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This paper is concerned with the bootstrap nature of dynamical symmetry breaking and with the infrared

origins of the mass of the electron. We present a general calculational procedure for handling the situation in

which a composite operator ++ acquires a dynamical vacuum expectation value. We apply our procedure to
finite quantum electrodynamics to show how the infrared divergences of the theory self-consistently cause

(++& to become nonzero nonperturbatively so that it can provide a scale for a purely dynamical electron
mass. Since no Goldstone boson need accompany this spontaneous breakdown, the electron mass bootstraps
itself about the y& degenerate vacuum. The mechanism also yields a new eigenvalue condition for the fine-

structure constant. We discuss the deep interplay between the ultraviolet and the infrared, a characteristic
feature of dynamical symmetry breaking. We use this interplay to show how to extend the Wilson operator-
product expansion to the situation in which there is a degenerate vacuum. We discuss the possibility that the
infrared structure of the weak interaction provides a dynamical origin for the Gell-Mann, Oakes, and Renner
Hamiltonian. We indicate briefly the possibility that anomalous dimensions can soften a 4-Fermi interaction
suAiciently to make it renormalizable.

I. INTRODUCTION

It is now apparent that the degenerate vacuum is
an important feature of the theory of elementary
particles, and it is very welcome in a sense since
it takes into account in an essential way the pre-
sence of an infinite number of degrees of freedom.
As such, it then permits particle theory to be
understood as a many-body problem, and if some-
thing like the bootstrap philosophy is to make con-
tact with conventional field theory it should ulti-
mately be through the degeneracy of the vacuum.
One of the major drawbacks to achieving this is
that the standard way of destabilizing the vacuum
has been through the introduction of highly arti-
ficial input scalar tachyons. Though very useful
for discussing soft-pion physics and the Goldstone
phenomenon in models such as the cr model, this
approach gives no information at all about the
dynamics underlying the degeneracy of the vacuum.
Thus we must look for dynamical mechanisms
which can cause the vacuum to become degenerate.
The idea for instance that the pion would be a
collective excitation associated with a dynamically
induced fermion mass was first proposed by Nambu

and Jona-Lasinio, ' who pursued an extremely
useful parallel with the theory of phase transitions,
where spontaneous breakdown is a long-range or-
der or infrared effect. Despite being one of the
most attractive and compelling ideas in particle
physics, the concept of purely dynamical masses
essentially lay dormant until very recently, except
for the important program developed by Johnson,
Baker, and Willey' 'for obtaining a completely
finite formulation of quantum electrodynamics
(finite @ED). In their program a purely dynamical

electron mass is required in order to solve the
ultraviolet problem of mass renormalization.
Following the development of spontaneously broken
gauge theories interest has been renewed in dynam-
ical symmetry breaking, ' " but as of yet there has
only been a limited discussion ' "of the infrared
nature of the problem. This paper is the second of
a series" which attempts toisolate the specific
infrared dynamics which would cause the vacuum
to become degenerate, and presents a discussion
of how to treat the situation in which a composite
operator gg, acquires a vacuum expectation value.

Though current interest centers on spontaneous-
ly broken gauge theories, we shall concentrate in
this work only on the question of breakdown of a
global symmetry, chiral invariance, since this is
the necessary first step toward understanding the
more complicated local extension. Throughout we
shall take dynamical symmetry breaking to mean
that the composite PP acquires a vacuum expecta-
tion value (independent of whether or not there is
an associated bound-state particle), rather than
that radiative corrections cause an input fundamen-
tal scalar to acquire an expectation value, as is
discussed in Refs. 9 and 14. Moreover, we shall
consider only finite QED since this theory is rich
enough to bring out the main features required for
dynamical symmetry breaking, and reserve for
future analysis the extension to the non-Abelian
case.

Discussion of dynamical mass generation usually
begins with a study of the self-consistent equation
for the fermion self-energy"

', &„Z(p)},= d'k K(p, k, p)S(k) (r„Z(k)},S(k},
(1)
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the analog of the Bardeen-Cooper-Schrieffer (BCS)
gap equation. Here everything is expressed in terms
of the unrenormalized kernel and propagators.
Provided that the theory exists without subtraction,
it then follows that the chiral symmetry is spon-
taneously broken in the nontrivial solution to Eq.
(1), with there being an accompanying Goldstone
particle. However, in theories which require
renormalization Eq. (1) is essentially destroyed so
that the Goldstone mode is lost. (In fact our in-
terest in discussing dynamical symmetry breaking
in finite QED rather than in, say, the Goldstone
realization of the gluon model is because the very
fact of renormalization appears to exclude the
latter possibility. We shall defer discussion of
this point, however, until Sec. V. ) In renormal-
izable theories it is more convenient to consider
1 ~, the insertion of the composite mass operator
pg into the renormalized inverse electron propa-
gator. This Green's function satisfies the Bethe-
Salpeter equation (the kinematics is presented in
Fig. 1)

r, (q, q q, q)=,z,

fq'qadi,

q)ZqtqI

x Iz (k, 1' + q, q) S (P + q) .
(2)

Moreover, I~ is recognized as the mass insertion
in the Callan-Symanzik equation"

8 8
m —+P(~) —, —2y (o') S '(P)

Bm da

= -m [ 1 —y, (a )] ~& (P, P, 0),
(3)

where y~(e) is the anomalous part of the dimen-
sion of fp [the full anomalous dimension being
given by d8(a) =3+ye(o. )]. The asymptotic solution
to Eq. (3) is readily given in finite QED where
P(a) =y&(~) =o as"

p2 (&/2)&e(
m i",(P, P, 0) =nas, m'

In our notation Z, ' introduced here is the c-num-

P

P+Q

Q

FIG. 1. The Bethe-Salpeter kinematics for the dressed
vertex.

ber anomaly of the electron an. icommutator in the
finite gauge, i.e. , the gauge-independent part of
the electron wave-function renormalization con-
stant. Should y8(a) be negative it then follows that
the bare mass m, vanishes in the limit of infinite
cutoff [m -m(A /m )

' y&] so that Eq. (2) now
becomes homogeneous. (This is in fact the point
where finite @ED departs from the conventional
Goldstone mode, which itself may be thought of as
occurring in theories where mo is zero identically,
i.e. , even before the cutoff is removed. ) The im-
port of the asymptotic vanishing of m, is that Eq.
(3) allows us to recognize mi'g p, p, 0) as the non-
leading part of the fermion propagator which then
bootstraps itself self-consistently in a now homo-
geneous Bethe-Salpeter equation. Because of the
presence of a nonvanishing bare mass prior to the
removal of the cutoff, it is then found that the sit-
uation corresponds to an (anomalously) noncon-
served axial-vector current in the solution, so that
the Goldstone theorem does not apply. "'"'' The
crucial point in understanding dynamical symmetry
breaking is to now appreciate that the existence of
any nontrivial solution to Eq. (2) at all nonetheless
corresponds to a y, degenerate vacuum, and we
shall discuss this point explicitly in Sec. II. Thus
despite the nonconserved current we still have a
degenerate vacuum and also a self-consistent gap-
type equation, features characteristic of dynamical
symmetry breaking, with renormalization's only
role being to exclude the Goldstone boson. It must
be stressed that the phenomenon of a degenerate
vacuum and a nonconserved current is far more
general than the original context of finite @ED, as
it is the only way a fermion can acquire a dynam-
ical mass once there are homogeneous Bethe-
Salpeter equations in the fermion sector, without

any commitment being needed as to the specific
structure of the kernel.

Now though we have the solution given in Eq. (4),
we have not yet isolated the dynamics which will
actually force the system to choose the nontrivial
case of m cO. As we discussed in Ref. 13, this is
the inf rared problem. The self-consistent sol-
ution to this problem will be presented in Sec. III,
where we discuss how to handle the composite
operator g(. We will show there that the infrared
divergences generated by the power solution of
Eq. {4) indeed nonperturbatively make the massive
theory energetically favorable provided

y~(a) + 1 =0,
a new eigenvalue condition for n. The scale for
masses is then set by (Pg), which though com-
posite is not associated with a scalar bound state.

One of the major advantages of dynamical sym-
metry breaking is that there are no explicit soft
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operators in the theory (such as a wrong-sign a
mass term), but that the soft operators, e.g. the
tadpole mass ming, are generated dynamically.
Consequently, the input theory is purely dimen-
sionless and the scale is then generated by ( gg),
with the input massless theory being both ultra-
violet and infrared divergent at once. Thus the
ultraviolet problem and the infrared problem are
solved simultaneously, the ultraviolet by ec, =0
and the infrared bymt0, or both together by

Eq. (5). This is perhaps the main value of Adler' s
essential singularity in P (a) (see Ref. 19) which

permits the same coupling constant to control both
the physical and asymptotic regions at once. Be-
cause of these remarks we can then expect infrared
effects to show up in the ultraviolet, and we will
use this fact in Sec. IV as a basis for extending
the Wilson operator-product expansion" to the
case where there is a degenerate vacuum. This
will enable us to set up an alternative mass boot-
strap which will realize Eq. (5).

For completeness we shall review the question
of the absence of the Goldstone boson in Sec. V,
where we also discuss the distinction between re-
normalized and physical masses. The renormaliz-
ed mass describes the particle content of quantum
fluctuations about a given vacuum, whereas the
physical mass is the position of that vacuum.
Their equivalence gives the bootstrap condition of
Eq. (5).

The underlying thrust of the program that we

have set up in this paper is to prove a theorem
that a massless particle cannot have a charge,
or that a charged particle cannot stay massless.
%'e shall discuss the status of such a theorem in

Sec. VI, where we shall also argue that finite
QED is the relativistic generalization of the BCS
theory of superconductivity. We conclude with

some general comments in Sec. VII, where we

briefly indicate a possible extension of our ideas
to the non-Abelian case, and briefly discuss the
relation of our ideas to the construction of a
renormalizable 4- Fermi interaction.

II. THE y5 DEGENERACY OF A MASSIVE FERMION
THEORY

In this section we shall review' the discussion
presented by Nambu and Jona-Lasinio' on the y,
degeneracy of massive fermion theories. Our
presentation here is pedagogical in part, but the
reader will find this section to be a useful orient-
ation for the subsequent analysis of this paper. In

their classic paper Nambu and Jona-Lasinig dem-
onstrate by construction that a free massive ferm-
ion theory possesses an infinity of physically eq-
uivalent descriptions. This is done by construct-
ing the Bogoliubov-Valatin transformation be-

tween the massive theory and a family of phase
equivalent underlying massless theories. Consider
massless and massive quantized fermion fields
satisfying

i yp "g' "(x) = 0

(iy&8" -m)g (x)=0,
p( "(x}= g

' ' (x) at x, = 0 .
A standard Fourier decomposition yields

(6a)

(6b)

(6c}

0"'( x) = &~ g I&"'(p, s)a'"(p, s)e "'*
$ s8

+~(4) (p s}b(oi'(P s)e(D 'x
]

where i =0, m, and where each spinor is restric-
ted to its own mass shell and is normalized so
u u =1. Since both sets of creation and annihila-
tion operators satisfy the same anticommutation
relations they must be related by a unitary canon-
ical transformation. Introducing

(6)

a()) ( s)g(() b(()
( s)fi(() ()

From Eqs. (9) and (10) we then find that

(10)

II' = Q[)'-)( ""(I), )b""(-p, }]fl"', (»)
P oS

so that the massive vacuum is an infinite super-
position of pairs of zero-mass particles. The
overlap between the two vacua is given by

&))" )))'-') =exp g ) ~; )p~ 8

which vanishes in the limit of an infinite number of
modes. Thus the unitarity of the canonical trans-
formation is maintained by a limit in which there
is an infinite number of vanishing matrix elements
for the infinite complete set of states such that
Ox~ =1. (A similar situation is met in discussing
Haag' s theorem. ) Thus in this limit there is no

physical measurement which can connect the two

systems based on 0 " and 0' ', and hence the
decoupling is a specific feature of an infinite num-
ber of degrees of freedom.

we obtain from the normalization condition of Eq.
(6c)

a' '(p, s) = )(~ a( ' (p, s) + X ~b'" ( -p, s),
(9)

b + (p, s) =)(~b"' (p, s) —P ~a "t(-p, s) .
We define the vacua of the two theories as 0 ' and

0 so that
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to give us new creation and annihilation operators
and a new vacuum

Q( ) II [g )
- ' (o) t(p *}b(o)t( p +)] Q(o)

P2k

(15}

From Eq. (14}we can then construct a new p
by Fourier-expanding as in Eq. (7) only in terms
of + ~ this time, which will have exactly the same
particle content as g™since [a' ', a' ' t), =1,
a 0 =0, etc. Now the crucial point is to
realize that g' ' is not the y, rotated g in the
massive theory; g~ is constructed entirely via
the canonical transformation by making y, rota-
tions in the underlying massless theory. No
discussion need be given of whether the massive
theory is y, -invariant, and this is the origin of
the fact that certain dynamically induced massive
fermion theories have a nonconserved massive
axial-vector current, even though all P

" describe
equivalent physical theories. Under the trans-
formation of Eq. (14) the Hamiltonian of the theory

) g (2 2)t2[ (
( )()( )

-b ' (p, s)b (p, s)] (16)
becomes

H(m) g (p2+yp22)I/2[a(m)t(p S)a(m) (p S)

b(m) (p s)b(m) 't( s)]
(17}

Thus we find that

and

(Q(m) )II(m)
(

Q(lll) ) (Q(m) [H(m)
j

Q{m) )

2 +~g2 1 /2 (18}

(Q{m)
( ~ (m)4(m)]Q(m) ) (Q(m) g(m) ~(m) [Q(m) )

2 m

y Q (p2 + 2)1/2 (1 )

p

Now the massless theory is chiral-invariant un-
der the transformations

~(O) in' 5,1,(0)

a"' (p +)-e" a'" (p +)

b(o)t(p +) e 2n{b{o)t(

%e can thus construct a new canonical transfor-
mation

+ v o
( )

2{ b"o t( )

(14)
b „(p,+) = )('2 e" b "

(p, +) —A 2
e" a ' '

( —p +)

( Q' '
[
Q'" ) = exp ~ g in[1+ (e' " -1)()(, )']

p

(20)

which also vanishes in the limit of an infinite num-
ber of modes, so again no physical measurement
can link these vacua, and all of them define non-
overlapping Fock spaces. The one we choose to
define the physical fermion is just a matter of
taste.

Thus the point of our analysis is that once there
is a massive fermion at all there is then an in-
finite degeneracy which can be exhibited by con-
structing an underlying massless theory, so that
to relate Q ~ to Q~ we have to go through Eqs.
(11) and (15), which is not the same as trying to
rotate 0 directly into Q~ ' in the massive theory
itself. In fact, when stated in this way it would
appear quite difficult to obtain a conserved mass-
ive axial-vector current. However, we have not
yet found a general rule for determining whether
particular massive theories have a conserved cur-
rent, and for the moment this must be discussed
on a case by case basis. Indeed the example we
have presented of a free massive fermion is itself
one in which the current is not conserved, whereas
in the 0 model the current of course is conserved.
However, what happens there is that the axial-vec-
tor current contains not just the fermion bilinear
but also a meson term, and it is their interplay
which maintains current conservation (and hence a
massless pion} in the translated mode. In this
case the fermion mass arises through the tadpole
g(o) contribution of Fig. 2(a), whose distinguisl;-
ing feature is that it contributes a constant
P-independent shift to Z()()). Exactly the same
situation is met in the ladder approximation (one
loop) to the 4-Fermi interaction discussed in Refs.
1 and 12 [Fig. 2 (b)]. In this model there is a
dynamical bound-state scalar tachyon whose shift-
ing also produces a constant contribution to Z(p),

as required since each 0 ' provides an equivalent
description of the same massive fermion. [ It is
important to note that the quantity that appears in
Eq. (19) is not

cos2{2(Q g'm )I)
~

Q" )

+ 2 sin2a(Q g, yog „~Q )

since, as we have already stated, we are not
making a y, rotation in the massive theory. In
this paper whenever we use the term y, degener-
acy we have in mind the invariance of Eq. (19)
rather than an explicit transformation on the
massive vacuum, i.e., we define the degeneracy
through matrix elements only. ] Further,
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FIG. 2. (a) The scalar tadpole contribution to the ferm-
ion self-energy in the 0 model. (b) The one-loop contri-
bution to the fermion self-energy in an interacting 4-
Fermi theory in the self-consistent vacuum.

with the massive current remaining conserved.
It would be of interest to see whether the bound
state in this model is preserved in higher orders when

Z(p) becomes dependent on p. If the bound state
is lost, then the momentum dependence of Z(p)
may be the general indicator of whether the mas-
sive current is conserved or not.

As an example of a situation in which the mass-
ive theory has no conservation we return to our
analysis of finite @ED I where Z(p) has a moment-
um dependence] begun in the Introduction. Since
the theory is renormalizable there are now Bethe-
Salpeter equations. As well as Eq. (2) we also
have the equation for the pseudoscalar insertion,
igy

q" r„,(p, p+q, q) =s '(p+q)y, +r,s-'(p)
A

+2m ' I~(p, p+q, q) (22)
Zp

reduces at q„= 0 to (no Goldstone pole)

Z
2m S r, (p, p, o)-2m r, (p, p, O)y, =O,

P
(22)

which is a completely chira, l-symmetric relation
for asymptotic p, which holds since I~, I'P

asymptotically satisfy the same bootstrap equa-
tions. Moreover, bootstrap equations exist for
all linear combinations cos20. I~ +sin20, fP, and
it is just a matter of convenience which one we
identify with the mass term Z (P) and which with

the divergence of the current. Thus in the mass-
ive theory the y, invariance is not a property of the
equations of motions themselves, but rather it is
a feature of the set of homogeneous bootstrap eq-
uations for the insertions of the various
cos2agg+ i sin20. gy, g into the fermion propaga-
tor. This complements our discussion of Eq. (19).
There is an intuitive way to understand this lack
of current conservation suggested by our previous
discussion of the o model. In the present case we

mI'p(P, P+q, q)

=moZ2y, +m d k K, k, q S A'

xrr(k, k+q, q)S(k+q) . (21)

Because of Eq. (4) the axial-vector Ward identity

~(m) = —~g I. (p'+ m')'" —Ip I]
P

2~ 1 m' 1m'
+ ~ ~ ~

= —quadratic + logarithmic (25)

In Ref. 1 the authors worked with a cutoff so that
e (m) was indeed negative in their work. We shall
see next in Sec. III where we show now to construct
e (m ) for an interacting theory that after renormal-
izing the theory the logarithmic divergence takes
over and completely alters the stability properties
of the theory.

III. BOOTSTRAP CALCULATION OF THE

VACUUM ENERGY DIFFERENCE

Before discussing the specific question of dy-
namical symmetry breaking by composite operat-
ors we review briefly the situation which obtains
when there is a fundamental field. The most
convenient framework is that described by Coleman
and Weinberg. '" We start from Schwinger' s
generating functional, W(J ), in which the field of
interest, Q is coupled linearly to an external
source, J, with

Ilv( J) ( 0+I 0-)

0 Texp i 4('.(*)+Jt*)(( )I) o).
(26)

Here 0, 0' are respectively the vacua long before
and long after J (x) has acted (i.e. , we consider J
to act smoothly within a large but finite four-dim-
ensional box of volume I'T). A c-number class-
ical field is then introduced through the defini-
tion

~w (o'Iy(x) Io-& ~

()J (x) (O'I 0-) (27)

which enables us to construct an effective action

are missing the additional scalar and pseudo-
scalar bound states which could interplay with the
fermion mass to maintain 9"j»=0. Thus, to re-
peat, once there are homogeneous self-consistent
bootstrap equations for the fermion composites
the solution has no conserved current.

To determine whether or not the massive solut-
ion is energetically favored we require the vacuum
energy density difference

~(m) = —
I &II' ' IH" III"&

-«"' IH"' III"'& ]
1
V

(24)

to be negative. ' For our example of a free theory
this is readily given as
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functional

I (P. ) =W(J) — d'x d (x)y, (x) . (28)

This r(Q, ) ean be expanded in two ways, either in
a functional Taylor series about Q, =0 or in
powers of momentum about the point where all
external momenta vanish, i.e. ,

r(P. ) = —, d'x d'x I "'(x . . . x )n!

xP, (x, ) P, (x„}

dx -Vp +2 8~$, ZQ + ~ ~ ~, 29

where we have introduced the effective potential
V(P, ) which satisfies

(30)

The significance of V(P, ) is that"

V(y, ) =(S~HJS) -(N~ II, ~N), (31)

i.e. , it is the energy difference between the normal
and spontaneously broken vacua of a given
Hamiltonian density, 0,. Note that this is not the
same energy difference as that of Eq. (24). Thus
we start off in a normal vacuum in which (N~ Q~ N )
=0, and find that the dynamics is such that there
is another vacuum with a lower energy in which

(S
~ P ~

S) g 0. In order to keep the particle inter-
pretation we usually shift the field at this point so
that (S )P' ~S) =0, but this is only a matter of con-
venience. The physics of spontaneous breakdown
is in the fact that ~S) and

~
N ) are different vacua,

and the shifting is only performed so that the no-
particle second-quantized Fock space vacuum will
coincide with the (first-quantized} state of lowest
energy.

The utility of Eq. (30) is that we usually do not
know

~
S) and so we look for the true vacuum by

summing an infinite series about }N), the vacuum
for the Green' s functions I'" (q, =0), i.e. , we
recognize the r'"' as quantum fluctuations about

~N) since we made a Taylor series expansion
of Eq. (29) about the point (Nl P~N) =0. It should
not be thought that the action of the source has
taken us from

~
N) to ~S,&. The source here has

no physical significance and was only introduced
to obtain Eq. (30), which can then be discussed in
the absence of sources. Though the source has no

physical significance, it can be used as a mathema-
tical fiction for interpreting the ferromagnetic
self-consistent Weiss mean field as a bootstrap
phenomenon. In c3lculating the position of the
minimum of V(@,), i.e. , (S~P ~S), it is conven-

ient to imagine a situation in which we switch on
an external field, B, make an infinite summation of
perturbation theory diagrams about ) N) in its pre-
sence, and then switch off B at the end and obtain
a nontrivial result. Thus the bootstrap nature of
the solution is due to the noninterchangeability of
summing diagrams and switching off B. In the
terminology of Ref. 23 this is the use of the un-
shifted or Q lines. Alternatively we could write
down a nonlinear equation for ( S~ @ ~

S) directly
in the shifted or P -line description of Ref. 23
[ the equation V'(P, ) =0], which again is a self-
consistent bootstrap equation. Indeed (see e.g. ,
Ref. 24) the characteristic feature of condensed
matter below the critical point is a spontaneously
broken phase with an associated order parameter
whose bootstrap nature is that it satisfies a self-
consistent equation of a form analogous to Eq. (1).

Though we have indicated that the source is a
mathematical device, there is a possible source of
confusion since an external magnetic field does
play a physical role for a ferromagnet below the
critical point. What happens there is that the
ferromagnet usually starts off in an impure state
prior to preparation, with the ground state being
described by an incoherent superposition of all the
different degenerate vacua, )S;), of the system.
In that impure state the ensemble average of the
magnetization is zero (as is the case if we are in
the ~N) vacuum above the critical point, though we

are not of course). If we now apply a weak exter-
nal magnetic field and then remove it again the
system will now be forced into and then remain in
a pure state built only on one of the (S,). In this
pure state the magnetization is nonzero and re-
mains pointing in the direction of the original ex-
ternal magnetic field.

Up to this point we have discussed phase-trans-
ition theory so as to indicate why symmetry break-
ing would be a bootstrap phenomenon, and have
presented the formalism suitable for studying the
problem when there is a scalar field in the theory.
We turn now to the study of composite operators.
Now in principle the problem has (presumably)
already been solved by Eq. (30), which could
equally well have been constructed by coupling a
composite operator to an external source. How-
ever, in that case the F~"' have no simple diagram-
matic significance and for the moment Eq. (30)
seems intractable. Now of course we would only
be interested in V((gg) ) if we were actually in the
Goldstone mode, with H, being a chiral-invariant
Hamiltonian density. As we have already remarked
the finite QED mode has a nonconserved current,
so that V(($$)) is not in fact the object of interest,
since rather we wish to study a theory which has
an explicit mass term present. We shall now ob-
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tain a suitable alternative to V((gg&) which will be
of use in finite QED and which will have the same
utility in discussing broken symmetry. [Apart
from our own interest in e(m) in what follows, a.

knowledge of it actually permits an evaluation of
V((gg&), a point we will return to below].

In constructing the effective potential we used an
auxiliary device, W(J ). QZ) is also an energy
difference and it is of interest to ask which. "
Consider a constant j(x) inside the four-dimen-
sional box, so that

w(. )= f ~'. ,(zI .
Then

(0+I 0-& -iL Tel 7)

(32)

(33)

Thus at t = —~ we have a Hamiltonian density
H, with a vacuum 0, which passes smoothly into
a density Ho-JP with a vacuum Q~ during the time
interval T, and then passes smoothly back into

H, at t=+~. The vacua at t =a~ are vacua of the
same 0, and can thus only differ by a phase, the
one given in Eq. (33). However, the phase is
determined by the theory in which J acts, i.e. , by

the state of the system at t = 0, so that it gives the
energy of the ground state of the perturbed system
as discussed in the method of adiabatic switching
developed by Qell-Mann and Low. Thus"

e(&) =(fig I(ff, -~4)lflg& —«.Iff.lfl. &, (34)

which we recognize as the energy difference of Eq.
(24) (when JP is replaced by -ming ), so that we are
now ready to extend Eq. (25) to an interacting
theory. [ In passing we remark that Eq. (34) is the
relativistic analog of the statement in statistical
mechanics that the thermodynamic potential is the
logarithm of the partition function in the grand
canonical ensemble. ]

Though we have now generalized Eq. (25) to an
interacting theory, e (m) is not quite what we want
yet since it compares energy differences of differ-
ent Hamiltonian densities which is not itself of
immediate physical significance. Using the
Bogoliubov-Valatin transform, however, it is easy
to show that (n"' Iff"' Ifl'"' -n«&"' IH" II1"'&
are equal, as is to be expected since gP possesses
a vanishing expectation value in the chiral-invari-
ant vacuum 9 . Consequently, we can rewrite
e (m) in the form

e(~s}=(n™IH™ln"& -(a'" IH" lg"'&
{35)

so that it now compares different eigenstates of the
same H" . However, by construction 0™is the
true vacuum of H '

I up to the infinite degeneracy
of Eq. (15)], whereas Q~'~ is just some other
possible eigenstate of H . Thus for the theory

to be able to support a mass term at all in a con-
sistent manner we require e (m) to be negative.
Should e (m) prove to be positive the theory is
simply not consistent. We thus see the difference
(and similarity) between Eq. (31) and Eq. (35). In
Eq, (31) we compare different vacua of an invari-
ant Hamiltonian density, whereas in Eq. (35) we
compare different vacua of a noninvariant Hamil-
tonian density. For stability both are required to
be negative.

In passing we should just remark that at the time
of writing Ref. 13 we were not sure of the physical
significance of e (m), and in that paper we un-
fortunately referred to it as an effective potential.
To avoid confusion we shall use the term effective
potential exclusively for V((gg&) and refer to e (m)
as the vacuum energy difference.

We can now proceed to evaluate e (m) in the case
of interest. Thus suppose we have a massless
theory in which a mass arises dynamically through
the appearance of a mass term mfa in the massive
theory. The mass term is a true mass term, but

formally we can treat it as a source term (with the
source now acquiring a physical significance), "
so that

e (m) =Q —,GIO] (q, = 0)m", (36)

+ ~ ~ ~

FIG. 3. The exact set of graphs used to calculate the
vacuum energy difference, &jm), in a free fermion
theory. The propagators are massless.

since e (m ) generates the Green' s functions of the
insertions of gg into the vacuum functional. Note
that the 6~~0~~ are the (I $ connected Green' s func-
tions of the massless theory (m=0). Unlike Eq.
(30) the coefficients in Eq. (36) have a simple
graphical interpretation precisely because gg is
a composite insertion and are easy to calcu-
late. As we stressed in Ref. 13 our construc-
tion of Eq. (36) is achieved precisely because
the fermion mass term is linear, and thus our
construction can only work because the composite
g)} gives the dynamically induced mass term we
are looking for. Our approach would not be useful
for studying situations in which, say, a quartic
composite acquires an expectation value. There is
thus a deep connection between the fact that 7/rP

acquires a vacuum expectation value and the fact
that m~$ 0 is the mass term suggested by the Dirac
equation, and this connection itself is a bootstrap.

To see that ever~Ching is consistent let us now

calculate Eq. (36) for a free theory. The whole
theory is given by the set of graphs of Fig. 3,
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+ + ~ ~ ~

FIG. 4. The single tadpole graph of a free massive
fermion theory. The propagator is massive.

where each vertex is just the bare vertex and
where each propagator is massless, so that the
vacuum energy difference is given by"

m4- A2
e (yn):= — 4 —1 —2 ln32r2 m2 m'

= —quadratic + logarithmic, (37)

i.e., the same divergence structure as Eq. (25),
though now we are using a covariant cutoff. More-
over, by definition

e'(m) =(n" gy ln' '), (38)

We now sum the series of Fig. 3 and calculate a
nonvanishing form for Eq. (38). This is because

$P, while normal-ordered with respect to 0, is
not obliged to be normal-ordered with respect to
O' . Thus even if we normal-order the under-
lying massless theory there will still be tadpole
graphs appearing in the massive theory. Since
normal-ordering the massive theory will not affect
Eq. (37) either we must look for another prescrip-
tion. Moreover, normal-ordering is not really
a good prescription since as well as the infinities

, t E(m)

whose graphical structure is given by the one-loop
graph of Fig. 4 in which the propagator is massive.
Thus we confirm Eq. (38) by noting that Eq. (19)
is the derivative of Eq. (25).

Now how do we remove the divergences of Eq
(37)? We discuss first the normal-ordering pre-
scription. When we normal-order we have to
specify which vacuum we are normal-ordering
with respect to. Consider first the massless
theory. In the massless theory (Q~ gg lQ~ ' ) is
already zero without normal-ordering since Fig.
4 vanishes for a massless propagator. Moreover,
none of the graphs of Fig. 3 will be affected at all
by normal-ordering, so we can consider them as
already normal-ordered with respect to 0", i.e. ,
the first graph for instance is given by

FIG. 6. The one-loop approximation to e(m) for an
interacting theory. The shaded blob vertex represents
the complete dressed scalar vertex. The propagators
are massless.

m' m2
e (ns) = —

2 2 ln, —132r' (40)

with M chosen so that e' (M) =0, to take out the
tadpole of Fig. 4, so that the renormalized fermion
mass is given by m=M. Equation (40) is plotted in
Fig. 5, and we see now that the massive theory
(m=M) is no longer energetically favored. We be-
lieve this to be a possibly serious defect of a free
Fermi theory, which we shall remedy below by
generating a dynamical mass.

In an interacting theory we no longer know the
C~",

~
Green' s functions exactly, so we shall make

the loop approximation of Fig. 6, essentially by
inserting the complete dressed vertices of Eq. (4)
into Fig. 3. The bootstrap nature of this procedure
is apparent. However, we recall that Eq. (4) was
the solution for the dressed vertex in the massive
theory, whereas we need the vertices of the mass-
less theory for Eq. (36). For the massless theory
we shall have to renormalize off-shell by intro-
ducing a subtraction point, p. [Equation (3) is
renormalized on-shell. ] If we consider the first
graph of Fig. 7 (lowest-order perturbation theory),
we note that it is a vertex renormalization, not a
mass renormalization, and possesses a logar-
ithmic divergence in the Landau gauge even with
internal massless propagators. Thus unlike the
vertex F„of the insertion of: ~„g: into the fer-
mion propagator, we see that F~ is not finite in
massless fermion QED in the finite gauge. How-

ever, the divergences in I ~ are removed non-

of the free theory it also takes out the finite parts.
Thus we shall normal-order only the massless
theory to keep the electrostatic charge of the vac-
uum finite, but shall use a different prescription,
namely counterterms, in order to handle the
additional infinities met when we introduce a mass.
Thus we add m' and m' counterterms to Eq. (37).
Because of the infrared divergence in G~«'] (q, =0)
we follow Coleman and Weinberg by introducing an
arbitrary mass M, so that, as described in Ref. 13,

FIG. 5. The calculated ~(m) of a free fermion theory.

+~+~+...

FIG. 7. The graphs which contribute to the renormal-
ization of I'~ (p, p, 0) in massless fermion @ED.
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perturbatively at the eigenvalue by summing the
whole series of Fig. 7, which then compensates
the bare vertex. Thus after a nontrivial multipli-
cative renormalization by ZB [ = (A'/p')i'~)» - 0]
we obtain a scaling equation which holds for all
momenta since we are still in the massless theory.
Hence

p2 (i/2) ye( &)
I',",„'(P,P, 0) =Z,C(u) (41)

for all momenta, with C(a) being an arbitrary
function of the coupling constant. [Note that since
we are at the eigenvalue changes in p, do not

correspond to changes in the effective coupling
constant. We fix the eigenvalue once and for all
from the photon sector alone so as to then control
the asymptotic behavior of the massless theory.
Because of the essential singularity in p (o. ) we can
then renormalize the fermion sector of the massive
theory on-shell, with the physical coupling constant
then being given by the same eigenvalue. 'Thus the

parameter p has only limited significance and does
not serve as a scale for the eventual dynamical
electron mass. "]

The situation described here is analogous to
Wilson' s discussion of the massless Thirring
model. " In that model the composite: gP: acquires
a negative anomalous dimension nonperturbatively
(the model is easy to solve since there is no coup-
ling constant renormalization, so it behaves in the
fermion sector as does finite QED at the
eigenvalue), so that there is a nontrivial gauge-
independent renormalization in the theory with Eq.
(41) holding for all momenta since the fermion is
massless. Returning now to finite @ED we find that
we have complete conformal invariance with

anomalous dimensions in the massless 0 ' vacu-
um, and that information alone will soon be seen
to be sufficient to destabilize A~' and take us to
Q' ' where Eq. (3) holds instead.

The calculation now proceeds as in Ref. 13.
From Fig. 6 we obtain

d'I (-1) I -p' »~")iZ-' "
c(m)=i ~P Try [ —i ,Z(Ca)]', ' m'

)) = )

(Vp p2 yg( 0t)

, Trln 1 —C'(a) —,
2 2B' P

(43)

(43)

which satisfies

sl " — = mI',"'„-(P, o, 0) .
s3„-'&e)

(44)

This form can be conveniently rewritten by defin-
ing a massive propagator for all momenta

(da)ye(~)
S„'(P)= Z, P —mC(a )

tex and dressed propagator. In Ref. 13 we have
calculated e (m) for different values of re(a) and

the results are presented in Figs. 9, 10, and 11
for the respective cases 0&ye(a) & —1, ye(a) = -1,
y~(a) —1. [The ambiguity found in Ref. 13 in the
case 0&ye(o.')& —1 will be resolved in Sec. IV.] In

the case of most interest, y (u)= -1, we have

Thus c (m) can be rewritten compactly as

( l= —,Tr( ' S, '())) (45)

16m' C df Ptl p,

We add a counterterm

(47)

with Z, '/f( being the fully dressed propagator of
massless QED in the finite gauge. Further,

4

e'(m) = —i, Tr 1"~",i„(P,P, 0)3'„(P), (4

c'(u) 'w' (."(a)M*g')
16m' A'

chosen so e'((M') =0; so that after renormalizing
we obtain

.-;o that (Q' ' ~gg(Q' ') is given by the tadpole graph
of Fig. 8, which is calculated with the dressed ver-

C'(a)m'p' )N2
e(m) = ~ ln —,—1, (48)

FIG. 8. The tadpole graph of an interacting theory in
the one-loop approximation. The vertex is dressed and
the propagator is massive.

Lr.
FIG. 9. The stable ~(m) obtained in 0&yz(a) & —1,
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" &(m)

L/'LI

FIG. 10. The double-well ~ (m) obtained in ye(o. ) =—1.

where the arbitrary M now sets the scale for the
fermion mass. The tadpole graph is now removed
by choosing m=M, with the massive theory now

being energetically favored. We thus see that after
renormalizing there is a nontrivial choice for the
mass that we can put into the propagator in Fig. 8
which causes the tadpole graph to vanish identi-
cally (without any need to normal-order the mas-
sive theory). This is a bootstrap phenomenon in
which the condition e ' (m ) = 0 has a nontrivial
solution, ~e and is the analog of the situation met
when discussing the scalar field case where
V'(q&, ) =0 nontrivially. An alternative and essen-
tially equivalent physical description is to think of
m as a Lagrange multiplier for fg," so that, as is
typical in statistical mechanics, the Lagrange
multiplier is nonzero in the physical solution and
acquires a physical significance, in this case that
of a mass. Thus what has happened is that the
infrared divergences generated by the solution of
Eq. (41) (which itself came originally from the
ultraviolet) have accumulated nonperturbatively in
the series of Fig. 6 to destabilize the origin and
force us to a nonzero mass. Moreover, the coun-
terterm we used removed both the ultraviolet and
infrared divergences from Eq. (47) at once. We

thus demonstrate the deep interplay between the
infrared and the ultraviolet which occurs when
there is dynamical symmetry breaking.

Having demonstrated the utility of the loop ap-
proximation we shall conclude this section by dis-
cussing its range of validity. We note first that our
loop summation is essentially nonperturbative
since it uses dressed vertices and dressed propa-
gators, so that it corresponds to infinite summa-
tions of dressings to bare loops. This of course
immediately poses a double-counting problem. W'e
shall now argue that such double-counting problems
are very mild, and that our loop summation may
even be exact. The summation of Eq. (42) is a.

summation of graphs which are either ultraviolet
divergent or infrared divergent when all external

FIG. 11. The unstable ~(m) obtained in ye(&) & —1.

momenta vanish or both. Thus our model provides
a specific parametrization of those divergences by
utilizing the exact conformal invariance of the un-
derlying massless theory. For instance, the 2-
point function of Eq. (39) is fixed uniquely to be

GIo) (&»

(f'p Tr[P(P'+g)J
(2v)4 [p2(q +p) pm- ((@&~e (50)

to be compared with the model value [ which dif-
fers from the first term of e (m) by a combina-
toric factor] of

d
G&",&' (q„=0) = —i 4C'(o. ) 2w)' p'

G'((r)& '"' {p)""e "
4«{1+ye)

(51)

Thus we see that the model correctly reproduces
both the ultraviolet and infrared divergences of the
exact G&',

&
at q„=0, being exact up to an over-all

numerical facto r.
The reason why there is no double-counting pro-

blem for G~',
&

is because there is no overlapping-
divergence problem. A Schwinger-Dyson equation
for G&',

&
would ordinarily equate it to a loop inte-

gral in which one vertex is dressed and the other
bare, and thus give a different parametrization of
the divergences than that correctly found in our
model where all vertices are dressed. However,
such a Schwinger-Dyson equation for d&me» only holds
in theories where G&',

&
is in fact the proper self-

energy part of some fundamental scalar field with
the vertex being dressed by the scalar field itself.
This of course is not the case in QED where only
the vacuum polarization satisfies a Schwinger-
Dyson equation. Thus the absence of a scalar field
in QED neatly avoids the problem of overlapping
divergences in G&',

»
and permits our model to deter-

mine it exactly.
For the 4-point function d&',

&
we cannot make the

same analysis as for G,'» since conformal in-
va. riance does not fix &',I uniquely. (Even if it did

E(o) Tr(x -y){y —g)
4(&4 i/2&'e[(z y)2](1/2&e(e+1&[(y x)R](1/2&&((eall

(49}
where E (a) is an arbitrary function of the coupling
constant, normalized so that E (a) =1 for a free
Fermi theory. %'e Fourier transform G(',

&
treat-

ing it as a product of two propagators, so as not
to miss the tip of the light-cone singularity in Eq.
(49). Thus
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(53)

IV. DEGENERATE-VACUUM WILSON EXPANSIONS

it is doubtful that the conformal structure could be
Fourier-transformed analytically, this being the
situation met in the soluble Thirring model appar-
ently. ) Consider, however, the special case in
which all external momenta are scaled to zero to-
gether T. hen since GI', I is dimensionless

G&l) &v, -&) ~ } (52)

since q' and p' are the only scales in the theory.
However, the model gives

c,&
C'(n)p '"(& (P'}'"6

~g(q„=0)= 4 2
7r 'Ye

and hence successfully parametrizes the infrared
divergence of Eq. (52) when y«& 0. The argument
can be carried out for the 2n-point function in the
same fashion with conformal invariance correctly
parametrizing the infrared divergence of each
term in the summation of Eq. (42}. Thus the only
thing still to be fixed is the relative numerical
weight of each of the terms that appear in the
summation.

To fix the relative weights we return for sim-
plicity to the formula of Eq. (47) which we obtained
in the special case where ye = -1. We note that in
this case only t"~~',~~ possesses an ultraviolet-div-
ergent logarithm, providing e {m }with a term of
the form C'(n)m'g'lnA'. Thus on purely dimen-
sional grounds the infinite summation of the in-
frared divergences of all the other Green's func-
tions must produce a compensating term of the
form C ((r)m i( 1nm p and thus remove the depen-
dence on the infrared divergence coming from the
lower limit in Eq. (51), and our model is a spe-
cific parametrization of the relative weights which
produces such a compensation. For the moment,
however, we are unable to show that this is the
only way that it can be done. Apart from this
possible question of uniqueness it then appears
that our loop summation with dressed vertices may
well be exact, and as such it provides an exact
determination of the ground-state energy of mas-
sive quantum electrodynamics by appealing only
to the conformal properties of the underlying
massless theory.

T((C(x)q(0)) =(fl"'IT(&j( 9(0» If)'" }

+Z, 'D(a) a, (,i,)„« .&(0)g(0):,
1

(54)

where (0'"
( T(&j&(x)p(0)) )0(")is just a free mass-

less propagator in the finite gauge. Equation (54)
follows simply by summing the series of Fig. 7.
(Note that there will be no singularity at all unless
y6& 0.) Here the dots mean that we have normal-
ordered with respect to 0' so that Eq. (54) is an
identity when taken in the Q" vacuum. Now in our
case there is a new vacuum 0 in which: gg: can
take an expectation value, as we discussed in the
previous section. If this happens we then generate
a nonleading mass term in (0( 1

~
T (&j&(x)&)&{0))(0&"'),

the true propagator of the theory. Thus g$ acquires
an expectation value from the infrared which then
shows up in matrix elements of Eq. (54} in the
ultraviolet. To make our discussion as general as
possible let us work in a theory with space-time
dimension D so that the dimension of: PP: is
given by (f« = y8 +D —1. Recalling that

~fP'x
dD vo/s 2D 2x (2-)( 2)k-(&/2&D

( «2)h r(~)
-P

(55}

we thus obtain for the true propagator of the theory

Z ' 0' ep '2 +&e
~(P) = + & D(o')

where

with o also being equal to c'(m). For large momen-
ta the inverse propagator is given as

g &(p) =Zp —Z+(a)o(&."9v~/'2~'/e
Tr1

( la 1

y (& 2y8
( pQ)(1/(&(I 4e) (56)

1 (-aye)

The main theme of our work is that the ultra-
violet and infrared regions are related, and we

now use this fact to discuss the question of what

happens to the Wilson expansion when there is a
degenerate vacuum. In massless fermion QED at
the eigenvalue or also in the massless Thirring
model we have the standard expression (ignoring
additional terms which will be irrelevant to the
subsequent discussion)

Thus we construct the true propagator by changing
the vacuum. Now in the Introduction we presented
an alternative way of constructing the propagator
in which the quantum fluctuations associated with
the fields contained particles of mass m and yield-
ed E((. (4}. [The difference between this propagator
and 8„'(P) of Eq. (43) is not significant, since, as
we shall show in Sec. V, there is a renormaliza-
tion invariance equation for the mass so that
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1 —~~ =d~+1-D (59)

de = D, -y~ =1 —,'D, — (60)

so that we recover our condition y~(n) = —1 when
D =4 as required.

Moreover, we can also discuss the case D=2.
(We need not consider D&4 because of renormal-
izability. ) In D =2 we would require ye =0, which
would mean no singularity in Eq. (54); thus the
mass bootstrap is not achievable in two dimen-
sions. Further in the Thirring model we have
y& & 0, so that any bare mass would vanish asymp-
totically as in finite QED. Specifically Wilson"
found that de =(1-X)/(I+ A), where X is positive
for a repulsive current-current interaction, so
that d~ &1. Thus the fermion does not: acquire a
mass, as is already known from Johnson's solu-
tion to the model. In the Thirring model there-

changes in p can be absorbed in C(o. ).] Equations
(43) and (58) are two equivalent descriptions of the
same physical situation. Thus we see that the mass
arises because gg acquires a vacuum expectation
value, and we obtain a bootstrap condition from the
momentum dependence

fore both the bare and renormalized masses are
zero, so the fact of y& being negative is only a
necessary condition that the mass be dynamical,
with Eq. (60) providing the sufficient one. To
confirm that the massless Thirring model is en-
ergetically stable we also have to show that
(Q" )H' ~Q ') —(Q" (H'" ~Q") is positive, i.e. ,
that V((gg) ) has a minimum in the Q~'~ vacuum, so
that Q~'~ is the true vacuum of the massless theory.
Calculating c (m) in the massive Thirring model
can give us information about the consistency of
the massive theory but does not tell us anything
directly about the stability of the massless theory.
However, a knowledge of c (m) allows us to con-
struct V((gg) ) indirectly from Eq. (28) in those
cases when e (m) has a simple enough structure.
Indeed our loop summation for y~ &0 gives

which is completely finite and hence free of any
renormalization ambiguity, and has the structure
of Fig. 11. Thus from Eq. (27) we can construct
(Pg) as a function of I, so that from Eq. (28) we
obtain

V(ikt{'})= ~(~&) ~(04)

~o v
1

&'-ve'
Pg)

2 [ I/(1+1'~I

4 1 -yq (62)

In the range 0&y~&-1 we thus see that V((pg)) is
stable about 0' having the structure of Fig. 9, so
that the massless vacuum is self-consistent.
Moreover, we also note that for y„=-1 the Hamil-
tonian is unbounded since V((4$)) is negatively di-
vergent at the origin; we thus recover the well-
known result that the massless Thirring model is
unbounded below in d~ & o.

Returning now to the massive Thirring model we
note that e(m) of Eq. {61)is negative so that the
massive vacuum 0™in the theory where there is a
mass term in the Lagrangian survives our con-
sistency check with the massive model apparently
also being acceptable. (Since m is not a parameter
to be varied —each value of rn defines a different
theory —we cannot conclude that. the massive
theory is unbounded below in Fig. 11.) However,
we can only satisfy the condition =-'(m) =0 at ~n=0
and can thus never remove the tadpole in the
massive case. Unfortunately, it is not clear
whether this additional requirement is necessary, "
and consequently we are unable to exclude the
massive Thirring model for the moment. Further
study of the nature of the requirement that e' (m)
vanish is necessary in order to determine whether

the massive Thirring model is an acceptable theory.
While discussing two dimensional field theories we
would like to make one additional remark, namely
that fo r a free Fermi theory in D = 2 e(m) has the
structure of Fig. 10 after removing a single
logarithm, so a free massive fermion is stable in
D =2 to contrast with the situation obtained in D =4.

So far we have studied the momentum dependence
of Eqs. (43) and (58) and obtained the bootstrap
condition of Eq. (60). However, the equivalence of
the two propagators contains further information as
it also equates the numerical coefficients of the
nonleading parts of those propagators. We shall
now show that this further constraint is also sat-
isfied identically when y(„= -1. To do this we shall
need an additional relation between E(a) and C{a)
other than the one given by equating Eqs. (50) and
(51) (restricting ourselves now to D =4), viz. ,

E( }26-2!fg 'L& 2 (&} C2( }r'(-,' de +!)

The extra relation will be supplied by studying the
consistency of various operator-product expan-
sions. In massless fermion QED conformal in-
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variance yields

(0) .— .— (o) iA(o) {y -z)(2 —I)&I)' IT({{'(x):4(zN'(z):Nb)}III')=Z2
4 4 )'g [( p( )2](gg)ge+Q [( p]g/, x, 4 ]

I

(64)

A(a) =D{o.)E(a) . (65)

Moreover, we can Fourier transform Eq. (64)
analytically at zero momentum transfer using the
method described in Ref. 27. After amputating
the fermion legs with Z,P inverse propagators we
obtain

r,"'„(I,P, o}

= Z, A (a)2' e(d —1)

r*(!--.'4)~tl--:49(4-2) -p')"" ~

I (k+kd )r(k+2d )r(3-d )

(66)

Thus from the consistency of Eqs. (49), (54), and
(64) obtained by letting x approach y in Eq. (64) we
find that

E(pal) = cac[C'(a)@PE, '~el "i' '~ l w(1+@~
167t' 1

(70)

have just made has not taken into account the
counterterms used to renormalize e(na) and hence
we must compare Eq. (69) with the unrenormalized
form of e'(n). In a sense the counterterms take us
outside of QED as a closed theory, a point which
we will discuss in more detail below. So long as
we stay within pure QED, however, the unrenor-
malized e(m) of Eq. (47) is infinite when de =2 (but
still negative-definite so that the massive theory
is energetically favored). For our purposes con-
structing e'(m) from Eq. (47) is not the most
convenient way of parametrizing the infinity in Eq.
(69). Instead we first construct e(m) in d~ &2 where
it is completely convergent, viz. ,

"

The coefficient in Eq. (66}was previously called
Z,C(a) in Eq. (41). Hence we can now express Eq.
(58) entirely in terms of C(o. ) and proceed to com-
pare it with Eq. (43).

If we now approach the special value de=2 from
below we find first that

If we now analytically continue onto the pole at
yo = —1 we obtain

mp'C'(a)
4w'II +yeI

' (71)

A (a)
I2-d I

(67)

(68)

Hence the consistency of Eqs. (58) and (43) re-
quires

mp'C'(a )
4v'I 2 - de I

(69)

where 0 is also to be obtained from Eq. (46). How-

ever, before we make the comparison we must
point out that the short-distance analysis that we

Since we require mC(n)(- p'/p')~"'~&e to be the
dynamical mass term in the first place C(a) must
be finite. Thus A(n) must vanish when de =2. In
passing we then remark tha, t since Eq (64) is.
presumably nontrivial the vanishing of A(a) in turn
implies the vanishing of Z, when de =2, where we
recall again that Z, is the gauge-independent part
of the electron wave-function renormalization con-
stant. %e mention this point here only because it
may prove to be interesting, but will not affect the
work of this paper since objects like e(m) are in-
dependent of Z, . We now eliminate A(a) and E(n) to
obtain

which agrees indentically with Eq. {69},to demon-
strate the complete consistency between the two
different ways of constructing the nonleading part
of the fermion propagator.

%e turn now to the difficult question of the signif-
icance of the counterterms we introduced in Sec.
IIL As we have just seen in deriving Eq. (71) we
can have a consistent formulation of the theory in
which both e(m) and e'(m) are negatively divergent
with the ultimate final form for the propagator of
Eq. (43) still being completely finite. [ A possible
zero in Z, would not affect the position of the pole
in Eq. (43).] In that respect the unrenormalized
structure found for e(rn) still leads to a perfectly
acceptable physical system, unless there is some
measurement which is sensitive to the logarithmic
divergences in e(m) or e'(m). Since we will sug-
gest in Sec. VII that c'(m} is indeed measurable
as a tadpole contribution to the Gell-Mann, Qakes,
and Renner Hamiltonian we shall therefore favor
some renormal ization scheme. In renormalizing
e(m) we then have to go outside of QED as a closed
theory. Moreover, in order to obtain the counter-
term used in deriving Eq. (48), i.e., a term pro-
portional to nP, we must add into the Lagrangian a
term of the form (gg)', so that a 4-Fermi inter-
action is induced into QED as a renormalization
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counterterm, this being a hitherto unsuspected role
for the 4-Fermi interaction. This intriguing pos-
sibility obviously demands further investigation,
and so far we only have some speculations which
we will present in Secs. VI and VII.

The renormalization prescription we introduced in
Sec. III not merely removed the infinity from
e'(m), but the finite part as well, so we will now
discuss an alternative prescription in which e'(m)
remains nonvanishing. This alternative prescrip-
tion is due to Cornwall, Jackiw, and Tomboulis
(Ref. 14), whose work bears some similarity to
ours. They also constructed an effective action for
composite operators whose form is

viewpoint that Eq. (4) is exact is reinforced by
our derivation of Eq. (58), since we obtained the
nonleading term from the infrared, so that there
is nothing else left in the theory to generate fur-
ther nonleading terms in Eq. (58), with the ob-
tained term being both ultraviolet (asymptotic)
and infrared (nonasymptotic) at once."

Finally we then conclude this section by remark-
ing again that the bootstrap condition ye = —1 is
the nontrivial consequence of the fact that infrared
effects show up in the short-distance limit, or
conversely that conf ormal invariance contains
sufficient information to force gp to acquire a non-
vanishing vacuum expectation value.

d' z 1 V. ON THE NATURE OF THE BOUND-STATE PROBLEM

+ Z.PS„(p) -1 (72)

so that it corresponds to setting M=m in Eq. (48).
In this case the tadpole is now both finite and non-
zero, i.e.,

C'(a)mp'
8w' (74}

Moreover, we also remark that for a free theory
ec'~ (m) is found to be logarithmically divergent and

negative, so that it would still require an addition-
al renormalization; alternatively we can say that

(m) is completely finite when the mass is
dynamical. The nice feature of Eq. (72} is that the
two additional terms also depend on S„'(P), and

hence the counterterms do not alter the structure
of the propagator, so that, after renormalizing e(m),
the propagator still possesses the same scaling
behavior. More importantly the S„'(p) required
for Eq. (72) is the exact propagator for all mo-
menta and not merely the asymptotic propagator.
We then have to conclude that when y() = -1 Eq. (43)
gives the exact electron propagator of quantum
electrodynamics even on-shell, so that we can
identify m =C(a}p by normalizing to Eq. (4}with a
pole at P=m; with this choice ec'r (m) =-m'/18n',
so that the physically insignificant parameter p.

has finally disappeared from the theory. This

in one loop, to be compared with our Eq. (45).
Thus the two additional terms of Eq. (72) may be
thought of as representing some counterterms add-
ed to Eq. (45). Indeed calculating ec'r (m) for any
negative ye leads to a finite negative result and in
particular at y() = —1 [care must be taken in perfor-
ming the actual calculation to introduce a combi-
natoric factor as in Eq. (42)j we find

(Jr()C'(a)nP
16~

r, , (kk ) q qfqx d=Pk, k, q() ()qk
xi'~(k, k+q, q)S(k+q) .

(75)

Note that I'~ is not the insertion of 8 "j» into the
inverse propagator, since 8 "j»=0, so that F~
does not appear in the axial-vector Ward identity,
but is nonetheless a well-defined Green's func-
tion of the theory. Now if Eq. |',1) is of the Fred-
holm type its consistency with Eq. (75) would then
require the presence of a pseudoscalar pole in
I'~ at q =0 whose residue satisfies

G(k k q) = J d kK(q, k, q)s (k)G(k k ~ ql

xS(k+q) . (78)

As we stressed in the Introduction the question of
bound states is not related to the question of the
degeneracy of the vacuum, or more precisely to
the question of the existence of the infin. '.te family
of equivalent physical descriptions constructed in
Sec. II. The Goldstone theorem only requires a
pole if there is a conserved current. As we have
seen, the fact that the vacuum is degenerate is not

by itself sufficient to force current conservation,
so there need not be an accompanying Goldstone
boson. Though this point is already understood,
we would like to make some clarifying remarks
about the nature of the bound-state problem to
bring out the distinction between the finite QED
mode and the Goldstone mode.

We discuss first the Goldstone mode. In theories
in which the Lagrangian is y, -invariant but the
vacuum is not, the scalar part of the fermion self-
energy satisfies the unrenormalized gap equation,
Eq. (1)." In this case m, vanishes identically, and

the physical mass is self-consistently determined.
The unrenormalized pseudoscalar vertex I'~ of
the insertion of igy, g into the inverse fermion
propagator satisfies
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Alternatively we could make the same analysis for
the axial-vector vertex I'„, to obtain Eq. (76)
again where now G(P, P+ q) is the residue of the
pole in I'». We then obtain consistency with Eq.
(1) (the Qoldberger-Treiman relation) by going to
the pole in the axial-vector Ward identity in the
familiar manner. 'Thus to establish the Goldstone
mode in a given theory requires to show that there
is a pole in I'» or in Ip, to show that Eqs. (I}and

(76) have a nontrivial solution, and finally to show
that such a nontrivial solution possesses lower
energy than the trivial one. As far as we know this
program has only been carried out completely in
the BCS theory of superconductivity and in the
Hartree-Fock and loop approximations to 4-Fermi
theories discussed in Refs. 1 and 12. We are not
aware that this program has ever been carried out

in its entirety in the vector gluon model. What is
usually done in the literature is to show that Eqs.
(1}and (76) have an explicit nontrivial solution,
say in some approximation such as the ladder
approximation which provides a summation of an
infinite class of graphs. This of course, like the
Ward identity, only shows that the assumption of
a pole is consistent. To establish the pole re-
quires a return to the inhomogeneous Bethe-
Salpeter equations satisfied by F„,or I'~ to see
whether the same ladder approximation will act-
ually generate a pole in those Green's functions in
the first place. Despite the warning of Baker,
Johnson, and Lee that this may well not happen
in a renormalizable theory since the kernel may
not be compact, this point has never been fully
resolved in the literature. Moreover, there has
also never been any demonstration that the Gold-
stone mode is energetically favored in the gluon
model either, which would require a calculation of

V((Pg) ). Thus to repeat, constructing an explicit
solution to Eq. (1) is a, necessary but totally in-
sufficient criterion for establishing the Goldstone
mode.

We turn now to the case where there is a bare
mass m, in the theory. In such a case Eq. (1) is
modified as" (S '(p) = p —m, —Z(p })

(75) and (78}. In passing we note an interesting
consequence of Eq (.78}; it requires 1~(p, p, O) to
be pure y, and have no term of the form I( y„both
for asymptotic and nonasymptotic momenta. Now

Eq. (77) is true for any m, finite or otherwise.
Suppose, however, that m, vanishes when the
cutoff is removed, as is the case in finite QED.
In that case Eq. (77) contains an ambiguity of the
form 0 &~ since the y5 projection of the kernel is
noncompact. We shall resolve this ambiguity by
making a subtraction so that Eq. (77) becomes

d'k(K(P, k, 0)-K(P', k, O}]

x S (k){y„z(k)},S (k),
(79)

f „=1+ & k(K„(p, k, o)-K„(p', k, 0)] „,f—
(80)

so that

„,In{y„z (p)),-,'f'(1),
de 5& + p2

(81)

where m is arbitrarily chosen to set the scale.
Thus for asymptotic momenta

(823

with the integration over the kernel now being finite.
Now the correct behavior of the self-energy when

P and P' are far off the mass shell is given by re-
placing the propagators in the kernel by their free
forms. This is done either by disregarding vacuum
polarization insertions in the photon propagator'
or by summing the theory loopwise at an eigenvalue
for the coupling constant. " Johnson" has given a
general method for extracting the asymptotic
solution to equations such as Eq. (79). He intro-
duces (A denotes asymptotic)

(,„Z(P)), = d'k K(P, k, O)S(k)(y„Z(k)), S(k)

+2~ d'nay, a, 0)S(u &,S a .

(77}

(y„z (p)), +2,&, —2~,1,(p, p, o) =o, (78)

so that Eq. (77) is recovered directly from Eqs.

Now of course there is no Goldstone mode and
a "75':2slpf Pp5g The unrenormalized Ward iden-
tity gives

If f'(1) is negative we note that this solution also
reproduces itself in Eq. (1) (the negative power
supplies the necessary damping for the integration)
so that Eq. (1) exists in this case without renormal-
ization. This is of course the reason why finite
QED is so called. Since Eq. (1) exists without re-
normalization if f' (1) is negative it would then

appear that we have an opportunity to obtain the
Goldstone mode after all if we have Eq. (82). How-
ever, such appearances are illusory, as is best

t

seen by reconsidering l~. If we make a subtraction
in Eq. (75) to eliminate the bare vert&:x we obtain
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(84)

This form for F~ is inconsistent with Eq. (V5) even
if f'(1) is negative since the bare vertex survives
asymptotically. Consequently, Fp needs to be re-
normalized [ it is not clear whether this renormali-
zation is related to that required for ~(m)] even in
what is called finite QED. We shall perform this
renormalization multiplicatively instead of by
subtracting by defining Fp = ZpFp where

f'{,' )

Zp- ~ 85

and vanishes in the limit of infinite cutoff. Conse-
quently, after renormalization I~ now satisfies a
homogeneous equation, Eq. (21), in fact with

n,Z, =mZ~=0. Thus the inhomogeneous bare ver-
tex term is removed when Z~ =0, and I~(P, P+q, q)
can now no longer generate a pole associated with
trying to treat Eq. (1) as a Fredholm eigenvalue
problem. (Moreover, even if it transpired that the
Potential Pole just haPPened to decouPle from Fp
while still appearing in F», the fact of the vanish-
ing of Zp has already shown us that the y, projec-
tion of the kernel is noncompact, so we now know
that the bound-state problem is not of the Fredholm
type. }Since rn, Z, is the renormalizing factor for
F~ we can now also proceed to derive the Callan-
Symanzik equation, Eq. (3), and hence identify
2f '(1) with ye(a). Technically this is effected by
introducing Z6

"' which renormalizes gP so that
Z~ =Z~ =Z, Zg

"' renormalizes F~. If we define

y6 nc [In=&—"'(g~, A/m) ], A], (86)

Eq. (4) then follows at the eigenvalue. In this way

m, is introduced as a multiplicative renormaliza-
tion constant rather than an additive one with

m, Z6"'=m, so that

m, (gg},=m(pg )„„ (87)

[ In fact our mass bootstrap may be thought of as
reinterpreting a vertex renormalization already
present in the massless theory in Eq. (41) as a
mass renormalization in the massive Eq. (3).]
Thus the fact of anomalous dimensions signals for
us the fact that ther e was a nontrivial renormalization
inthe theory which itself can be traced back to thefact
that the y, projectionof the kernel was noncompact.
Hence theories with anomalous dimensions are not ex-

F,(P, P, 0) —F,(P', P', 0)= &'k[Z{Ak, 0) ff-(f', k, 0)]

xS(k)F (k, k, 0)S(k),

(83}

which is identical in form to Eq. (79), so that

pected to possess bound states, a point we have
already stressed. " Actually the argument is not
quite complete since there may be theories in
which the kernel is not of the Fredholm type with
there still being possible bound states, a sugges-
tion made recently by Jackiw and Johnson. " This
possibility seems unlikely in cases which possess
the conventional type of kernel met in renorrnaliz-
able field theories, but may perhaps occur in a
bootstrap type situation where the kernel already
contains the bound state itself. Such possibilities,
however, still remain to be explored.

Though the y, projection of the kernel is non-
compact, the y„y, projection of the kernel turns
out to be compact at the finite QED eigenvalue. "
This then raises the question of why there actually
is no pole in F» which still satisfies an inhomo-
geneous equation,

r

F„,{P,P+q, q)=Z„y„y, + d'k ff(P, I, q)S(k)

Fq, (P, P, 0) = ZAYpr» (89)

so that there is no zero mass pole in Eq. (88).
Thus we satisfy the axial-vector Ward identity of
Eq. (22} by associating the leading part of S ' with

F» and the nonleading part with i~.
In passing we would like to make an additional

remark about the Ward identity. Because of the
essential singularity in P (a) (see Ref. 19) we can
sum the theory loopwise. There is thus no need to
consider closed fermion loops in the Bethe-Sal-
peter kernel, so that there is no intermediate two-
photon state in the axial-vector Ward identity for
I'» but just a continuous fermion line dressed to
all orders with photon lines. Hence the pertur-
bative triangle anomaly (which exists even for
massless physical fermions) plays no role at all in
the analysis of this paper. Loopwise summed QED
is an example of a theory which possesses a non-
perturbatively anomalously nonconserved axial-
vector current (provided the physical fermion
mass is nonzero} while possessing no triangle
modification to F„, at all. [Though there may still
be a modification to the vector, vector, axial-
vector vertex it simply does not show up in Eq.
(22).] Thus these two types of anomaly are on a
different dynamical footing.

Though we have been referring to m, continually
as the bare mass, we would like at this point to
examine in more detail what the actual significance
of the parameter m, is. We note first that it is

x F»(k, k+q, q)S(k+q),

(88)

since Z„{=Z,) is finite. We have recently noted
that2'
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p& ( &b& ye(a)
lim I'z(p, p, 0}- 0,

P Wee OO

(91)

so that y~(a} has to be negative. Self-consistently
we then find that the integration over the kernel in
Eq. (2) exists since the negative-power behavior
provides the necessary damping for the integral.
The important content of Eq. (87) is not that

m, (gg), and m(gg) „„areequal to each other, but
rather that both are equal to a nonzero quantity.
This quantity will be nonzero if the over-all
multiplying factor m in Eq. (23) is nonzero, and as
we have seen this is an infrared effect. The cur-
rent is broken in the solution because we have to
choose one of the set cos2aI~ +sin2aF~ to be the
self-energy, so that Eq. (23) forces the orthogonal
combination to correspond to a nonconserved cur-
rent. It is only in the underlying massless theory,
the untranslated theory where (gg) =0, that the
current is conserved. However, because of Eq.
(91}we see that chiral invariance tends to be re-
stored in the deep Euclidean region, so that the
short-distance behavior of the theory built on the
degenerate vacuum will look rather like that of a

important to distinguish between renormalized
mass and translated physical mass and between
asymptotic mass and input bare mass. In Eqs.
(2) and (87) the parameters rno and mmust both
refer to the same vacuum be it 0' or 0 . Like
the invariant charge

(90)

we note that according to Eq. (87) ming is also a
renormalization invariant. Thus using the usual
renormalization-group approach we can distinguish
between ~ and m by moving the momentum space
subtraction point into the asymptotic region. Thus

m, is the effective asymptotic mass, which is only
the same as the input bare mass of the I.agrangian
if we are in the normal or bare vacuum. However,
in our case we identify m with the position of the
minimum in e(m) by translating to the new vacuum.
If we now do perturbation theory by exciting par-
ticles out of this degenerate vacuum then m, and m

respectively parametrize the asymptotic and non-
asymptotic scattering of these excitations. More-
over, it was our identification of m with (PP), i.e.,
of the particle content of quantum fluctuations about
a vacuum with the position of that vacuum, that led
us to the bootstrap condition ye(o. }= -1. Thus mo

is no longer the bare mass taken in the normal
vacuum but rather it parametrizes the asymptotic
behavior of Is(p, p, 0), a quantum fluctuation cal-
culated in the massive vacuum, O' . Thus for us
the vanishing of the eff ective asymptotic mass m,
is the statement that

ehiral-invariant theory with a normal vacuum,
with vacuum-degeneracy effects only showing up as
discussed in Sec. 1V [this would be a natural mech-
anism for asymptotic SU(3)x SU(3)]. Further,
since m, = 0, we see that Sn=m, so that we ob-
tain the interesting connection that 6m=M, i.e. ,
that asymptotic to non-asymptotic mass shift in
the degenerate vacuum is equal to the shift between
the vacua of Fig. 10. We thus have two equivalent
ways of thinking of a mass shift.

There is one point which we have glossed over
in regard to the nonconversation of the axial-vec-
tor current. It is very difficult to see how chang-
ing the vacuum from the underlying massless
theory to the new massive physical theory could
break current conservation, since this cannot be
understood in a Lagrangian framework. In our
work we have gone directly into the massive theo-
ry and checked self-consistency using Eq. (36).
We have not begun in the massless theory and used
Eq. (30) to find the massive one, and consequently
have not needed to face this problem directly,
since it is mainly one of interpretation. A possi-
ble resolution of this difficulty is that perhaps
even in what we have been referring to as the
underlying massless theory there actually is a
nonconserved axial-vector current whose matrix
elements all vanish in the conformal invariant 0 '
vacuum. (Indeed there certainly will be some ex-
tra terms in the Lagrangian of the underlying mas-
sless theory, namely the counterterms induced to
renormalize I g and I ~~terms which in a massive
theory are usually recognized as mass counter-
terms. ) In such a case the axial-vector Ward
identity would still lead us to infer that the bare
(asymptotic) and renormalized (nonasymptotic)
masses of the fermion taken in 0' are zero. Thus
in the wrong vacuum we do not feel the fact of the
nonconservation. It is only when we change to the
true 0 vacuum that we see a nonzero physical
mass which still looks as though its associated
bare mass is zero, in the sense of Eq. (91).

There is an additional way of describing the
situation we find ourselves in. We appear to have
a symmetry which is broken both in the vacuum and
in the Lagrangian. This would be like a o model
with a wrong sign for the mass term to break the
symmetry in the vacuum to which is then added a
linear term to break the symmetry in the Lagran-
gian but in such a way so as not to removethe
degeneracy of the vacuum. (We gave this example
merely to define the different types of breaking,
though clearly we are in a situation which cannot
be achieved with fundamental scalars in a Lagran-
ian framework. ) What we have with dynamical
symmetry breaking is that the massless vacuum
becomes y, degenerate to produce a mass term
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mug. This mass term then provides the massless
theory with a preferred direction (as though it were
a linear o term} but in such a way that the mas-
sive theory still has a completely degenerate
vacuum. Thus the theory simultaneously boot-
straps both a degenerate vacuum and a preferred
direction. Thus the same mechanism both pro-
duces and "removes" the degeneracy of the vacuum.
(In the language of soft-pion physics this would
mean that f, and m„are switched on simultaneously.
Further, the axial-vector current is partially con-
served in the sense that its divergence has dimen-
sion 4+ye =2, so that the divergence is a soft
operator which can thus satisfy an unsubtracted
dispersion relation. ) Even though this mechanism
is not yet completely understood, we nevertheless
regard it as a most attractive feature of dynamical
symmetry breaking, since it may then never be
necessary in particle physics to actually find an
independent mechanism at all for lifting the degen-
eracy of the vacuum.

UI. CAN A MASSLESS PARTICLE HAUE A CHARGE~

In this work we have essentially been trying to
realize an idea which dates back to Lorentz, which
is that the whole of the mass of the electron would
be electromagnetic in origin. Lorentz introduced
the classical electron radius for that purpose.
However, at the time the idea could not be accept-
ed because if an electron were really a ball of
charge then it would not be stable under Coulomb
repulsion. Also, of course, the discussion ignor-
ed completely the question of quantum fluctuations
in the self-energy. Vfe see now that the role of
the quantum fluctuations is precisely to sum up the
infrared divergences of the theory to produce long-
range order (the physical mass), i.e., "supercon-
ducting" attraction, which then stabilizes the phy-
sical electron. Thus an initial massless electron
in interaction with an infinite bath of massless
pairs feels an attractive force if ye(a) = -1 and
undergoes a phase transition, which then produces
a massive electron which will now scatter repul-
sively off other massive electrons. All of the at-
traction is used up in producing the mass, leaving
only weak residual repulsive forces in the mass-
ive theory.

We would like to develop this analogy with phase-
transition theory a little further. There are actu-
ally two formulations of the theory of superconduc-
tivity, one due to Bardeen, Cooper, and Schrieffer"
and the other due to Bogoliubov. " Both start with
an initial electron-phonon interaction which produ-
ces the attractive Cooper pair. The BCS approach
is to then abstract from this fundamental electron-
phonon interaction an induced electron-electron

V(($P) }=(ye+3) v(I —ye)sin
— (1 .)

ye

[ 4"e"C'(n)y, '~e]'
j./(Y g+ 3)

(92)

which has the stable structure of Fig. 9. Thus the
massless theory is self-consistent when y„&-1.
Moreover, we ean also continue onto ye= -1 where
we find that V((gg)) vanishes identically. (This al-
so confirms that the Goldstone mode is not real-
izable in the massless gluon model at our eigen-
value. ) Now while it is true that V((PP)) vanishes
if the theory is free [ as may be seen from Eq. (62)
when continued to y~ = 0], it is not clear that the
vanishing of V(($P)) forces the theory to be free,
though it does seem likely. Should it be the case
that massless @ED is free when yz =-1, we would

interaction of the 4-Fermi type. the reduced BCS
Hamiltonian, which is then discussed on its own.
This Hamiltonian is then minimized using a
Hartree-Fock trial wave function analogous to that
of Eq. (11)with the minimization condition being
the self -consistent gap equation. Moreover, in the
limit of an infinite number of degrees of freedom
this trial wave function is found to be exact. The
approach of Bogoliubov on the other hand is to stay
with the electron-phonon interaction and make the
Bogoliubov transform to the self-consistent vacu-
um. Bogoliubov then demands that the quantum
flunctuations about this vacuum be finite, the meth-
od of compensation of dangerous diagrams, and
obtains a constraint which turns out to be none
other than the BCS gap equation. It is then immed-
iately clear that these two approaches are synthe-
sized together in the theory of finite @ED as set up
in this paper, with the sole exception being that we
have lost the collective modes through renormal-
ization, but still obtained the attraction. Our loop
summation is thus seen to be the relativistic gen-
eralization of the BCS Hartree-Fock approxima-
tion. All of this then indicates that a nonpertur-
batively renormalizable 4-Fermi interaction can
be constructed as the relativistic generalization
of the theory of superconductivity.

Though we have shown that an electron can get
its mass from its own charge, we have not gone
the other way to show that it needs a mass in order
to carry a charge. To do this we should show that
the theory with m = 0 identically (not to be confused
with the theory obtained by letting m-0) is in fact
a free theory. In fact we ean give a partial answer
to this question by calculating the effective poten-
tial of massless QED. From Eq. ("l0) we obtain
directly
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then have a situation in which mass and charge
bootstrap together. Though theorists favor a theo-
rem which would forbid a massless particle from
having a charge (in agreement with the present
experimental situation vis-a-vis the neutrino and
the photon) discussion of the question has so far
centered on the infrared structure of perturbation
theory. " The program we have presented in
this paper is an attempt to set up a nonperturba-
tive framework for studying the question.

The one open question raised by this work is
whether the conditions P(n) = 0, ye(a) =-1 are in
fact compatible. A p~oyg it seems to be somewhat
difficult to tell, perhaps being as difficult as act-
ually trying to solve for n. We shall conclude this
section by indicating that a possible connection
between P (o) and ye(u) may be realized by study-
ing the one remaining unexplored sector of finite
@ED, namely the infrared structure of the vacuum
polarization as the electron mass goes to zero.
Adler" has discussed D„„ in massive finite QED in
the limit m-0. Since Z, ' is finite at the eigen-
value the absorbtive part of D& „vanishes for all
q' except q' = 0 where there could be possible in-
frared divergences. These divergences can then
give a contribution to Z, by putting a 5 function
into the spectral function sum rule and prevent the
theory from being free (Z, =1) when finite in the
limit of vanishing electron mass. Then the photon
propagator behaves asymptotically like Z, '/q',
where Z, ' contains infrared information, to dem-
onstrate again the subtle interplay between the
ultraviolet and the infrared. Thus the natural
question to consider is whether the same infrared
divergences which give the electron its mass are
also the ones which contribute to the vacuum polar-
ization spectral function. We hope these infrared
effects will prove to be two aspects of the same
phenomenon and thus relate the zeros of P(n) and

ze(o.) + l. Such a study may also shed some light
on the other question, whether a massless part-
icle could have a charge.

Vll. GENERAL COMMENTS

The approach we have used so far is to work in
the self-consistent vacuum. It is of interest to ask
what sort of an untranslated theory could produce
the massive theory after translating $g. We would
expect the untranslated but dressed Lagrangian not
to be just that of pure QED, but to also contain an
induced effective chiral-invariant 4-Fermi interac-
tion of the form gg)'-gy, P)' with dimension
6+ 2&z(n) = 4, so that the mass term would appear
after translating. By making a Fierz transforma-
tion this can be written in the form ($y„g) —($'Y~'Ysi()

in which this difference has dimension 4 even though

each term has dimension 6. [This is reminiscent
of Wilson's discussion" of the convergence of the
Weinberg spectral function sum rules which are
controlled by the u, tadpoles, the non-Abelian
equivalents of ($P), with (Q ( T(V„V„)~Q )—
(Qi ~

) T(A„A, ) (Qi ~ ) being dominated by opera-
tors of dimension less than 6.] The viewpoint
suggested here then is that the tadpoles first ac-
quire a nonvanishing vacuum expectation value
through the infrared and then appear after trans-
lating to the degenerate vacuum as terms in the
current-current operator-product expansion in the
ultraviolet, so that the tadpoles are simultaneously
infrared and ultraviolet objects in much the manner
described in Sec. IV. This can only happen in theo-
ries in which dynamical symmetry breaking occurs
without explicit soft operators. Moreover, since
ye(o,') =-1 we appear to have a possible bootstrap-
ped nonperturbatively renormalizable 4-Fermi
interaction of dimension 4 in which the dynamical
scalar tadpole replaces the usual scalar field which
takes a vacuum expectation value, with the one dis-
tinguishing feature that we are spontaneously break-
ing a global rather than a local symmetry. A deep-
er appreciation of these points could be of relevan-
ce to non-Abelian gauge theories of the type deve-
loped by Weinberg.

The extreme viewpoint of our work is to say that
the only role of the photon is to produce a fermion
sector with anomalous dimensions, in a manner
analogous to the derivation of the BCS reduced
Hamiltonian. In our discussion of Sec. III we could
have just postulated the conformal invariant Eq.
(41) without needing to ask where it came from
(i.e., without needing to make a graphical analy-
sis) by writing

(1./2) yg
1","'„(P,P, 0) =X (93)

with an effective coupling constant A, , and then in-
serted the vertex into Fig. 6 to obtain the tadpole
mass. We could think of Eq. (93) as being obtained
from some possibly nonlocal 4- Fermi coupling car-
rying the additional power behavior of Eq. (93). Such
a power would then solve the unitarity problem at
high energies in 4-fermion scattering since the
coupling is now no longer a pure s-wave point in-
teraction, with anomalous dimensions softening
the theory sufficiently to make it renormalizable
if de(n) = 2. We have also seen that the summation
of Fig. 6 produces long-range order or attraction.
Thus after renormalizing e(m) we can define a new
M-dependent A. and an effective P(X) using the usual
renormalization-group analysis of Ref. 9 which ex-
presses the lack of physical significance of the
actual value of hf (The physica. l significance of M
is that it is nonzero. ) This P(X) of course has
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nothing to do with our original p(c(), since it des-
cribes renormalization of the 4-Fermi coupling
and not of the electric charge. Since this P()() pro-
duces attraction it should be negative since a posi-
tive P()() is ordinarily repulsive, and this is indi-
rectly confirmed since from Eq. (48) we see that

e""(M)=—4' (94)

i.e ~, the only dimensionless parameter associated
with e(m) is its fourth derivative, which we see is
negative at the minimum energy m =M, and so we have
an attractive theory. Moreover, we may also ex-
pect a renormalization-group equation for changes
in M of the type suggested in Ref. 9 for V(Q, ) only
with rn replacing the classical field. This would be
of the form

BM
+P(x'), -y (~')m e(m) =O.9 2 8 2 8

BK
(96)

Thus from Eq. (48) we obtain

P(((') = —4x', y (((') = —1 (96)

as required. f Though y ()(') bears no direct rela-
tion to y()(a)—their identity would require
n = 1/4a' —it is curious that it is also equal to -1
at the point m=M. ] This argument is somewhat
heuristic for the moment. Nonetheless it then
invites the possibility that an Abelian gauge theory
may bootstrap a 4-Fermi interaction which will
then exhibit Bjorken scaling nonperturbatively.
Clearly a lot more study will have to go into con-
firming this possibility.

We conclude this section by indicating a possible
extension of our ideas to the case of a non-Abelian
gauge theory. If our ideas are to apply directly in
this case we first need conformal invariance with
anomalous dimensions. To achieve this we need
an additional infrared-stable fixed point away from
the origin which will presumably need an infinite-
order zero in order to take over the short-distance
limit. '4 Thus we can unify the weak and electro-
magnetic interactions by giving them the same
infinite-order eigenvalue. The treatment of the
fermion sector will then proceed as in the Abelian
case and we will be led to global dynamical symme-
trv breaking with some SU(3)-type tadpoles
u, =(P)(, g& acquiri(g dynamical vacuum expecta-
tion values. (The P' s would presumably have to
be field operators for the leptons since there does
not appear to be any quark confinement in our
approach as of yet, , but only that the fermions get
masses. ) Thus the infrared structure of the weak
interaction will provide a dynamical origin for the
Gell-Mann, Oakes, and Renner Hamiltonian as we
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A.dded Note. In this added note we would like to
make some additional clarifying remarks.

1. Though our discussion of Sec. II was made
specifically in the case where there was a non-
conserved current„we would like to explain here
how the analysis can be adapted to apply in the
Goldstone mode, this being the actual intention of
Nambu and Jona-Lasinio. Our derivation of Eq.
(18) was made in the case where a rotation was
required both in the vacuum and in the Lagrangian.
In the Goldstone mode we would instead require

(fl(m) [ff(o)
)

fl(m)
&

(g(m) [H(o)
~

f1(m)
&

where &' ' is chiral-invariant, and Eq. {97)does
hold in the theory 2 ' = ,' g[()t)(})'-(-4y,(()'] a-nal-

yzed in Ref. 1. Moreover, we must also show
that each )Q(m )& is a true vacuum of H ". To do
this we rewrite 2 as

(97)

a@0& 0t l-[g(A-&4-)'&- v('~&( ~cy)'1

= Ll,+2,. (98)

suggested in Ref. 35, and at the same time allow
the tadpoles to show up in the ultraviolet current-
current operator-product expansions as generali-
zed mass terms as had been originally proposed
by Wilson. " As discussed in Sec. V we will ob-
tain relations like ns„-m~ = u„and the u, tadpole
will give the Gell-Mann-Okubo mass formula as
an exact relation. Thus the n-p mass difference
and the SU(3) mass formula will be pure infrared
effects. Moreover, because of the interplay betw'een

the ultraviolet and the infrared Wilson's u, tadpole
will be able to provide an explanation of the q-3m
pz'oblem while fulfilling the infrared requirements
of Ref. 35 at the same time.

Though the fermion sector appears capable of
providing an appealing picture of the origin of the
dynamical tadpoles there are unfortunately prob-
lems in the meson sector. We have seen that the
scalar tadpoles are not associated with bound
states, and hence they cannot generate a dynami-
cal Higgs-Englert-Brout mechanism. Moreover,
in the non-Abelian case there are additional infra-
red divergences in the three-massless-meson ver-
tex which do not appear in the Abelian case.
Though these divergences may perhaps eliminate
the vector mesons from the spectrum altogether,
none of the suggestions of this section will be able
to materialize until this particularly severe infra-
red problem is understood.
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In the Hartree-Fock approximation we solve 2,
exactly first in order to find the self-consistent
vacuum and then perturb about it with the resid-
ual 2,. Thus to compare ~Oi")& (where & P)I)) 40)
and (O'"& (where g)I)& = 0) we obtain from Eq. (37)

g'& Pg)
' 4A' A'

f),' )')'))= q2, ,(~ ), —)—21
~(~ ), ),

(99)
so that lQ )p has lower energy in the Hartree-
Fock approximation to the cutoff theory. Moreover

The nontrivial solution to Eq. (100) is then recog-
nized as the self-consistent solution to the Schwing-
er-Dyson equation for the fermion self-energy in
the ladder approximation [ Fig. 2(b)] obtained in
Ref. 1. Thus the analysis of Eq. (25) which was
made in the non-chiral-invariant massive free
theory carries over directly into the chiral-invar-
iant interacting theory at the one-loop level because
of the diagonalizing nature of the Hartree-Fock ap-
proximation. Thus even when we are in the Gold-
stone mode we must still calculate e(m) when we
study composite operators rather than V(& tlat&) )of

Eq. (30}. Hence once there are composite oper-
ators V(()I)$& ) has only limited utility independent
of whether or not the current is conserved, with

e(Q containing all the relevant physical informa-
tion.

2. %e would like to reformulate a little the anal-
ysis of Sec V to explain exactly what is the under-
lying massless theory. Let us introduce 8 '~ as
the Hamiltonian density of truly massless @ED
(2 ' =KE-eely&gA" only). Let ~Oio)& be the va-
cuum obtained by dressing the bare vacuum for
the kinetic energy (KE}by the electromagnetic
interaction so that I Q ' ) is both chiral-invariant
((O If' I Q ) = 0) and conformal-invariant.

[ The discussion of Eq. (92) shows that I Q ) is
the true vacuum of H~o) .] At this stage the unre-
normalized dressed vertex F~ of Fig. t behaves
as

(101)

for all momenta up to the cutoff and describes the

quantum fluctuations about the }Oi )& vacuum,
with the electron propagator being given by Z2 '/P.
In order to renormalize F~ we are obliged to in-
duce a mass term ma(it)g)0 into the Lagrangian.
Since massless @ED is not closed under re-
normalization we thus have to change the theory
and go to a new vacuum I O'), which may not lie
in the same Hilbert space as IQ )&. In fact, this
is a specific realization of Wilson's idea that the
u; tadpoles are induced as renormalization count-
erterms to an underlying conformal-invariant
theory 0'", and the main point of this paper is to
ask what is the infrared dynamics which will en-
able the induced counterterm to drive itself con-
sistently into a genuine mass term, i.e. , to ask
whether g can create massive particles out of
(O'& —so that (

Q') can be identified with ~O'

with &Qi )
~
if'(Q™x 0, and with the electron

propagator now being given by Eq (4)—. while
creating massless particles out of )

O~o)&. Thus
we see that mo is not the bare mass since we
really do start without a mass term at all and are
forced to induce a mass term just to obtain closure
under renormalization. Then in order to ascertain
whether the presence of a mass term and a now
nonconserved axial-vector current actually means
that the particles of the theory possess mass we
have to find the true vacuum of the theory using
the method of Sec. III.

3. Following these remarks we can now state
the criterion for whether a chiral-invariant theory
can possibly admit of the Goldstone mode —it has to
be closed under renormalization; and hence we can
now exclude the Goldstone mode in the Abelian
vector-gluon model. Moreover, we see that at the
two-loop level of corrections to F~ the models of
Refs. 1 and 12 are not closed under renormalizat-
ion. Hence those models will not be able to support
the Goldstone mode in higher orders. On the other
hand, the BCS theory does continue to support
collective modes in higher orders since it has a
built-in cutoff and thus never needs to be renor-
malized. Moreover, the S,-type corrections of
Eq. (98) to the reduced BCS Hamiltonian are neg-
ligible in the thermodynamic limit so that the
Hamiltonian remains diagonalized. It is in this
sense that we can expect the parton model to be
realized as a Hartree-Fock diagonalization in
the asymptotically free example discussed in
Sec. VII.
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