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%e discuss numerical solutions for the classical boson fields in the fom-dimensional SU(2) model of Dashen,
Hasslacher, and Neveu. For their separation of the Dirac equation, a fermion in the classical Yang-Mills field
has one bound-state solution with zero binding energy; consequently the model will not bind fermions, and is
unstable. The Dirac equation for a fermion on an Abelian vortex line likewise has no bound-state solutions
except for zero binding energy.

I. INTRODUCTION

Some considerable effort has been invested in the
search for bound states of fermions in models with
spontaneously broken non-Abelian gauge symme-
tries. In particular, Dashen, Hasslacher, and
Neveu' have suggested a four-dimensional model
with SU(2) Yang-Mills fields, where the symmetry
is spontaneously broken by a scalar isospinor. In
this paper we show that for their separation of the
Dirac equation, a fermion in the classical Yang-
Mills field has only one bound state, with binding
energy zero. This means the fermions are not
trapped in this model, and the composite system,
bosons plus fermions, is unstable. Also we ex-
amine the closely analogous case of fermion states
on a magnetic vortex line and find a similar spec-
trum.

For the SU(2) isospinor model the meson piece
of the Lagrangian density is taken to be

Z = -4(G'„„)2+2(D„K) (D"K)+ 'p2(K K)—
——,'~(K'K)',

where

Varying the Lagrangian then yields coupled non-
linear equations for f and g,

2
~

2 3g" + —g' ——g ——~g' —e'g' ——f' ——f'g =0,r r' r 2r 4
(1)

f"+„f' +f-—„-fg-
2
—fg +i'f-&f'=0,

where primes indicate the operation d/dr. Re-
quiring that the total energy of the solution be fi-
nite and that the energy density be finite at the
origin furnishes the boundary conditions

f(0) =g(o) = o, f(")=~, g( ) = o

One easily shows that the asymptotic form of the
solution is

f(rl- —1 —0 —e '"')1

u« ')
g(r)- ——1 —OI exp — ~, as r- ~.er

By the rescaling

Dq = d
q
- pied „7',

and the v' are the Pauli matrices. Fermions will
be added later.

where

e pplyM

II. SOLUTIONS FOR YANG-MILLS FIELDS

The classical equations of motion are separated
by assuming, following Wu and Yang, ' that

W;=0, W;=e... g(r), r=(x,' —'++x')x"',

and

(We consider only static solutions. )

it is apparent that the solution to the Yang-Mills
equations (1) depends only on the ratio P, equal to
the ratio of the Yang-Mills field (after symmetry
breaking) to the Higgs mass parameter. P is a
measure of the coupling strength.

We obtain an approximate numerical solution
to the equations (1) using the Henyey method. '~
The solution, shown in F ig. 1, is of the same form
as that found by Dashen, Hasslacher, and Neveu.
For our solutions (P between 0.1 and 0.5), in terms
of the rescaled fields and radial parameter, the
form of g seems relatively insensitive to the val-
ue of P, while f rises more rapidly near the origin
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for small P.
By an argument of Mandelstam, ' the Yang-Mills

and scalar fields alone are not stable against
small oscillations; consequently one could only
hope to stabilize the solution by adding fermions.
If the fermions have bound states, it may make the
total configuration, fermions plus Yang-Mills and
scalar fields, energetically stable against decay.
So we turn to the introduction of fermions.

III. SOLUTIONS TO THE DIRAC EQUATION

It is consistent with our classical solution to the
Yang-Mills field equations to solve the "classical"
Dirac equation (not second-quantized)

(iQ —m))() = 0,
where D is defined as before. Each component of
the Dirac spinor is an isospinor.

Once again we require an ansatz to separate the
equation; Dashen, Hasslacher, and Neveu take the
"large" components of g to be

to the system

(m+ ~)d = -u'+ egu,

2
(m —u)u = -d' ——d —egd

with boundary conditions

u(~) = d(") = d(o) = o,

u(0) =constant, u'(0) =0.
A variational calculation placed an upper bound

on the ground-state energy which was only slightly
above zero binding energy. This suggested that the
system has a bound state at exactly zero binding
energy

~
&o

~
=m. . . bound in the sense that the fer-

mion is localized. The suspicion was confirmed
by the following exact solution due to Neveu. '

Suppose the binding energy of the fermion is ex-
actly zero; then m =(d, and it is consistent to
choose d(r) —= 0. We are left with

-u'+ egu =0,

and integrate to find

(p) r
(r)=e stxe p( d( ')dr').

0
(4)

u(r), u real (2)

and the small components to be

,~, . v ~ x
e i d(r), d real .

~ dt)PP

P= 0.1-- P=0.5

FIG. 1. Qualitative form of solutions for f(r) and

g(~).

With this ansatz, the Dirac equation is equivalent

Notice that this solution is valid whenever (1) g(r)
vanishes at the origin, and (2) e Jag(r')dr' diverges
faster than --,'lnr as r- ~. The first condition en-
sures that u'(0) =0. The second condition follows
from the requirement that the fermion wave func-
tion be normalizable: I", dr r'(u'+ d') & ~. Thus
u(r) must go to zero faster than r '~' as r- ~, and

consequently e fog(r')dr' must diverge faster than
-~ lnr as r- ~. Condition (1) is identical to the
previous boundary condition on g(r) at r = 0. Con-
dition (2) is satisfied as well, since as r- ~ the
asymptotic form is g(r)--2/er, so cfog(r')dr'
- -2 lnx as r - ~.

The solution (4) with g(r) defined by Eq. (1) is
an exact solution to the coupled fermion and Yang-
Mills equations. The coupling is of the form

g,„, = -2egdu,

so the fermion current vanishes for d(r)=—0.
Thus there is an analytic solution to the Dirac

equation with zero binding energy. It will exist
for any g(r) satisfying the boundary conditions at
r= 0 and r- ~. The wave function for this solution
has no nodes and it must therefore be the lowest
bound state for the ansatz (2) and (3). Hence there
can be no bound state with finite binding energy.
We emphasize that this conclusion depends in no

way on the numerical solution for g(r) or on the
variational calculation of the ground-state energy.

Thus adding fermions will not stabilize the Yang-
Mills and scalar fields, in the classical approxima-
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tion. It seems doubtful that quantum-mechanical
corrections will change this situation, and we have
not studied them.

IV. FERMION STATES ON AN ASELIAN VORTEX LINE

The Dirac equation for a fermion in the vortex
line connects the spinor components in pairs:

ie ' ————+eg ' =m

The SU(2) model of Dashen, Hasslacher, and
Neveu has a close analog in the theory of an Abelian
gauge field coupled to a charged scalar field. This
theory exhibits vortex solutions of the Landau-
Ginzburg type, which, according to Nielsen and
Olesen, ' may be identified with the Nambu string.

From the Lagrangian density

46
Br r 86)

4' j
Again we can show analytically that the only bound
states are at threshold, I&ul=m. Take p, =g, =)~=0
and m =(d. Then

8 g 8e' —+ ——eg g, (r, g) =0.
Br r 86)

—gA (K*K)',

with the ansatz

K =i f(r)e"' r = (x '+ x ')' '

AO=0, A3 =0,
x'

A, = e, ,—g(x), i, j = I, 2

one obtains the equations of motion'

1, 1 ~ Lg+ g — g —efr r' r

where p is the number of flux quanta in the magne-
tic vortex line. The field g(r) has the asymptotic
forms

This separates trivially, and we find

r0(, e)=eo stxe" 'e p(e g(r'jdr'I,

where l = 0, + ~, +1, . . . in order that g, be invariant
under rotations of 4m. Further restrictions on l
come from the boundary conditions at the origin
and the requirement of normalizability. For
r'I g, l

' to be finite at the origin it is necessary that
l ~ -1. As before, |J~, must go to zero faster than
r '~' as r- ~; g(r) - -P/er as r- ~, so we require
$&p

3

It is interesting that for large p (large number of
flux quanta in the vortex line), the bound states for
various angular momenta -1 & l & p -2 are de-
generate in energy. There are no states more
strongly bound, since for l =0 P, (r, 0) has no nodes.

g(r) r'~+ ' -r - 0

p 1
g(r) - -—+ 0 —e '", r - ~ .

Hr
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