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Absorptive corrections to scattering and production in a family of explicitly unitary models are studied. %e
find that in a particular model in which quantum-number constraints are ignored, all the results concerning
absorptive corrections found in the Reggeon-calculus model of Abramovskii, Kancheli, and Gribov are
reproduced. In extended models, however, the efFects due to quantum numbers and/or alternative
unitarization schemes are shown to have a significant efFect on the form of absorptive corrections. In
particular, explicitly unitary models are given in which (i) the absorptive corrections enhance all cross
sections, and (ii} isospin is introduced in a simple way and is found to produce quite different counting rules
from those assumed in the Reggeon calculus. It is shown that the internal quantum-number structure of the
Pomeron affects the amount of absorption in inclusive cross sections and hence can be experimentally studied.

I. INTRODUCTION

During the past few years there has been con-
siderable interest in absorptive corrections to
both inclusive and exclusive cross sections —in

particular, the question of their sign relative to
the Born term. '~ A popular approach has been
the use of models based on field theory (in par-
ticular, weak coupling &P' perturbation theory).
These models suggest that the absorptive correc-
tions to the single-particle inclusive cross sec-
tion cancel out when the trigger particle is in the
central region, "and that the leading absorptive
correction to the elastic amplitude, the two-Pom-
eron cut, contributes negatively to the total cross
section via the optical theorem. "' In this paper
we introduce a family of models based on the mod-
els of Auerbach, Aviv, Sugar, and Blankenbecler. "9
These are constructed so that the S matrix explic-
itly satisfies the unitarity condition S 'S =1. They
will be used to check if the results stated above,
or indeed, if any of the recipes for calculating ab-
sorptive corrections suggested in Refs, 1-7, can
be said to be a consequence of unitarity.

Abramovskii, Kancheli, and Gribov, ' hereafter
referred to as AKQ, first showed that in a Reg-
geon-calculus model the absorptive corrections to
the single-particle inclusive cross section in the
central region canceled out, so that this cross
section was given by the Mueller diagram of Fig.
1. Interest in absorptive corrections to inclusive
cross sections was stimulated when Einhorn and
Savit" showed that the colored-quark parton mod-
el, together with the Drell-Yan formula, "was in-
compatible with the BNL data" for inclusive lep-
ton pair production in hadronic collisions, the
calculated cross section being much smaller than
the observed one. " The inclusive cross section,
using the Drell-Yan model, is given by the M' dis-
continuity of the Mueller diagram of Fig. 2(a).

Landshoff and Polkinghornei4 had earlier suggested
that the Mueller diagram of Fig. 2(b) may also be
important (in this diagram the ladder represents
any absorptive correction, possibly the Pomeron).
If this diagram were to explain the discrepancy
between the Drell-Yan model and the data, its 1M'

discontinuity would have to be positive. Henyey
and Savit' claimed that this discontinuity is in fact
negative, but, as pointed out in Refs. 3 and 5,
these authors had not included all the possible con-
tributions. Einhorn and Henyey, ' in a particular
unitary model (their model is similar to that
studied in Sec. II), find that the diagram of Fig
l(b) gives a zero contribution to the inclusive
cross section. This result was also obtained earl-
ier in field theory models by Cardy and rainbow'
and DeTar, Ellis, and Landshoff. 4

Investigations of the two-Pomeron contribution
to the elastic amplitude in field theoretical mod-
els" have shown that in these models the contribu-
tion is negative. Moreover, using the unitarity
sum to evaluate the two-Pomeron contribution, it
is found that three kinds of contribution are im-
portant, those in which no Pomeron is cut [Fig.
3(a)], those in which one Pomeron is cut [Fig.
3(b)], and those in which both Pomerons are cut

FIG. 1. Mueller Regge diagram for the single-
particle inclusive cross section, where the trigger
particle is in the central region.
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(b)

FIG. 2. Mueller diagrams for the inclusive production
of massive lepton pairs {a) given by the Drell-Yan
model; {b) absorptive correction to the Drell-Yan model.

(a) (b)

FIG. 3. Dominant contributions to the unitarity sum

for the two-Pomeron cut.

[Fig. 3(c)]. In these field theoretical models the
relative magnitudes of these contributions are
(1, -4, +2} which clearly add up to be negative. In
the AKG model' analogous counting rules can be
easily calculated for the exchange of an arbitrary
number of Pomerons.

In this paper we study absorptive corrections to
the elastic amplitude, the single-particle inclusive
cross section, and exclusive amplitude in a family
of unitary models of production, based on the mod-
el of Auerbach, Aviv, Sugar, and Blankenbecler, "
hereafter referred to as AASB. These models
have the advantage over the Reggeon-calculus
model and the Regge-eikonal model in that they
naturally include a detailed description of produc-
tion channels. The unitary model introduced in
Refs. 8 and 9 is found to be equivalent to the model
of AKG in the sense that all the prescriptions for
calculating absorptive corrections are the same in
both models. Ne find, however, that simple mod-
ifications to the AASB model, still preserving the
unitarity of the S matrix, drastically change these
prescriptions.

The plan of the paper is as follows. In Sec. II we
review briefly the model of Auerbach, Aviv, Sugar,
and Blankenbecler" and show that in this model
the absorptive corrections to the inclusive cross
section indeed cancel as was shown in the original
papers, that the elastic amplitude is given by the
usual Regge-eikonal formula, and that the exclu-
sive amplitude for the production of one particle
is given by the elastic S matrix element multiplied
by the Regge-Born amplitude in accordance with
usual ideas. In order to facilitate comparison with
field theory models, we will restrict our discus-
sion to ladder diagrams ogLy; checkerboard dia-
grams involving interactions between three or

more exchanges are neglected. In Sec. III we show
that the counting rules of AKG' for the elastic am-
plitude can be exactly reproduced in this model.
In Sec. IV we present various modifications to the
AASB model, and find that each modification
changes the counting rules for the elastic and pro-
duction amplitudes and also the inclusive cross
section. In Sec. V. we present an extreme family
of models, each of which is explicitly unitary, in
which not only is the two-Pomeron cut positive,
but the exclusive production amplitude is also en-
hanced by absorptive corrections. Finally, in Sec.
VI we present our conclusions.

II. ABSORPTION IN A UNITARY MODEL

In this section we study absorptive effects in a
particular unitary model, that of AASB." In this
model there are two kinds of particles, firstly the
initial-state leading particles of mass n~, which
can neither be created nor destroyed, which will
be called nucleons, and secondly particles of
mass p, , which can be created and destroyed,
which will be called mesons. Here we shall treat
only spinless particles with no quantum numbers;
we shall introduce a model with isospin in Sec. IV.
Mesons are created and destroyed off chains, which
are exchanged between the nucleons. Each chain is
represented by a Hermitian operator Z. The uni-
tarity of the S matrix is then ensured by writing

(2.1)

where Z is defined by a sum over the number of
produced mesons

z=gz„
n=1

and

(2.3}r ', W„~,B;q, , y, aq, , &,. +a'-q

where Y'-=In(s/m'), B is the conjugate variable to Z -=-', (p, -p, ) --, (p, -p, ); y„q,are respectively the rapidity
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and transverse momentum of particle i, and the other variables are as defined in Fig. 4. a and a are the
usual destruction and creation operators and we use the normalization of AASB, '

[ (4, y),n'(f, y') l = 2(25)'5(4- 0'}6(y -y') (2.4)

W„is a c-number function of the kinematic variables. Most of the results which are of interest here do not
depend on its specific form. When we shall need its detailed form we shall use the solvable model of
AASB, ' which is equivalent to a multi-Regge model:

1 n—W„(Y,5;g„y,) =e "f(5) Q e "d "d-s'n! 8(y, -y„,) Q g(g&).
)=p g =1

(2.5)

We also impose the condition that W„vanishes unless ly, i~ —,(1 —e) Y, where & is an arbitrarily small pos-
itive number. At high energies this requirement forces the final-state nucleons to have energies of order
2 ~s, so that as long as the meson multiplicity does not grow as fast as s' ', the meson variables can be
dropped from the energy and longitudinal-momentum conservation 5 functions. This defines the model.
The more general AASB models that contain transverse momentum correlations can be treated as below
but with a considerable increase in notational complexity.

A simple and interesting quantity to study in this model is the single-particle inclusive cross section
where the trigger particle is a meson in the central region. Then we can write

d'5 Q f ll dq, —,)(q, y, it„y„.. . ,q„,y„ls(s,5)lo&)'
0

, f d'5&o))s'(s, 5),q')o, y)))q)o, y), sl)o&, (2.6)

Z —f(]3)e(qs 1)Fe(XF)~~5(c q, ct).
s

where

(2.7)

where the states are defined in the meson Hilbert
space so that 10) denotes a state with no mesons
but with two leading particles present. With the
W„defined in (2.5) it has been shown in Ref. 9 that

(1 —e) dPq——-g''(4) .
45 (2w}'

Using these expressions it can be seen that

[a, Zl =g(g}Z

and hence

(2.9)

(2.10)

d2q~ (1 - 6) Y/2 dyc=(») '"
2 . —g(4)s(4, y)

(1 —s) F/5
(2.8)

[n, sl = fg(4)ZS. (2.11)

Substituting (2.11) into (2.6) we obtain the result

pc

+jdy 2(2s)'

where

p„=g5($)(0I Z'(Y, 5) 10) .

(2.12)

Hence we see that the single-particle inclusive
cross section is determined fully by Mueller dia-
grams with only two chains (i. e., one ladder) ex-
changed (see Fig. 5}. All diagrams with the ex-

der

V
2 d

Pb Pb

FIG. 4. Basic form of Z„.
FIG. 5. MueQer diagram which determines the single-

particle inclusive cross section in the model of AASB.
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The amplitude for the ladder diagram is then
given by

(Y 5) — f2(5)e Y(2(n —1) + i) = PisA ~

21s
ladder

(2.14}

We now calculate the contribution to the elastic
amplitude due to the exchange of n ladders; we
denote this by M„.The full contribution from the
exchange of 2n chains is given by

i)2nM""'= -2is (0 IZ "10)
(pn) I

(2.15)

where, as above, the states are defined in the
meson Hilbert space. Contributing to M,","' there
are (2n —1)!!ladder-exchange diagrams since
the first chain can link up with (2n —1) other
chains, the next one can link up with (2n —3)
chains, and so on. Hence

( 1)n
M (Y,5) = 2is —(-2n —1}!!((0 IZ'10)}"

n
=

(2n)!
n

2is 2„!((-0 IZ'ID))"

2zs (-A)" .n! (2.16)

change of more than two chains have canceled out.
As shown in Ref. 9, this even includes all the
checkerboard diagrams. Thus in this model there
are no absorptive corrections to inclusive meson
production in the central region in agreement with
Ref. 1. The ansatz (2.5} for W„will be modified
later to include the production of photons (and
hence lepton pairs) as well as mesons, with the
result that there are no absorptive corrections
to the inclusive lepton pair cross section in agree-
ment with Refs. 3, 4, and 5. The model of Einhorn
and Henyey' is of this type.

This cancellation of absorptive corrections to the
inclusive cross section is certainly more general
than the ansatz (2.5) for W„;for example, it also
occurs in the multiperipheral model of Ref. 9.
For models having the operator structure defined
by (2.3} such a cancellation will occur provided
that [a, S] is proportional to [a, Z]S.

Another interesting quantity to study is the
elastic amplitude, and in particular, contributions
to the elastic amplitude arising from multiple lad-
der exchange. This has been studied in X(t}' pertur-
bation theory by Cicuta and Sugar, "and multi-
Pomeron exchange contributions to the elastic
amplitude have been studied in the Reggeon calcu-
lus by AKG. ' We define the scattering amplitude
operator as in Ref. 9 by

n(vr) fu 2. ", =M(vs)-,
= 2is d 5 e '2' [1 -S(Y,B)] . (2.13)

Summing over n we have

M(Y, B) = g M„(Y,B)=2is(1 —e ")
n=1

so that

(2.17)

()v(v, r)=)'s f d'B '~' (1 — ") (2.18)

(2n}!
n! (2.19)

which agrees with the previous result. This tech-
nique will prove very useful below, particularly
when we introduce isospin into the model in Sec.
IV.

Now, the amplitudes for the exclusive production
of a single pion will be computed. We still re-
strict the absorption to ladder exchanges. Defin-
ing M "' to be the single-particle exclusive am-
plitude where the absorptive corrections are re-
stricted to be ladder exchanges, we find

M" '(Y, 5;q, y) = (0 I [a(g, y), S] 10)

= ig(q}(0 I ZS I 0)

=Sg
dZ 2e- 2 /4Azeiz

„(4vA)'"
= -2g(q)Ae (2.20)

and we see that since only even powers of Z con-
tribute, the produced meson is attached to the
projectile and target via Reggeons only, as re-
quired for the leading terms in the central or pion-
ization region. Production from the original chain,
which is nonleading because it does not have the
full Regge behavior, has been dropped. Formulas
such as Eq. (2.20) have often been adopted as a
phenomenological way taking absorptive correc-
tions into account.

Let us now extend the above discussion to a gen-
eralized Drell- Yan model for heavy photon (or
lepton pair) production. The S matrix will be
written asbefore, but Swill be written as Z = S, + ez,

which is the usual Regge-eikonal formula. " Un-
like the Regge-eikonal model, however, the pre-
sent model contains production channels naturally
built in. Eikonalization of ladder-exchange dia-
grams in Aft)' perturbation theory has been discuss-
ed in Ref. 15.

An alternative derivation of the above result
follows from using a coherent-state representation
which diagonalizes the Hermitian operator Z and
only allows ladder diagrams to contribute. The
meson vacuum expectation value of Z2n is given by

(0 I

Z'n
I 0) = e —Z i4AZ2ndZ 2

(4vA)'i2
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R= R)=

(c)

FIG. 6. Definition of quantities which appear in
massive lepton pair production.

where Zo is the purely strong interaction chain
while z produces a photon with coupling e as we)l
as any number of possible mesons. The photon
destruction operator a(y} has the commutation
relation

[a(y), ez] = ez,
where z does not contain any photon operators and
it commutes with Z, . The necessary meson vac-
uum expectation values are given by

(0 iz10) =D, (01(z -D)'10) = 2R,

(01Z10) = 0, (01Zz 10) = 2R, ,

(0 I Z'10) = 2A,

where D can be identified with the usual Drell- Yan
production matrix element (q+q-"y") and R is its
fully Regge behaved counterpart (R, +R2-"y"). It
is the expected leading term in Mueller-Regge
theory. These quantities are represented diagram-
atically in Fig. 6. To first order in e, the results
are

If the term 2R is small, p„agrees with the result
of Drell and Yan. Since R contains a form factor
coupling of the virtual photon to two Reggeons, it
should indeed be small for large mass production.
Note again that inclusive production is not absorb-
ed but the exclusive production amplitude has an
explicit factor of (0 ISI 0).

We have seen that the simple unitary model of
AASB has provided us with many features concern-
ing absorption that may have been expected in view
of the arguments presented in the introduction. In
the next section we shall present a remarkable
similarity of this model with the Reggeon calculus
of AKG. '

iA'"'(s, f) =s N„[(iD,) ~ ~ ~ (iD„)]N„dQ„, (3.1)

III. COUNTlNG RULES FOR

MULTILADDER (MULTI-POMERON) EXCHANGE

Abramovskii, Kancheli, and Gribov' have present-
ed a technique for calculating the imaginary part
of the elastic amplitude, corresponding to multi-
Pomeron exchange, by evaluating the terms which
contribute to the unitarity sum. They argue that
the relevant contributions are those in which each
Pomeron is either left totally uncut (i.e. , is com-
pletely included in either M or M~ in the unitarity
equation) or is totally cut. Hence the contribution
of Fig. 'l(a) is important in the evaluation of the
leading behavior of the two-Pomeron term, where-
as that of Fig. 7(b) is not. In this section, we will
show that the AKG counting rules are exactly re-
produced in the exponential model of Sec. II."

The amplitude for the exchange of v Pomerons is
given by (see Fig. 8)

(0 I S 10) = e

M"' =(0 ISiez10) =ie(D+2iR, )e

p„=e'(0 IP 10) =e'(D'+ 2R} .

(2.21}

where N„(k„k,~ k„}are real vertices of Reggeon
emission, D($, It'} are the complex Green's func-
tions of the Pomerons, and E =1ns. Taking the
Pomeron to be a simple pole of positive signature

Nv

FIG. 7. (a) A leading-order contribution to the unitarity
sum for the two-Pomeron cut and (b) a nonleading contri-
bution.

FIG. 8. Elastic amplitude corresponding to the ex-
change of ~ Pomerons.
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we have

2 e i~o(k2) /2
D($ k2) — el(a(2 )-1)

sin[w n(k2)/2]
'

The Reggeon phase space is given by

(3.2)

(3.3)

the r closed-ladder diagrams(2r —1)!!ways and
in M~ we can draw the n closed- ladder diagrams
(2n —1)!!ways. Hence

((0)g2!0't}rtm'n (22 +m)! (222+m}!
2 Im M„ (2r+m)! (2n+m)! 2n! 2r!m! m!

x (- 1)"'rttz! (2r —1)!!(2n —1)!!

A'"' = —i(iD, )(iD2) ~ ~ ~ (iD„). (3.4)

For a particular term in the unitarity sum we
write (iD) for every Pomeron in M, (iD)* for
every Pomeron in M~, and 2ImD for every cut
Pomeron. We take the intercept of the Pomeron
to be 1, and neglect its real part. Consider then
a diagram with m +n+ r Pomerons, where m Pom-
erons are cut, r are in M, and n are in M~. Using
the above prescription, and noting that there are
(m+n+r)! Im!n!r! such terms we find

21mA„„= . . .—'(iD)r(iD)*"(2imD)(m+n+ r)!

m+n+ r&!'
2m( 1)n tr(ltnD)n tr t m

mfn! r&

(3.5)

As a specific example we can consider the case of
two-Pomeron exchange, m+n+x=2. The m =0
contribution is seen to be 2!(1m D)', the m = 1 con-
tribution is (-4) x 2!(1m D)', and the m = 2 contri-
butionis(2) x 2!(ImD)2. This(1, -4, +2) counting
is also true in the Mandelstam diagram in XP' per-
turbation theory. '

We now evaluate the analogous quantity to (3.5)
in the model of AASB.' In this model we now have
2r+m chains in M and 2n+m chains in M~ giving
us a factor

1 i=1

where!n!2 = t. The prescription given by AKG is the
following. The vertices N„are unchanged by cut-
ting the diagram; hence for the purposes of evalu-
ating the imaginary part of A'"' by the unitarity
equation, we may write

((0!Z2!0))r tm tn
(-1)"'"

2&2&n f m f y f

2%—Attm 'ttl( I )tl tt'
nfmfxf

(3.7)

—', x- ', ((0!Z'lo&)'=-,'((0!Z'!0&)'

=A' (3.8a)

There are six diagrams such as that of Fig. 9(b)
in which one ladder is cut and their total contribu-
tion is proportional to

6 x—x ((0!Z210))2 = —((0 Ig210))2

4A2 (3.8b)

Finally, there are two diagrams such as that in

Thus we see that the counting is the same in both
models.

We end this section by calculating explicitly
some lower-order diagrams to see how the
(1, —4, +2) counting in the two-ladder exchange
contribution to the elastic amplitude and the can-
cellation of absorptive corrections in the inclusive
cross section arises. For simplicity we take a
model in which only a single meson can be created
or destroyed off each chain, i.e. , W, is as defined
in Eq. (2.5} W, =O for i~2. The three types of
contribution to the unitarity sum for the two-ladder
elastic amplitude are shown in Fig. 9.

The contribution in which no ladder is cut [Fig.
9(a)] is proportional to

(IZ)2r rm ( IZ)2n tm
X

(2r+ m)! (2n+ m)!
(3.6)

In M we can arrange the m "open" chains in the
2y'+1 spaces ln

1 1
2yf mf

—(22 +m)! ways.

Similarly, in M we can arrange the m "open"
chains in the 2n+1 spaces in

1 1—(2n+m}! ways.
2nl mf

(o)

(c)

We can link up the m open chains of M with the m

open chains in M~ in m f ways. In M we can draw
FIG. 9. Three leading contributions to the unitarity

sum for the term of order Z4 in the elastic amplitude.
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Fig. 9(c) in which both ladders are cut and their
total contribution is proportional to

[a, , Zj=o

(4.2)
22 i)2

2 x—
1

x ((0 IZ' IO))' = —"((0IZ' IO))'

(3.8c)

[a, , X't= i X6,2,

where X' is given by

4A2+2 && ~~=0

demonstrating the cancellation.

(3 9)

IV. EXTENDED MODELS

Thus we arrive at the (1, —4, + 2) counting men-
tioned above.

The cancellation in the inclusive cross section is
now straightforward to see. To order A', there
are only two types of terms which contribute, those
of Figs. 9(b) and 9(c). However, both diagrams of
the type shown in Fig. 9(c) contribute twice to the
inclusive cross section since either of the two
mesons could be the trigger particle. Hence the
total contribution of order A' to the inclusive cross
section is proportional to

d gdyX'=
2 2,)2I [a'(e, y)+a"(e, V)l

x Z, (
—'Y -y) Z(v+ 2 Y),

and Z, is the analog of Z for the I =1 chain. Also,
X' and Z commute since they are both functions
of (a+at). The eikonal form for S has not yet been
derived in cases with isospin, but it is not clear
that such general forms as the above been consid-
ered. In any case, we are primarily interested in
the unitarity property of S.

We shall be interested in elastic scattering, in-
clusive scattering, and exclusive production of one
pion. With the definition y—= (y ~ )()'~2, the S matrix
and its commutators with the single-pion destruc-
tion operator can be written as

I.et us now generalize the previous model in
order to study the effects of the isospin of the pro-
duced particles, alternative unitary prescriptions,
and possible excited states of the projectile.

A. Isospin example

sinX
S = cosX+i7 ~ X

— e'~
X

[a, , S] = ih y e '2Q, ,

where

(4.3)

(4.4)

S —elm'x +iz (4.1)

where Z is as before and 7' is the vector isopin
matrix for the projectile. If a~ is the destruction
operator for a pion with index j, then we have

E = I/2

Consider a model in which in addition to the
purely isoscalar chain, producing isoscalar me-
sons, there is a chain which can emit a particle
with unit isospin called a pion which can be emitted
along with an arbitrary number of I= 0 mesons such
as illustrated in Fig. 10. The projectile has I =-,'
and the target I=0. Our model S matrix can be
written in the unitary form

X ~'X . )7 s&nX
(4 6)

In order to retain the ladder approximation and
avoid checkerboard graphs, we note that the only
nonzero vacuum expectation values are defined by

A = 2(0 IZ' I0&,

A, =2&OIX XIO&

ft =-'&Ol X. XIO&

8, = 2(0 IZP0),

(4.6)

which are illustrated graphically in Fig. 11. The
lack of cross terms between Z and X considerably
simplifies the following analysis as we shall see.

The elastic S-matrix element is the meson and
pion vacuum expectation value of S:

(0 IS IO) = e —x /4Axe&2 x&0leizl0&(4', )2"
—e —(A+Ax)(1 2A )

The exclusive production amplitude is

(4.7)

FIG. 10. (a) A chain with only I =0 mesons produced
and (b) a chain with I = 0 mesons produced together with
an I =1 pion.

(0 I [a,S) IO& =ih&0 le' y IO& — e-x'~'Ax@
(4vA, )2"

= —2IIR~ 7,.H, (4.8)
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AI =

result is the expected Mueller-Regge limit with R
as shown in Fig. 11.

B. K matrix

R=

Hl
I)- ——-+ l

Ql 1S= 1+—Z
2

1 ——Z (4.12)

It has been pointed out by Sugar" that the absorp-
tion does not cancel in the single-particle inclusive
cross section, for the K-matrix form for satisfying
unitarity. To see this, write

(c)

FIG. 11. Definition of quantities which appear in the
production of a pion with isospin 1.

where the integral is performed by introducing

y = 2A, ' ~ ' r, and the result is

(2n)!(0!SI0) =1+2 Q (-1)"
nf 4

dx e " (1 -Ax')(I+Ax')

(4.13}

and the elastic matrix element can then be written
as

H —e- (2 ~Ay)(1 2A ) (4.8a} The particle production operator is

The resultant cross section for the production of
only one pion will be proportional to the square of
the integral of this quantity over impact space.
Note that the absorption factors are not related to
the elastic S matrix:

(0![a&, S] I 0) w —2hR, 7&(0 I S!0). (4.9}

pi, = 2A RF,
where

1F =1 I + (I e-~&x}
2A,

(4.10)

(4.10a}

It should be noted that the absorption due to A has
canceled but not that due to A, . The result for
charged pions is similar:

The inclusive production cross section of neutral
pions is given by the vacuum expectation value of
1[a„S]I' as before, and the result is

2

[a, S]=igz 1 ——Z (4.14)

and the inclusive cross section is proportional to
the vacuum matrix element of

g 'Z'Z(l+ -'Z'Z) -' (4.15)

which clearly shows that absorption effects are
still present.

eiCZ
7 (4.16)

where Z is the chain meson creation operator and
G is the symmetric, real coupling matrix among
the projectile states. Using the commutator

[a, S]=SGi[a,Z] =ig SGZ, (4.17)

C. Projectile excitations

The effect of excited states of the projectile will
now be investigated by considering the S operator
as a matrix in this state space

p'„=2h'R(F s r,G),

where

G = —' 2e-4Al+ (1 —e 4A1)
L 1

(4.11)

(4.11a)

the effects of absorption are again seen to cancel
in the meson inclusive cross section for any
choice of G.

The choice of G can affect the explicit form of
the S matrix, however, in unusual ways. If the
elastic matrix element of G" is defined by

Note that in the limit A, -~, G - 0, F-—'„and
p~&

= p„.It is clear that these inclusive cross
sections are still shadowed because of the isospin
structure of the production matrix element, The
commutation properties of the isospin operators
of the leading particles change the counting and
the absorption no longer cancels.

In the opposite limit, A, -O, F = G =1, and the

(G")„=g(n),

then S becomes

(4.18)

g
Pl

(S)„=Q , g(n)Z", — (4.19)

which may or may not be an exponential series.
For example, if one chooses G equal to
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G =
0

1 1 0

1 3 2 0

0 2 5 3 0

0 3 7 4

0 4 9

(4.20)

(01910)= Q, -A"zi,„(a)
(-1)"

(5.4)

gn
pzn & ~ („+1)(n ~

0

where

(5.5)

and the inclusive cross section is proportional to

( 1)A —n(2&) t

~, (2~ R I ~

(5.6)

the reader may be interested in proving that g(n)
= n! and

(S)„=(1 iZ)—

(S)„=iZ(1 iZ)-
(4.21)

lf one cuts off the finite G matrix at any point, g(zz)
still equals n t until n exceeds the value of the last
diagonal element of G. A choice with better con-
vergence properties is to set G'= G, so that g(zz)
= (zz/2)! .

Using our previous results, the general elastic
S-matrix element is

(0 IS„!0)= g, —A"g(2zz) .
1)n

(4.22)

V, ANTISHADOWING

Since we have now seen that an exponential form
for the S matrix is not the only possible one, it is
amusing to consider the following form. Write S
as

S=e'" "' (1+iaZ)(1-iaZ) (5.1}

where a is a parameter. As a varies from zero
to one-half, S changes from the exponential form
to the K-matrix form. Unitarity is preserved for
any value of a. It is convenient to introduce an
expansion for S in terms of the coefficients u, (a):

~ (zZ)'u, (a)
lt (5.2)

where
/

zz, (a}=—(1 —2a}'+2 P —,(1 —2a) a' . (5.8)
-0 fP2.

A similar result holds for the exclusive production
amplitude. By choosing different forms for G,
the nature of the convergence of this series can be
changed at will from exponential (G =1), to geo-
metric (G' =G,), to superficially divergent (G = G,},
for example.

A few sample values are U, = 1, and U, =2(l-u, )
= -8a'. The exclusive production cross section is
proportional to

(-1)"
„p„=4g 'A' Q —,A" ,z„z„(a)

o n ~ L
(5.7)

and only if a = 0 is the coefficient of the Born term
4g'A' equal to (0 IS I 0)' as would be expected in
simple absorption models. Note that the inclusive
cross section is proportional to A whereas the ex-
clusive one is proportional to A' as would be ex-
pected in a fully Reggeized theory.

Let us now examine these quantities only to the
order of two-Pomeron exchange. An expansion of
the above results yields

1 —(0 I S 10)= P —,'P'zz, (a), —

p,.=g 'P(1 +PI:1 -a, (a)B,

p,„=4g' P'[1- Pzz(a)],

(5.8a.)

(5.8b)

(5.8c)

VI. CONCLUSION

where P = z(0 IZ'10). These formulas, which hold
in this explicitly unitary theory, have several in-
teresting and surprising properties. Note that p„
is absorbed in general. However, if a&0, the ab-
sorption actually enhances the inclusive cross
section. Similarly, if u, (a) is negative, the two-
Pomeron cut in the elastic cross section is posi-
tive, also an enhancement. This will occur for
sufficiently small a, a( —16 ' '= —0.40. Finally,
if zz, (a) is negative, exclusive production is en-
hanced as well, and this occurs if a & -4
= -0.63. We reiterate that this unexpected behav-
ior is true in an explicitly unitary theory and hence
the sign of absorption effects cannot be said to
follow from s- channel unitarity alone. However,
it should be noted that this type of unitary S matrix
cannot arise from the Lippmann-Schwinger or
Bethe-Salpeter type of equation used as starting
points in the proof of the negative sign for diffrac-
tive effects near threshold.

Some explicit forms for low l are u, =up u2

u, =1+4a', zz, =1+16a', u, =1+8a'(5+6a'), . . . .
The elastic S matrix is

The simple models that were discussed above
can only be used to suggest possible behavior in
more complicated and physically realistic situa-
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tions. They should be used to increase one's phys-
ical intuition and hence to aid in constructing more
sensible theories. A few salient points should be
stressed which were gleaned from studying the
above examples.

(I) The exponential operator form of the S mat-
rix is a very convenient approach to use in form-
ulating the Reggeon calculus of AKG and the Regge-
eikonal model. It is especially useful in those
cases in which s-channel unitarity must be imple-
mented. It may prove to be more basic than Reg-
geon calculus in the sense that details of the in-
elastic states can be built into the form of Z which
are lost or hidden when only Reggeons are con-
s&dered.

(2) However, f- channel unitarity is not guarante-
ed by the model but it can be enforced to any de-
sired order by appropriately modifiying the choice
of Z to contain the appropriate nonplanar graphs
and rapidity gaps.

(3) It was found that the internal quantum num-

bers and possible excited states of the projectile,
which may or may not be discrete states in the
continuum„can change the counting rules for high-
er-order diagrams. For example, the counting
rules of AKG seem to be true only in a model of the
Pomeron which neglects the isospin character of
the couplings. These possibilities can also super-
ficially change the convergence property of the S
matrix, from exponential to geometric.

(4) These effects change the counting of higher-
order diagrams and can strongly modify the shad-
owing. They may have a large influence on the
discussions of nuclear multiplicity using the AKG
formulas depending on details of the model of the
Pomeron.

(6) The extreme example in Sec. V that had
antishadowing clearly shows that s- channel unit-
arity does not specify or determine absorption,
not even its sign. However, such models may be
inconsistent with i- channel unitarity since, with
certain analyticity assumptions, White"' has dem-
onstrated that the full two-Pomeron contribution
is definitely negative (normal shadowing). The
model in the text, however, possesses a positive
contribution from the disconnected two-Pomeron
((0 IZ'(Y, B)10)') cut only, and hence may or may
not be consistent with this theorem.

(6) These models point out the importance of
measurements that study absorption effects in
eIIasI;ic, and in inclusive and exclusive production
processes. It is possible that one can learn about
the basic nature of the Pomeron (such as its iso-
spin content) from detailed studies of the momen
turn transfer and transverse momentum dependence
of these processes.

We find it very surprising that two models, one
constructed to satisfy s-channel unitarity (that of
AASBS 9) and the other satisfying t- channel unitar-
ity (that of AKG') should give identical prescrip
tions for unitarity corrections. However, even if
these counting rules should be correct in the case
of no quantum numbers, it is clear, from the dis-
cussion in Sec. IV, that they may be altered by the
presence of internal symmetries or excited states.
The models presented in Sec. IV and V demon-
strate that s-channel unitarity alone does not place
any relevant constraints on the magnitude or sign
of absorptive corrections. Clearly, before the
properties of the models reviewed in the introduc-
tion can be safely assumed to be general, much
more ambitious models must be examined,
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