I&5 sing&+ I22 cose„

L5 —-I(s, 0;O, s) =-Ifp cosgg I)3 sing&

L g
=I (s,n; 0, s) =Ifg cos gJ +I

&&
sing&

these equations must be linearly dependent. Thus,
choosing a particular set, the determinant of the
13 x13 matrix of coefficients and constant terms
must vanish. If one chooses the set as all equa-
tions except Eq. (AV), a cubic equation for I» re-
sults:

a3I21 + a2I21 + aiI21 + Qp 03 2 (31)

Choosing another set as all equations except Eq.
(A6) a second cubic equation for I„results:

TABLE II. The laboratory observables to be measured
(gz is the recoil angle).

+1 3 15 j

= I3 I i5

+3 I6 15 j

4
=I i3 I20 j

+5 I13 20 j

X6 =Ii4 —Ii6

X7 I14 I16 j

8 =I4 —Ii8 j

X9 I4 I18 j

+10 4 22 j

Xii, I12 I 16

+12 I13 19 '

(30)

a3'I»'+ a2 I21 +a I21+ (32)

If one assumes that Eqs. (31) and (32) have a sin-
gle solution in common, then with

A, & =a;a& —a~a,', i,j =0, 1, 2, 3

one finds

(33}

A.A23+As&3i
A23(A12 A30}—A31

(34)

A2/a3 +As/Bi —0 ~

implying more than one solution for I», or

The condition for a unique solution for I» is thus

(35)

If this condition is not satisfied then either

The 14 equations that result are given in the Ap-
pendix as Eqs. (Al)-(A14}.

I21 is determined by the condition that any 13 of

A,OA»+A, OA» + 0,
implying that the experimental data are inconsis-
tent. All numerical examples have led to a unique
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determination of I„.
The coefficients a, and a,' can be found by a suit-

able expansion of the determinants in terms of
those elements involving I». That is, after some
row and column manipulation, the matrix, M,
whose vanishing determinant yields Eq. (31) is
given in Table III. With the first three diagonal
elements denoted by m», m», m», detM can be
written as

determinants analogous to those of Eq. (36):

a3 =A 3+ (8,'+ 8,' - 8,') I3

—(C,'+ C3' —C,')13 —D'I3

a,' =g,'+ jB~+ 8'+ 2C'I —D'I

a' = C,'+ C3'+ C3+ &'I8,

a,' =D'.

(36)

det M =A + p, m „+g m„+g, m33

+ C, m»m33+ C2PP733m „+C3~

+Dm»m»m (36)

where

A, =determinant of M with m „=~2/ m33

B, = determinant of 12 x 12 matrix found by
deleting the row and column to which a«
belongs, and setting m&& =m» =0
(i,j, k =cyclic forms of 1, 2, 3},

C, =determinant of 11@ 11 matrix found by

deleting the rows and columns to which

m» and m» belong, and setting m, , =0,

D =determinant of 10x10 matrix found by
deleting the rows and columns to which

m», m», and m„belong.

Substituting m11 I8 Ip m» =I, +I», and

m33 = I, +I» into Eq. (3-6) gives

a3 = -A3 —(8, + 8, —B,)I,
+(C, + C3 —C3)I3 +DI3,

a1 Q1 B2 83 2CRI 8
—DI 8

C1 + C~ + C3 DI8

a, =D.

The a' coefficients of Eq. (32) are found by a
similar procedure. The matrix M' is given in

Table IV. The a,' can be expressed in terms of

[-(I4- I33)+ f(I3 —I 3)]
1

1

II, =4 [(I,+I„}+i(I,+I„)],
4V,

A =4 — [(I,+I„}+f(l„-l„)],4y 8 13

w = [- (I, -I„)+3(I„+I„)],1

4~ 8 13

where

I8 I,3 —I,8 I,7

2(l, —I,)

(39)

(40}

V. CONCLUSION

Sixteen independent quadratic relations among
the observables in p-p elastic scattering have been
derived. If the condition of Eq. (35) is met, then

the 15 experiments of Table II together with the
quadratic relations yield a unique solution for the
25 observables and for the five complex ampli-
tudes, up to a common phase factor.

Having found the value of I», we can solve any
12 of Eqs. (Al) through (A14) as linear equations
for the 12 unknowns of Eq (29).. This leaves only

I„ I,4, and I» undetermined. Quadratic relations
(12) and (13}are linear in these three unknowns,
while (11}—(24)+ (25}provides a third linear equa-
tion. Thus I„ I„, and I» are uniquely deter-
mined.

All 25 center-of-mass observables being deter-
mined, the five quadratic relations (22) through
(26}will provide a consistency check on the ex-
perimental data.

The t-channel amplitudes of Halzen and Thomas
No N1 Na, A, and n. Assuming Ã, g 0 and

choosing N, real and positive allows one to ex-
press the amplitudes in terms of the center-of-
mass observables as

APPENDIX

The 14 equations linear in the unknowns x„.. . , x» are the following.

(I, +I,)x, —(I, +I„)x,+ (I, —l„)x,+(I„—l„)x,=0,

(I —I )x -(I -I )x, +(I —l„)x -(I +l„)x +(I +I„)x, +(I, —I )x„+(I, —l„)x, =0,

(I3 —I»)x~ —(I3 —l„)x —(I3 —l»)x3 (I3 I33)x5 (I $3 I /7)x3 0,

(A 1)

(A2)

(A3}
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-(r„+r„)», (r—„+r„)»,+(r, r,—)», (r—, r„—)»„-(r,+r„)»„+(r„+r„)»„=o,
-(r„+r„)~+(r,—r,)», —(r, —r„)»„+(r,+r,)»„=o,

(r, -r„)», —(r, —r„)», -(r, -r„)», -(r, -r, )», +(r, +r,)», +(r„+r„)»,+(r, —r,)»„=o,

(r„-r„)»,+(r, -r, )», +(r, +r,)», +(r, +r„)»,+(r, +r„)»,-(r, +r„)»„+(r, r, )»-„=0,

(r, +r„)»,+(r, r, )»-, -(r„-r„)»,-(r, +r,)»„=o,
1
g cosgg g1 —

p cosgg g2 —cosgg ~~ + g Singg @8+ 2 singg gg —L = 0,1 1 1

g sing g + p sing + + —cosg„xe+ ~ cosg~ ~ —L2 =0,

88R xl+-,' cosg„~+-,' sing„x, —~ sing„~ —L3 0,
1 ~ 1 1 1
2 Sing@ &1 —g Slngg &2+ 2 Cosgg pe+ 2 Cosgg g —Cosg„g, —L =0,

—
~ sing~ x —~ sing„gs —~ cosg„ge+ —,

' cosg„g, —cosg„g„—L, =0,
1 1 1 1
2 sing„x, +-, sing„x, ——,cosg~ xe+-, cosg„x, —sing& &1z —Le =0.

(A4)

(A5)

(A6)

(A7)

(AS)

(A9)

(A10)

(A11)

(A 12)

(A13)

(A 14)
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