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We find an empirical representation, employing geometric scaling, for the profile function
at CERN ISR energies (23.5 GeV «Ws~ 53 GeV). A Fermi distribution dominates the profile
function shape but a small negative Gaussian term is required to fit do/d t in the region of
the secondary maximum. We find a sharp peak in the opacity at b =0. These results are
used to discuss a variety of geometric proposals for understanding the multiplicity distribu-
tion.

I. INTRODUCTION r=1-e "

cr =4m
~~~ bdb(1 —e nl"')

=4vR'(s)
J

xdr(I e"'"'), -
su~ is a suitable alternative to R(s). This idea,
geometrical scaling, evolved from attempts to
understand Koba-Nielsen-Olesen (KNO) scaling
in a geometric way. ' ' 3 It may indeed be a
very fundamental concept since it was derived"
some time ago from axiomatic fiel.d theory under
the assumption that cr~ - ln2s.

(2)

II. THE PROFILE FUNCTION

We parameterize the profile function I' by use of
a Fermi function and a Gaussian:

Geometric intuitions have been a constant source
of inspiration concerning the collisions of strongly
interacting particl. es since the introduction of the
optical model. into nuclear physics 26 years ago. '
The concept of interpenetrating absorptive drop-
lets with hadronic matter distributed in the same
way as the measured charge distribution of the
proton was an important development in such geo-
metric notions. Although this model fits" the pp
elastic differential cross section at CERN ISR
energies for small t, it fails to represent the
data in shape and energy dependence in the region
of the secondary peak' ', see also the dashed
line of Fig. 1. A different geometric idea, namely,
scaling in impact-parameter space, '' seems to
be suggested by the energy dependence of the sec-
ondary peak. In this concept the hadron-hadron
opacity is thought to be expanding in a shape-in-
dependent way. If Q (b, s) is the opacity then

Q(b, s) =Q (b/R(s)), (1)

where R(s) is the effective overlap radius of the
hadrons and 6 the impact parameter. Since for
purely real Q(b, s),

1 C b2/4D=&0
1 (~-a )~+2&1+e

and fit to the experimental differential cross sec-
tion via

da' 2
= v b dLI0(bMt)1 (b)

0
(4)

where t is the invariant momentum transfer and
A Bo C D &0 are the parameters. The dif-
ferential cross section can be fitted very well by
the Fermi term alone for small t but fails in the
region of the secondary maximum. The addition
of a small Gaussian correction enables one to fit
the l.arge-t region as well. By trial and error we
found that the parameter setA, Bo, C, and D
listed in row 1 of Table I yields a good fit to the
relative differential cross section" for 4s =53
GeV a.nd -5.2 (GeV/c)' & t ~ 0; see Fig. 1. The
parameter No is determined afterwards by the
experimental value"'" of o~ at vs =53 GeV. Geo-
metric scaling implies

A~R(s) ',

Ito ~R(s),

C ~ constant

D ~R(s)',

&, ~constant.

(5)

Consequently, the total cross section may be
used to determine dg/dt at v s =44.9, 30.7, and
23.5 GeV. As seen in Fig. 1, the prediction is in
reasonable over-all agreement with experiment. "
We now express I' as a function of the scaled vari-
able x =b/R(s). For R(s) we take the rms separa-
tion between the two extended protons:

R( )2 = JnQ (b s)b db
(6)J"Q(b, s)b db

At Vs =53 GeV, R(s) =4.88 (GeV/c) ' =0.963 fm.
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Thus we find from Eg. (3) and Table I 10

] +g2 ~ 87(& Oo 666) 10-'

In Fig. 2 we plot the opacity as a function of the
scaling variable &. In the inset of Fig. 2 we com-
pare our opacity with that of Ref. 4 for v s =53 GeV.
The only significant disagreement apparent on a
linear plot is in the region 0+ x & 0.4, showing
that the opacity should be more peaked near the
origin than often realized. "

The Fermi function dominates the differential
cross section for large b and therefore small

It has the characteristic feature that the slope
parameter B =(d/dt)ln(do/dt) increases grad-
ually as t-0, as the data require. This il.lustrat-
ed in Table II where the t variation in the slope
parameter is studied and related to the available
data. "'" Although we have kept the Gaussian
term for this comparison, setting it equal. to
zero makes no significant difference.

III. THE MULTIPLICITY DISTRIBUTION

There have been many proposals for relating
information on elastic scattering at impact param-
eter 6 to particle production. Perhaps the simp-
lest is the assumption that the multiplicity dis-
tribution for impact parameter b has zero
width. 6'O'' '' In this paper we use this ansatz
together with the impact-parameter profile func-
tion determined above to find n(b, s), the number
of particles produced at impact parameter 6 from
the known multiplicity data.

We fol.low the method of Ref. 20. Let

O(b, s) =1-e
= I'(2 -1")

be the overlap function. The cross section for
producing n charged particles is given by

o
N

@ac

b0

0
b0

100:

10-1

10

10'

10

10

104 =-

10

107 ==

10-' =:

10

10-10
0

l

)

)

)

Ec.m. (GeV)
1 )

63

&]1

l

44.9 "I'l".
LII X

IP

~

)

)

23.5

I I I I I | I I I I I I I I I I I I I I I I I 1 I I I

1 2 3 4 5
-t (GeV)

o„=4v
J1

b dbO(b, s)6(n —n(b, s)).
0

This implies that the average multiplicity is given
by

f, b dbO(b, s)n(b, s)

f "bdbO(b, s)

Since the high-energy behavior of R(s) is con-
sistent with ln s we can provide for the energy
dependence of the average multiplicity (n) by the
ansatz

n(b, s) = jCRf(b/R) =ERf(x),

where X is chosen to satisfy KR =(n) . The KNO

scaling function g becomes

0 =&n)
& inel

s 2b„O(b„, s)db„/df

J o b dbO(b, s)
(12)

FIG. 1. The proton-proton relative differential cross
section (da/dt)/(do/dt}«at ~&=53, 44.9, 30.7, and
23.5 QeV compared to our model indicated by a solid
curve. The dashed curve corresponds to the model of
Ref. 4.
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TABLE I. Determination of parameters.

Ts
(Gev)

(Tg
a

(mb)

A

(G V/c)
Bo

[(GeV/c) ']
D

[(GeV/c) ']

53.0
44.9
30.7
23.5

43.1~ 0.5
42.5+ 0.4
40.6~ 0.4
39.1 + 0.4

0.589
0.593
0.606
0.618

3.25
3.23
3.15
3.10

-0.110
-0.110
-0.110
-0.110

0.388
0.383
0.365
0.352

0.920
0.920
0.920
0.920

' Combined data of Ref. 16 and Ref. 17

The + (-) sign results from assuming that f is an

increasing (decreasing) function of b. The impact
parameter b„ is determined by solving

=f(b/Et(s)) ( 13)

for b. Equations (12) and (13) and geometric scal-
ing, O(b, s) =O(b/R(s)), imply' that g is a function
of the reduced multiplicity z -=n/(n) only, i.e. , KNO

scaling. For g(z) we adapt a simple, fairly accu-
rate representation of the PP multiplicity data
given some time ago'

g(z) = nze ("~4' (14)

Using Eqs. (12)-(14) one can integrate both sides
and obtain

( y ) s ff+)(g) x dx 0(x)
j'oo t

foxdxo(x)

behavior of the f~(x) derived by numerical integra-
tion but not the detailed shape. We doubt that the
detailed shape has any significance at the present
time since the C, values, especially the ones for
larger q, may show some modest increase at
higher energy. "

Our results for f,(x) are qualitatively very sim-
ilar but not identical to the graphical results pre-
sented in Ref. 20. Equation (17) is similar also
to the proposal of Ref. 12, namel. y

(19)

The discrepancy between Eqs. (17}and (19) is
quantitatively significant, since (19) predicts C,
values that are much too large for large q. For
exampl. e, C, is twice the experimental value,

&
(.g,),~ J, xdxO(x)

fo xdxO(x)
(16)

The function f, '(z) [f '(z)] is the function inverse
to f (x) in case f(x) is an increasing (decreasing)
function of x. We have determined f,(x) from Eqs.
(15) and (16}by numerical integration using our
results for I'. For convenience we have found

simple analytic formulas to represent the results
approximately:

Q(x)
0.8

0,5

f+(x) = 1.018x

f (x}= 2.78 e ' ~ .

(17)

(18)
0.4

In Table III, we compare the reduced moments

C, = (n')/(n)'

determined from Eqs. (12), (17}, and (18) with
those derived from experiment. " In column 5 of
Table III we have also listed the reduced moments
derived directly from Eq. (14). The degree of
discrepancy between columns 2 and 5 or 3 and 5

reflects the fact that the simple analytic represen-
tations give the main trends for the functional

0'
0 0.5 1.0 1.5

x= 6/R
2.0 2.5 3.0

FIG. 2. The opacity derived from our fit to the dif-
ferential cross section for pp scattering plotted as a
function of x = b/R. In the inset our opacity (solid curve)
is compared with that of Ref. 4 (dashed curve) for
v s =53 GeV.
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TABLE II. Variation of the slope parameter, B=4 ln(d/dt)/b, t .

vs
(Ge V)

t interval
f(Ge V/&)'7

B B
experiment theory
f(GeV/c)-27 f(GeV/c)-27

t interval
f(GeV/c)'7

B
experiment
[(C V/c)-27

B B(t=0)
theory theory

f(GeV/) '7 f(GeV/) '7

53.0
44.9
30.7
23.5

-0.308, -0.168
-0.239, -0.136
-0.240, -0.138
-0.238, -0.138

10.8+ 0.2
10.8+ 0.2
10.9+ 0.2
10.4+ 0.2

11.0
11.2
10~ 8
10.4

-0.06, -0.01
-0.05, -0.01
-0.090, -0.046
-0.094, -0.050

13.1+ 0.3
12.6+ 0.4
11.9+ 0.3
11.6+ 0.3 '

13.2
13.1
12.0
11.5

13.9
13.7
13.1
12.6

~Reference 19
Reference 17

This disagreement is due to the extended character
of our solution for 1(x).

An "up" solution such as Eq. (17) or (19) is dif-
ficult to understand from the geometric point of
view since one readil. y imagines that there will be
more hadrons produced in central collision than in

peripheral ones. Thus, "down" solutions are
very popular. One such example is n(b, s}~Q(b, s)
which is believed~ ' ' not to be realistic. This is
clear in the context of the zero width ansatz since
Q x) is very poorly approximated by the f (x) of
Eq. (18). A more realistic example is the propo-
sal"

n(b, s) ~I'(b, s). (20)

We have l.isted the results of Ref. 13 in column 6
of Table III. They are in reasonable agreement
with experiment. This work assumed the usual
Gaussian for the profile function. However, when
our more extended I' is applied to the ansatz of
Eq. (20) then the agreement with experiment
deteriorates. (See column 7 of Table III.) This
deterioration is to be expected since the functional
form of I'(x) given in Eq. (7) is very poorly approx-
imated by f (x) of Eq. (18).

Another simple proposal for the multipl. icity
distribution at impact parameter b is based on
eikonal-type ideas. Here the cross section for
having Ã open chains or towers jszo.xx,2a, ss

( ) td~ ~o(2Q)
N/

(21)

f. bdf g, a&-~(2Q}"(J.bdfO)' '

(fo b db(2Q))
(22)

where the 8, are Stirling numbers of the second
kind)' Using geometric scaling in Eq. (22) one
easily finds that the C, are s-independent. With
a step function for F one observes' that the first
few C, are in crude agreement with experiment.
However when one inserts our Q in Eq. (22} the
results are very poor; for example, C, is three
times the experimental value.

IV. SUMMARY

We started with a Fermi-function form for the
profile function with three parameters. It was
generally possible with this simple form to fit

It is easy to show that geometric scaling implies
that (N) is energy independent. As in the previous
approach one may accommodate the energy depen-
dence of (n) by requiring that n„ the number of
particles produced per chain, grows as R(s}.
For simplicity we follow Ref. 10 in assuming that
the number distribution of particles produced per
chain has a zero width. In terms of the reduced
moments C, we find

TABLE III. Comparison of reduced moments &~ with experiment.

Theory
(+ case)
Eq. (17)

Theory
(-case)
Eq. (18)

Experiment
Ref. 21 Eq. (14)

Theory
Ref. 13

Theory
Eq. (20)

1.22
1.74
2.83
5.16

10.4
23.2
56.5

1.30
1.99
3.42
6.39

12.7
26.2
56.4

1.24 + 0,006
1.81+ 0.02
2.97+ 0.06
5.36+ 0.15

10.43+ 0.39
21.6 + 1.1
47.0 +2.8

1.27
1.91
3.24
6.08

12.4
27.1
63.1

1.37
2.14
3.56
6.2

11.2
20.6
39

1.46
2.44
4.41
8.34

16.3
32.4
65.7
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the forward peak, the dip; and much of the sec-
ondary peak. The calculated differential cross
section, however, tended to drop for large t's
faster than the data. To shift the zero of the
amplitude to higher t values we added a short-
range Gaussian with two extra parameters which
corrected the large-t behavior and at the same
time had little effect on the forward peak. Having
determined the five parameters at Ms = 53 GeV
using the differential cross section and the total.
cross section data we inferred the values of the
corresponding parameters at other energies using
the concept of geometric scaling. Having deter-
mined the profile function we then studied the
multiplicity distribution in PP collisions after the
fashion of Ref. 20. Assuming Eq. (14) for the

form of the KNO scaling function g(z} we solved
for the "up" and "down" solutions for the average
multiplicity at a given impact parameter. These
solutions are summarized in Eqs. (1V) and (18}.
We tested some other proposals for the multiplic-
ity distribution that have been made in the past and
found that none of them give a satisfactory fit to
the reduced moments when used in conjunction
with our opacity.
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