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The bound states of two spin--,' particles in strongly coupled quantum electrodynamics are examined using a
local quasipotential equation recently proposed by Todorov. Because of repulsive recoil effects displayed by the

spatial part of the vector potential, complex energies do not appear for large a as with the static-limit

equations, and very deep binding is obtained for a sufficiently large. No cutoffs or charge distributions need to
be introduced to obtain this result. The generalized '50 positronium system examined here appears to be

confined to a thin spherical shell in this deep-binding limit.

I. INTRODUCTION: QUASIPOTENTIAL EQUATION

FOR TWO SPIN- 2 PARTICLES

Using a recently proposed formulation of the
two-body bound-state problem in quantum electro-
dynamics, ' we examine the consequences of al-
lowing the coupling constant e to become arbi-
trarily large. In the standard static-limit equa-
tions, such as the Klein-Gordon equation and the
Dirac equation, complex energies set in for n of
the order of 1. This does not occur if a realistic
charge distribution is empirically given to the
heavy nucleus. In this paper, we demonstrate that
such complex energies do not appear when the re-
coil effects are taken into account for the case of
two equal-mass point particles. The mechanism
is the spatial component of the four-vector poten-
tial which, in the second-order form of the equa-
tion studied here, provides a very singular but
repulsive I /r' behavior at the origin.

The particular system we examine is basically a
generalized 'So pos itr onium atom in the gr ound

state. By "generalized" we mean that we are not
considering real positronium, for which e is the
fixed number i~37 The coupling constant is al-
lowed to take on arbitrary values between 10 '

and 104. The basic equation we shall work with

is a local relativistic Schrodinger equation for
two spin-& particles. Todorov's original formula-
tion of this equation involved a 16-component wave
function. A 4& 4 matrix formulation of this equa-
tion was given recently by the present author. ' In
this paper, we shall use a covariant four-compo-
n(pnt form recently proposed by Aneva, Karchev,
and Bizov. ' The rest of this section contains a
review of some aspects of their work and indicates
how' we shall use the resultant quasipotential for
large n.

In the next section (II) the main result of the

paper is presented. After a discussion of the spec-
trum for the case of singlet "positronium" without
the V' term and a review of the physical signifi-

cance of the appearance of complex energies for
large n, the spectrum and wave function with full
gauge invariance are given. The recoil effects
displayed by the vector potential V, together with
the I/&' radial dependence for V', lead to a hard
core that grows outward for increasing a. As o.

becomes very large, the limiting configuration
of this generalized positronium atom is a thin
spher ical shell.

Our motivation for considering strongly coupled
@ED is based in part on Schwinger's dyon hypo-
thesis for hadrons. 4 Consequently the charge we

speak of in this paper may be regarded as a gen-
eral electric or magnetic charge and the bound-
state configuration found may be regarded, in the
:ense to be defined below, as a nonperturbative
approximation to the distribution of such con-
stituents in hadrons. The results of our paper
are also relevant for the vector-gluon model.

A. Helicity form of the homogeneous equation for bound states

We consider the elastic scattering of two spin-&
particles of mass ~, and ~, with opposite charge.
Their momenta and spin projections are displayed
in the following relation between the S matrix and
the T matrix:

(q„x„q„x,i& I p„~, ;p„~,)
=4plp;(2&)'~(pi - q, )~(p. -q, )&~...&~. ..

(2')+'i 5(p, +p, q, q,}--
&& T(q, K„q,K„p,w„p,a, ) .

The label 1 refers to the negatively charged par-
ticle and the label 2 to the positively charged par-
ticle. For the initial spin projections we use the
variable ~ and for the final ones we use the vari-
able &. The quasipotential equation to be written
down bel. ow is an off-mass-shell, on-energy-she11
equation. Going off-shell is done in such a way

12 1804



BOUND STATES OF THE QUASIPOTENTIAL EQUATION FOB. . . 1805

that

p -p2=q —q =m~ —m2 (1.2)

E2P, —E,P2

The reader i.s referred to an article by Crater and
Naft for a detailed examination of the consequences
of this assumption in a classical context. ' The
total four -momentum is

On the mass shell, their common c.m. magnitude
LS

~l +P2 ql +q2 ~

K
P2 q2 Q2

4

m +m' (m'-m )'4 ~
'

and in the center-of-mass (c.m. ) frame it has only
a time component:

P = (E, + E„5}= (u1, 6), w = (-P'}'~2 . (1.4)

The variables E, and E, are defined in an invariant
way by

-p, P —q, P se'+m, ' —m, '
N K 2K

By definition, then, the vectors P and q are ortho-
gonal to P. In the c.m. frame,

P, =(E„p), P, =(E„p),-
q, =(E„q), q, =(E„-q),

and the relative momenta have only spatial compo-
nents:

—p2 'P —q2 'P bU +m —ml
'N K

(1.5) p =(o, p),

q =(o, q}

and the relative momenta p and q are given by

Given these preliminaries, we postulate the fol-
lowing relativistic Lippmann-Schwinger equation:

T(q 11„q 11;p P. , p A, )iV(q 11,q p11„h, , p A. )

"2 ql l q2 2' "l&l "2&2 " "2 &l&2 &l&2 "l&l "2&2'&l l»2 2~ = ~ ~ &0

The Green's function G is taken to be

5(k, +k, P)6(k P)-5l2, )2,'5i2 l2,
'

1 2tl 1) 29ilp'2 k 2~m 2 k 2~m 2

4)2 1 1 + 2 ™2
2~1 2 m2

The relative variable k is defined as

E,k, —E,k,
K (l.12)

and p, is the reduced mass m, m2/M. The total mass is M=m, +m2. There are two & functions in the Green's
function. The first imposes momentum conservation for the intermediate state and, together with the sec-
ond, is sufficient to enforce the on-energy-shell assumption in the c.m. frame for the intermediate vari-
ables.

The above quasipotential equation is completely Lorentz invariant. In the c.m. frame we write I' and t'

in the form

T=T (j,p;11„11„&„A2),V =V (q, p; K„~„g, ,), (l.13)

and the sum that appears in the denominator of the Green's function is proportional to

k2+m2 jg2+m2l 1 + 2 2

M 2 l 2 2
(1.14)

where m is the relativistic reduced mass variable

'mlm2
m

QI
(1.15}
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Hence the quasipotential equation takes on the form

d'k „(q,k; z„z2i 'alt ~2)T w(ki pi gii iJ ai ~ii ~2)
w(qi Pi ~i'mi ~» ~2}+ w(qiP' "i"'"i")+

(2 )S

'
2 (~2 tm )

(1.16)

in the c.m. frame.
This equation defines in a perturbative way the quasipotential V in terms of the scattering amplitude T:

V =-T,1 19

V, =-T +T,GT, .

For Hermitian V, this T satisfies the on-mass-shell elastic unitarity condition

d3k
T*(q, k; z„t(,; g„g,)T (k, p; p, „p,; X„h.,)6(k' —b~) . (1.16)

This can be seen by formally solving T+V+VGT =0. One finds'

T —T*= T ~(G —G*)T,

which leads to (1.16) and

(1.19)

(1.20)

In Appendix A we show that (1.16) leads to the following homogeneous quasipotential equation (or rela-
tivistic Schrodinger equation} for two spin-~ particles:

G„'(q)4„(q; a„x )+ 3 VN(qiki li 2i &ii &2)@to(ki &ti &2) =0 ~

(2g)& & & 1& 2& 1& 2 & 1& 2 (1.21)

The momentum-space wave function is 4' (q; z„z,), and its relation to T and G is given in Appendix A

also.

B. Four-component forms of the homogeneous equation for two spin-/2 particles

The matrix form of the quasipotential is defined by

V (q, k; &„&„p„g,)= „,(q}u.,(-q)V (q, k), (-p), (p}

=u. , (q)~s.,(-q)~ V.(q, k)8 8 sic-p)8, "x,(p)8, ~ (1.22)

(1.23)

(E, + m, )' ~'e
~

i; (& — )'"(p /I pl )

where e„(&= +-, ) are two-component spinors, eigenvectors of o,

The indices n and P go from 1 to 4 and the quasipotential V„(q, k} is a 16X16 matrix. The spinors are
given in the Pauli representation by

( (E +m, )~~2e

I,(&,™,)'"(p o/lpl)e~ j '

g g& —2Ag&, A, =+~

normalized by

~~~X KX ~

In this representation

/I 0

(0 —1

(1.24)

(1.25)

(1.26)
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Given these preliminaries, a four-component quasipotential U„ is defined by

The homogeneous equation (1.21) now takes the form

d'k
2~(q' —&')P (q)+ ), U (q, k)P„(k) =0,

where Q is a four-component wave function.

The quasipotential to be used arises from the exchange diagram:

V& &(

(1) (2)P
lo qi

( k)2

4 ~ ~y(). )
y

(2 ) Ill

(q —k)

Using (1.23), (1.26), (1.27), and (1.29) leads to'

(1.27)

(1.28)

(1.29)

2

U"'(q, k)=, [4' —(q-k)'J +4xo. ' +
q —k)' „E +m E, +m, 4 E, +m, )E +m, )

Siva
(q —k)'

Si vo.

(q —k)'

+4vn

E, (q-k)'
E, y m, 4(E, + m, )(E +m, )

E, (q- k)'
E, +m, 4(E, +m, )(E, +m, )

(q —k),. (q —k)& 1 (qxk), (qxk),
(q P)2 (E +m )(E +m ) (q k)2 1~( 2J

where

g, =oxl, v, =lxa, [v„,u„J =0 .

The variable E is the energy of the effective particle and is defined by

M) —~n ' —m'
Egg=E EI 2 2

(1.31)

(1.32)

Another form is

E2 —
yp~ (1.33)

This form emphasizes its role as the energy of the effective particle. Following Todorov' and the work in
Ref. 3 we modify (1.28) to take into account gauge invariance. The modified equation has the operator form

[(E —Vo)~ —( p —V)' —m ~' +D + F, ' o, + F, '
&x, + u„H&,u„]y„=0 . (1.34)

The operators V", D, F, , and H;, can be identified by equating the (q, k) matrix elements of terms linear
in o. to U (see Ref. 3):

2EV'(q, k) —(q+k) ~ V(q, k) D(q, k) —F, (q-, k) ~
&x, —E,(q, k) u, —o„.H, , (q, k)u, „. = U ' (q, k) . (1.35)

The operators + and H are readily identifiable, but there is no unique way of identifying V" and D. Fol-
lowing Todorov, ' we make the choice of gauge where V' is the Coulomb potential:

—4xn
(q —k)'

(1.36)
—2 xo.(q+ k)

w(q+k)'

In coordinate space



1808 HORACE W. CRATE R

VO

-i@ rV= I
2'N

(1.3'I )

where I~ is the space-reflection operator

fd(r) =f(-r) .
The remaining operator D can then be evaluated from (1.30), (1.35), and (1.36}.'

In obtaining the coordinate form of (1.34) it is important to note that

]. 3x',.x'~ 5,~ 4 v
5(

(1.38)

(1.39)

We find

2Ea n' 2vn6(r) n' 2vn6(r)
r r' so 4u)'r4 m

E, E, su&(r) 1
+ +E +m, E +m, w (E+m )(E~+m2)

~
~

~ ~ Q ~
~

E ~ E ~ 4WA
~

~~ ~ Q 1 31'0' r'0'

4.—.o Vo V + —6(r)1 2 &+3 3 j
4g—o V —+ —&(r) o Vy3 3 2

-g, ~ V' —,+—& r o, ~ V y r =6'y r

(1.40)

Our aim in this paper is to examine the high-n nonperturbative form of the spectrum for a generalized
singlet-positronium atom. Although dealing with a particle bound state, we shall not be concerned with the
'S, solution which needs the annihilation contribution. ' From a perturbative study of this equation in Ref. 3,
it can be easily shown that the only part of the quasipotential equation (1.40) that contributes to order n'
to the 'So state is

2

(1.41 }

(1.42)

This simplification occurs to this order in part because the L a, terms and the tensor terms do not con-
tribute to the singlet S state and for equal masses the spin-independent contact terms in line 1 cancel
cancel with the spin-spin contact term in line 2. The remaining terms do not contribute to order a4.'

On the other hand, the spectrum from this eigenvalue equation can be determined exactly and leads to' '
~2

= '2m' 1+ 1+
1 ( g[(2& 1)' —4a']'" —2t —1)&' )

What significance can we ascribe to this spec-
trum for large a& We regard the appearance of
complex energies as a deficiency in the quasipo-
tential given in (1.41}for large n Beyond th. is,
however, there is the larger question of the sig-
nificance of a nonperturbative calculation of a
spectrum based on a first-order diagram.

Solving for the bound-state eigenvalues of the

homogeneous quasipotential equation "exactly"
(by numerical methods if necessary} is equivalent
to finding the poles of an infinite sum of iterations
of a diagram of the type represented by the quasi-
potential. ' In this sense of the word, such a solu-
tion represents a nonperturbative approximation
to the true spectrum of the given field theory. It
is conc eivable that the qualitative aspects of such
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QP

4u)2r 4 (1.43)

an approximation to the spectrum and the resultant
bound-state configuration might not be drastically
altered by radiative corrections.

In a recent paper, Atkinson and Crater examined
nonperturbative corrections to the spectrum of a
pure scalar version of @ED (scalar photons and
particles}. ' Radiative corrections were incorpo-
rated nonperturbatively by a Pade approximant
evaluation of the quasipotential. For the range of
coupling considered it was found that this modified
quasipotential produced no significant departure
from the nature of the spectrum. By and large, it
remained of the Coulomb type in the range up to
o. -1. Intrinsic coupling-constant limitations in-
herent in that model prevented considerations of
larger n. Such limitations on the coupling-con-
stant size are also present here, as is evident in

the spectrum (1.42).
No large-o. calculation can be done unless the

problem of complex energies evident in (1.42} is
eliminated. It is desirable to do this in a way that
does not involve an ad &Oc cutoff or charge dis-
tribution. Ideally such a crucial and drastic quali-
tative modification of the spectrum and potential
would arise naturally from the theory. We claim
that the mechanism for such a modification comes
from the imposition of gauge invar iance.

In Eq. (1.40) the highly repulsive energy-depen-
dent term

II. GAUGE INVARIANCE AND DEEP BINDING

A. Spectrum without terms due to gauge invariance

On the basis of our discussions in Sec. I, the
equation for singlet "positronium" we shall ex-
amine is

(2.2)

Writing this equation as

(
—V2 n b2

)) (r)=2E 4„(r} (2.3}

allows us to use the analogy with hydrogen to write
the solution to the eigenvalue problem as

b2 @~2

2g 2' 2

Now E'=m '+b' and hence

(2.4)

Q 2

(2.1)

The attractive I/&3 part of the potential arises
from the V+ term that comes from imposing gauge
invariance. This term, of course, is the only one
of such origin in the static-limit equation. The
next term, the repulsive I/&' term, arises from
the V' contribution and comes from including the
vector part of the potential. This term is zero in
the static limit. Without these two terms one has
the hydrogen-type equation

arises as a consequence of imposing gauge in-
variance. This term is also common to the quasi-
potential in interactions between spin-0 and spin-

&, and spin-0 and spin-0 particles. ' For small a,
it does not contribute to order e' in the spectrum.
In fact, for S waves, its perturbative contribution
is not even defined. However, as we shall see
below, its nonperturbative influences are well
defined and play a crucial role in altering the
qualitative nature of the spectrum. In particular,
it eliminates the appearance of complex energies
and leads to very deep binding for large n.

In this paper, radiative corrections will not be
considered. One might speculate on the basis of
the results of Atkinson and Crater' that these cor-
rections would not have significant additional qual-
itative effects on the spectrum and the bound-state
configuration. There are other terms in (1.40)
that could also be considered. However, since
the term (1.43) is spin independent and related to
maintaining gauge invariance, we shall in this
work restrict ourselves to it and to numerical
solutions of the ground state of the quasipotential
in Eq. (1.41) with this term added in.

(2.5)

or

Q)2 =2m2 1

g + + ~2 j. /2 (2.6)

which displays an O(4) symmetry typical of hydro-
gen. For the ground state,

Z/2

y ~ + 1/2 (2.7)

and the ground-state wave function is
e-r /a

)))p-&a (va3)1/2

where

(2.8)

(2.9)

Notice that, without the V terms, w is realp2

for all o) In fact, .as a-~, 3)/ approaches v 2 m.
Evidently very deep binding does not occur in this
case. Also, as a-~, the radiusaapproaches2/m.
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%e point out these results here for later com-
parison with the case when full gauge invariance
is imposed.

A(A. +1) = l(l+1) —a' . (2.10)

Imposing gauge invariance in this particular way,
without the vector potential contribution V', leads
to complex energies if a& &. This is ordinarily
associated with the Dirac and Klein-Gordon equa-
tions for a particle in an external Coulomb field
for a point nucleus with 2 o.&1. The ground-state
total c.m. energy is equal to (2+0 2)'~'m for a

1
2 ~

Case has demonstrated that the appearance of
complex energies in the static limit of relativistic
bound-state equations indicates that the Coulomb
potential is singular if e is large enough. " This
manifests itself as an essential singularity in the
radial wave function at the origin for o. beyond a
critical value. By a more careful handling of this
singularity in o., Case shows that one may in fact
obtain a real spectrum for larger o but that the
resulting spectrum depends on an undetermined
constant. He interprets this constant as a cutoff
parameter to be determined by using a more
realistic potential that does not display such sin-
gular behavior. As we shall see in our example
in the next section, this effective cutoff is pro-
vided by QED itself (without radiative correc-
tions) in the case of Todorov's ciuasipotential ap-
proach to the two-body problem.

C. The spectrum and wave function with the V2 term

Eiluation (2.1) includes the Vo and V' terms.
The term that is proportional to V' is 1/&,
and the one proportional to (V, pj cancels in
the approximation we are considering with the
spin-spin terms. " The sharply attractive 1/r'
potential is counterbalanced very near the origin
by the even more singular 1/&' potential As.
noted earlier, this repulsive term does not con-
tribute significantly when e is small. However,
as we shall see, its effects are significant for
larger n. It has two effects. First of all, it
permits real ~ for all a. Second, in the gen-
eralized positronium atom, the constituent par-
ticles are shielded from one another by the hard-
core influence of the 1/&' potential. This latter
point can be demonstrated analytically as very

Q
28. Spectrum with VQ term in'»f~

The spectrum (1.42) for this case i~, iained by
recognizing that the effect of the sharply attractive
—cP/2m &2 term is to redefine by analytic con-
tinuation from I to ~ the angular momentum vari-
able. This ~ variable is defined by

near the origin one has for the 8 state the equa-
tion

(
-d2

+ u=0
dy 8' y' (2.11)

where u is the radial part of the wave function.
Solving this yields

u ~ re "'~"
Q

(2.12)

where

CF

2ilrsu (2.13)

One cannot solve (2.1) analyticaliy. A numerical
evaluation of the eigenvalues and the eigenfunctions
must be used. ' e are interested in the ground
state only. The technique we used is outlined in

Appendix B. In Table I we present the numerical
results for the ground-state eigenvalue computed
at various values of 0. =0.1 to n =104. Also given
in this table are the values of & (&, and &,) between
which most of the wave function resides. From
this information on the confinement region of the
constituents we extract a rough measure of the
Fermi momentum of the effective particle.

III. DISCUSSION OF RESULTS

1
min

(3.1)

and a depth of

1 a%a'
min 2 m 2

The third point is that for large coupling the par-
ticles appear to be confined in a rather thin shell, "
the inner radius ranging up to 95 k of the outer
radius in the range of n considered. Even so, as
indicated in column 6 of the table, the Fermi mo-
mentum is not relativistic. Notice that the outer
radius contracts for increasing e up until n-10.
This is a typical Coulomb behavior. Beyond that
value the Coulomb effects are dominated by the
V' and V' terms.

In a paper now in preparation, we shall examine

The tabulated results demonstrate several points.
First of all, real energies appear for large n. The
vector potential V accounts for this fact. Since V
would be zero in the static limit, this implies that
recoil effects are responsible for the elimination
of complex energies for large a in the two-body
case. The second point is that very deep binding
occurs where a is large. For large n, the attrac-
tive 1/r' and repulsive 1/&' potentials dominate.
As a result the effective particle is in a well with

a minimum at about
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r2 Pf /F2 (X2 t $)

TABLE I. Total c.m. energy and wave function for
generalized singlet positronium in the ground state.
The variables are in units (or inverse units) of the
common mass mof the constituents. The variables
&& and &2 are the inner and outer confinement radii
for this system. The c.m. energy is and the sixth
column provides a measure of the Fermi momentum.
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0.1
0.2
0.3
0.4
0.6
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1.9975
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1.976
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1.894
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0.008
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50
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0.000 04
0.000 1
0.000 4
0.000 6
0.001
0.002 5

0.005
0.009
0.01
0.02
0.03
0.045

APPENDIX A: RELATION BETWEEN THE QUASIPOTENTIAL
EQUATION AND THE RELATIVISTIC SCHRODINGER

EQUATION FOR TWO SPIN-& PARTlCLES

We define a Green's function
l.704
1.259
1.010
0.8616
0.6902
0.5913

0.06
0.1
0.2
0.25
0.35
0.5

20 0.003
10 0.01

7 0.02
6.5 0.035
6.5 0.055
5.5 0.085

0.05
0.1
0.15
0.15
0.15
0.2

g„(q, p; k„k; w„A.,)

T„(q,p; k„k, X„A. )

10
20
30
40
60
80

100
200
300
400
600
800

1000
2000
3000
4000
6000
8000

0.5252
0.3660
0.2974
0.2569
0.2092
0,1809

0.1617
0.1142
0.093 16
0.080 66
0.065 84
0.057 01

0.050 99
0.036 05
0.029 43
0.025 49
0.020 81
0.018 02

10 000 0-016 14 52

0.6
1
1.5
2.0
2.5
3.0
4.0
6.0
7.5
9

11
13

16
22
27
32
40
46

6 0.1
0.2

6.5 0.25
7.0 0.3
7.5 0.35
8.0 0.35

8.0 0.5
9.0 0.65

11 0.7
13 0.7
14 0.8
17 0.8

20 0.8
25 0.9
30 0.9
36 0.9
43 0.9
50 0.9

55 0.95

0.2
0.25
0.2
0.2
0.2
0.2

0.25
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.3
0.3
0.3
0.3

0.3

=- (2~)'G. '(p)(p —q)&),,~, &&.,a,

+G '(q)g (q, p; k„k„k„,)G„'(p}.
(Al)

Substitution of this into (1.16) leads to

G„'(q) g (q, p; k„k„A.„A,)

d'k
+

( },V (q, k;k„k„p„p,,)

g~( k, P; }j„k,; ~„~,}=0 (A2)

We impose the standard assumption that the
Green's function has a pole in the c.m. frame at
w =ms (c.m. mass of bound state} with the factor-
izable residues being associated with the wave
function in the following way:

g„(q, p; k„k„A„A,)
4 (p; A.„P.,)4 (q k„k,)

m~ —K

the trajectory w(n, f) of such generalized posi-
tronium particles. There are other items to be
considered also. We have not considered in this
present work the effects of the residual &-function
terms and even more singular spin-dependent
factors as well as the triplet state. Radiative cor-
rections have also been ignored. The & function
and other such singular terms must be replaced
by finite-range potentials. Otherwise they could
not, in a nonperturbative sense, contribute even
for S states because of the repulsive 1/r' term.
The length scale will be set by including radiative
corrections nonperturbatively. This will also
modify V', V, and V' and the spin-dependent
terms.

+ regular terms . (A3)

APPENDIX B: TECHNIQUE FOR SOLVING NONLINEAR
EIGENVALUE PROBLEM

The eigenvalue equation to solve is

This equation has the general form

H(a, A)u =Au .

Substituting this into (A2) leads to the relativistic
Schrodinger equation (1.21).
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First one must make a fairly accurate guess for
Call this value ~,. One must also use a rea-

sonable guess u, for the wave function. This can
be obtained by a simple variational method. The
method we are about to describe is called the
power method. '~ The eigenvalue ~0 is an estimate
of the ground-state level. Now

u, = g u'a', ,

where

ao(A' —A )
'

~ g gogo (g g )-2i iia

(B8)

(B9)

(B3)

and

H(n, &,}u' = &tu' (B4)

(u, H(n, A, )u )—= A.

with uo the normalized form of uo. Let (u';
i =1, 2, . . .}be a complete set of orthonormalized
states corresponding to the Hamiltonian H(n, &)

so that
u, = [ H(n, +,) —X',] 'u, . (B10)

Then the inner product

If the original eigenvalue guess ~0 was close to

~0, the correct ground-state level, then a', will
be closer to 1 in magnitude than a, .

Now define

u, = P a', u' . (B5)
(Bll}

We define

u, = [H(a, A.,) —&,] 'u, .

Using (C4} and (C5} to compute the inner product

(u„s,) = Q,'a', (x,' —x,) ' (BV)

we see that if the original wave function was an ac-
curate guess so that a'-1 then this product may be
close to 1/(&,' —&,}. Next u, is normalized to

will be closer to 1/(&,' —&,) than the previous inner
product. This cycle is repeated until the desired
accuracy is obtained, the end result being as close
to ~0' as one may specify. The next step involves
iterating the whole procedure [(B3) through (Bl1)]
with ~ in the Hamiltonian. This is continued until
the eigenvalue guessed and used in the Hamiltonian
is equal within specified limits to the eigenvalue
computed. An outline of this next step using Pade
approximants is outlined in Appendix 8 of Bef. 9.
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