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The quantization of gauge theories of gravitation with k ' propagator is investigated with the functional
integration method. It is found that gauge-fixing terms in these theories are quite different from those in

ordinary gauge theories. Ward identities are then derived and used to show that there is no renormalization of
the longitudinal parts of the two-point Green s functions, just as expected. It is also shown that in order to
satisfy these identities the bare graviton propagator has to come from the term of the square of the Riemann
curvature tensor in the Lagrangian.

Recent efforts by a number of authors' have
shown that Einstein's theory of gravitation is not
renormalizable at the one-loop level. Free gravi-
tation leads to a renormalizable S matrix at the
one-loop calculation. However, the interacting
version in which scalar fields, photon or fermion
fields, or even Yang-Mills fields are included
leads to counterterms in the one-loop calculation
of the form C'„,~„ the %eyl or conformal tensor,
indicating nonrenormalizability. It is rather un-
likely that inclusion of all possible interactions
in the calculation of the single loop would result
in a value of zero for the coefficient of the offend-
ing term.

Forced with the almost certainty that Einstein's
gravitational equations are not renormalizable,
it is of paramount interest to consider alternative
theories that might reward us with the gift of re-
normalizability. Such theories include among
others the recent suggestion by Yang' or theories
with Lagrangians of the form aR»'+bR'+ eA. '

Theories of this form, however, almost invari-
ably are higher than quadratic in derivatives and
their quantization is not at all clear. Questions
such as the identification of the propagator, ir-
reducible vertex functions, gauge-fixing terms,
and the nature of the ghost propagator come im-
mediately to sharp focus as soon as one attempts
any quantization scheme that would lead to a con-
sistent perturbation expansion.

An obvious way of dealing with such a problem

is the determination through functional integration
and methods established by Faddeev and Popov of
the Ward identities as a tool towards the problem
of internal consistency. Therefore, we begin by
defining the generating functional in the usual way:

R'f&I= I I&ale ~~ f Ir tg3 s, .&"' - lF'ld'x ~fal.

where h„, is defined by

gi u=gI v+&~v

with g„, the flat-space metric, and the terms —,'I'
and h[h] denoting the gauge-fixing term and ghost
Lagrangian, respectively.

In this particular case the form of F' can be de-
termined by imposing the requirement that I'' be
a scalar of dimension four, since terms with di-
mension higher than four would definitely invalidate
possible renormalizability. This implies that,
since Pg„„ is dimensionless in these theories, F'
must be quartic in derivatives.

By choosing the gauge condition

in order to quantize the theory, there are two pos-
sible invariant forms, namely {a"C~)2 and {s„C„P,
that fulfill the above requirement. Therefore the
most general form that I'' can take is
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"" =D 6~+D,Ã,

where o. and P are the two gauge-fixing parame-
ters.

Here, we immediately recognize that the struc-
ture of the gauge-fixing term is quite different
from that of the ordinary gauge theories, where
the gauge-fixing term is just the square of the
gauge function. It is peculiar only to this particu-
lar kind of gauge theory in which the Lagrangian
is a quadratic function of the Riemann tensor or
of the curvature scalar.

Under the general covariance transformation

hpu-h pv+Dp&v+Du

where D„denotes the covariant derivative, 6[h]
is determined from the gauge function C„ to be

where use is made of Eqs. (2} and (3). Equation
(6) is in a sense the master Ward identity from
which relations among Green's functions can be
obtained.

Differentiating Eq. (6) with respect to J„„(y)and
setting J„,= 0, then going over to momentum space,
one obtains

= k„D'„(k') + k„D',„(lP), (7)

where

g„,—k„k„/2k'
D„,

A[h] = det ' =—detM„,6C,
(4)

where

Jjj/I, =8 D g, +B,D

From the point of view of Feynman diagrams the
determinant h[h] is a sum of closed loops with
respect to which a vector fermion of vanishing
mass propagates. In those terms the functional
W[J] can be expressed as an integral of a local ac-
tion by introducing the ghost vector field A~:

rr I&I =f Irur ll~]ldrrl

Now, with respect to Eq. (4} the measure d, [h]dh
and the Lagrangian are invariant under the gauge
tranformation of Eq. (2). Performing this trans-
formation to the generating functional, with the
parameters A. z defined by

M p~A, =- Ap,

where A~ are arbitrary functions, one obtains'

-F —,—+J"' "' —.—M ' —. — W J =0

as a result of the variation of the functional with
respect to A~. Here

The right-hand side of Eq. (7} is essentially the
term (5h„, /5A, )M ',

~ appearing in Eq. (6), in mo-
mentum space, and can be obtained by noticing
that M» ——s'(5h„,/6X&} and the identity

We recognize immediately that D'„„(k') is just
the bare vector ghost propagator obtained from in-
verting the quadratic form k„k„+k'g„, in the ghost
Lagrangian. Also note that the function P~, „,(k')
is the graviton propagator.

Equation (7) tells us that there is no renormaliza-
tion of the part of the two-point Green's function,
which is longitudinal in all four indices, and there-
fore difficulties associated with unphysical polari-
zations are taken care of by the vector ghost par-
ticle in the usual way as in ordinary gauge theo-
ries. As far as the unitarity of the 5 matrix is
concerned there might be inherent ghost problems
associated with the k 4 behavior of the graviton
propagator which must be investigated separately. '

Since Eq. (7} is satisfied order by order in per-
turbation theory, it would be of interest to exa-
mine it for specific examples. However, the ex-
tremely complicated nature of these theories
makes the calculation of even the lowest correc-
tion loop to the graviton propagator utterly unat-
tenable. In this respect even the calculation of
the bare graviton propagator is time consuming
but otherwise straightforward. For instance, if
one uses as a Lagrangian the following expression

raus t pparg g' ( g'}

and
where A", 8 is the Riemann curvature tensor, one
obtains for the quadratic form
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+ 1 —— k„k,kk

where I„, p
the identity is defined by

1
fpp, pa

= s(gp pgpa+gvpgpa)

Note that the gauge-fixing terms have been in-
cluded in the quadratic term. Inversion of Eq. (9)
by requiring

0 po
Pa 7)g PV

leads to the bare graviton propagator

1 BI pa, s s ks Ipo, ss +
2ks (gpskoks+gaskpks)

B D
+ „s (gpskpk»+g~kpks)+„s kpkaksk

with

B= (P —1)

and

(1 —1/a) + (I/P —I/a)2(P —1)
(1/ -2/C)

The Feynman gauge would correspond to the

choices of n = P = 1 and the Landau gauge is the
one for P-O, and any e. A unitary gauge can also
be chosen by taking C„=8'h, „, where the index i
runs over 1, 2, 3, and taking the limit a-0, P-O.
In this case the propagator has a pole at k4=0 only
for the physical polarizations, while the rest of
the terms of the propagator have no pole and there-
fore do not contribute to the absorptive part of the
S matrix.

As a result of the application of the operator
(1/a)kpk ks (2/P)k kpgsp of Eq (7) to P
we obtain

—kpk~k„——k kpg~„P „p k'}

kskpks 1+2(P 1)+D 2(D+P 1)
k4 z p

1—
ks (kugs. + k.gs p)

[kpD'„(k'-)+ k, D'„„(k')] .

In this respect, therefore, the propagator ob-
tained from the Langrangian of Eq. (8) satisfies the
derivedWard identity at least to zeroth order.
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