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Gauge invariance is obtained as a consequence of the spontaneous breaking of a larger symmetry. The Yang-

Mills gauge fields are the corresponding Nambu-Goldstone fields. This involves the study of field theories in a
space with more than four dimensions. In a "cylindrical" sector these field theories reduce to new non-

Abelian generalizations of Jordan-Brans-Dicke theory. The nonobservability of the excess dimensions {while a

diAiculty for theories in which these dimensions are bosonic) should cause no problems if the higher

dimensions are fermionic. In the latter case, field theories in which all basic fields are at the same time

Nambu-Goldstone and Yang-Mills fields become possible. The relation of this work to recent work on

gravitation theory by Yang is explored.

I. INTRODUCTION

Gauge fields and Nambu-Goldstone fields are the
basic ingredients of unified quantum field theories
of the electromagnetic, weak, and possibly even
strong and gravitational interactions. With the
advent of supersymmetries' that shuffle bosons
and fermions, even Fermi fields may belong to
the classes of gauge and Nambu-Goldstone fields,
originally both massless (all masses in the theory
are expected to originate through spontaneous sym-
metry breaking). One is then tempted to conjecture
that these two basic categories of fields are equiv-
alent in some sense. Maybe every gauge field is
also a Nambu Goldsto-ne field and/or vice versa.
& priori, the later half of this statement seems to
be flawed, as for instance, the pion fields of the
cr model are Nambu-Goldstone fields while they
certainly are not gauge fields. Nevertheless the
first half of the statement has some remarkable
illustrations:

(i) The gauge field of the Abelian group U(l) or
O(2) can be viewed as the Nambu-Goldstone field
corresponding to the spontaneous breaking of
Lorentz invariance. '

(ii) The gauge field of the Lorentz group (the
graviton) can be viewed also as the Nambu-Gold-
stone field for the spontaneous breaking of general
covariance. ' '

We shall set up a field theory within which the
Yang-Mills-type gauge fields for a (non-Abelian)
internal-symmetry group become Nambu-Goldstone
fields for the spontaneous breaking of general co-
variance in a higher-dimensional space. When
restricted to a 4-dimensional world this theory
turns into a non-Abelian counterpart of a field
theory constructed in the Abelian case by Kaluza
and by Jordan. ' ' This theory is interesting in its
own right, and we work it out in detail in Secs. IV
and V.

We also compare in Sec. VI our approach with
Yang's recent work' on gravitation. Yang's theory
may be more "natural" if one views gravitation as
a geometric copy of Yang-Mills theory; however,
if we insist on all massless fields being Nambu-
Goldstone fields then Einstein's theory obtains
and not Yang's.

Finally, we discuss the possibility that the high-
er dimensions are fermionic (in the manner of the
Salam-Strathdee-Volkov-Akulov superspace'). In
theories of this type scalar and spin-& fields can
appear as gauge fields, and the possibility arises
that even the second half of our earlier statement
holds and the concepts of gauge and Nambu-Gold-
stone fields become completely equivalent.

II. GRAVITATION AS A NAMBU-GOLDSTONE FIELD:
A BRIEF REVIEW(

Our argument that Yang-Mills fields are Nambu-
Goldstone fields will exhibit a close similarity to
the work of Isham, Salam, and Strathdee' and of
Ogievetsky and Borisov" in which the Nambu-
Goldstone nature of the gravitational field is es-
tablished. We therefore briefly review here the

major steps in their reasoning.
The best starting point is an observation due to

Ogievetsky. ' It states that any field theory in
4+N dimensions invariant under the general af-
fine (i.e. , inhomogeneous linear: linear+trans-
lations) group in 4+N dimensions IGL( +4RN)
and under the standard (4+N)-dimensional non-
linear realization of the (4+N)-dimensional con-
formal group O(4+%, 2) is 4+N generally covari-
ant. This theorem is proved by noting that the
generators of GL(4+N, R) and of the (4+N)-dimen-
sional conformal group do not close on a finite al-
gebra, on account of the nonlinear coordinate de-
pendence of the conformal boosts. Rather, they
close on the infinite-dimensional algebra of the
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general covariance group in 4+X dimensions.
To identify gravitation with a Nambu-Goldstone

boson one therefore starts from the case N =0
and considers the simultaneous nonlinear realiza-
tion of the groups IGL(4, R) and O(4, 2) which be-
comes linear for the Poincarb subgroup. Breaking
O(4, 2) to the Poincarb subgroup one picks up
15 —10 = 5 Nambu-Goldstone fields: a scalar dila-
ton X and a vector field C for the conformal
boosts. %'ithout loss of consistency one can, how-
ever, identify C with the gradient of the dilaton
field, so that one picks up essentially a single
scalar field this way. %hen spontaneously break-
ing IGL(4, R} down to its Poincard subgroup one
picks up further 20 —10=10 fields which are es-
sentially the vierbein fields in a gauge in which
the vierbein matrix is symmetric. Group theory
then guides the construction of what ultimately
turns out to be Einstein's Lagrangian.

Alternatively one can start directly from the
group of general coordinate transformations in
4-space [once one knows that this is equivalent
with the GL(4, R) -O(4, 2) procedure by Ogievet-
sky's theorem] and represent in a unique way any
element L"„ofGL(4, R) in the form (Latin indices
run from 1 to 4 and a bar on an index indicates
that the index is "active" under Lorentz transfor-
mation)

L =A;S' . (2.1)

Here L is any regular 4x 4 matrix, S (which plays
the role of vierbein) is the exponential of a sym-
metric matrix, and A. is a Lorentz transformation.
Now consider a general (invertible) coordinate
transformation

x' = x'"(x") . (2 2)

At every point P (of old coordinates x and new
coordinates x' ) we associate to the transforma-
tion (2.2) the GL(4, R) element T defined by the
matrix

8x
fn ~&1m . (2.3)

so that using (2.1) we have

S I m p r - j.mA. o S a T n
nt P a n nt ~ (2.5)

with T" given by Eq. (2.3). We stress that all
fields in Eqs. (2.4} and (2.5) are evaluated at the
same physical point having old coordinates x and new

To obtain the transformation law of the vierbein
fields S we perform the linear transformation T
on L, then decompose anew in the manner (2.1),
and find the new vierbein S'. ln detail,

(2.4}

coordinates x', but to simplify the notation we have not
explicitly written out the argument (x or x') in the vari-
ous fields. Equation (2.5) establishes the transforma-
tion law of the S fields and these indeed play the
role of vierbein. One then uses this vierbein to
construct a metric tensor and then establishes the
integral of the corresponding curvature density,
i.e., the Einstein-Hilbert action

1
IE = — d x~gR

16mG

to be an acceptable generally invariant action for
the Nambu-Goldstone fields.

For our purposes, the important lesson is that
the Nambu-Goldstone fields play the role of vier-
bein in a curved manifold and that the standard
nonlinear-realization argument suffices to estab-
lish their transformation law under general coor-
dinate trans formations.

III. GAUGE FIELDS AS NAMBU-GOLDSTONE FIELDS

%e want to construct a theory which exhibits
manifest local gauge invariance under some N-
dimensional internal symmetry G. Yet we do not
want to achieve this by deliberately introducing
Yang-Mills gauge fields. Rather we want these
massless vector fields to emerge automatically as
Nambu-Goldstone fields corresponding to the spon-
taneous breaking of a larger symmetry G &G.
Moreover, we want gauge invariance under local
G transformations not to be a separate input but
rather a consequence of the larger symmetry.

En implementing this program the first step must
obviously be the choice of the larger group G. To
this end we first embed the N-dimensional compact
group 6 into O(N), which is always possible. We
then embed O(N) into IGL(4+N, R) on one hand and
the conformal group O(4+N, 2) on the other hand.
At the same time we extend 4-dimensional space-
time to a (4+N)-dimensional space with one time-
like and 3+M spacelike dimensions. By Ogievet-
sky's theorem a field theory in (4+N)-dimensional
space invariant under IGL(4+N, R) and O(4+N, 2)
is invariant under the general coordinate transfor-
mations in the (4+N}-dimensional space. Now,
let us follow the 4-dimensional procedure and look
for a nonlinear realization of {4+%)-general covari-
ance which becomes linear for the (4+N)-dimen-
sional Poincare group P4, &. The dimensions of
IGL(4+N, R), O(4+N, 2), and P„„are respective-
ly (4+N)(5+N), (5+N)(6+N)/2, and (4+N)(5+N)/2
From the breaking of the conformal group we then
pick up (5+N)(6+N)/2 —(4+N)(5+N)/2=N +5 Nam-
bu-Goldstone fields: one scalar and one (4+N)
vector. The latter is again the (4+N) gradient of
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where again we made the unique polar decomposi-
tion of the type (2.1), i.e. , S is the exponential of
a symmetric matrix and 0 a pseudo-orthogonal
matrix. In Eq. (3.1) and in the following we adopt
these notations: Capital Latin indices run from
1 to 4+N, small Latin indices run from 1 to 4,
small Greek indices from 5 to 4+¹Indices that
are "active" under pseudo-orthogonal [O(3 +N}, I)]
transformations are marked with a bar (A, B, s, a,
etc. , ). Any capital barred or unbarred index can
always be replaced by a Latin-Greek pair of small
indices e.g. , A = (a, a), M -=(m, p. ), N = (H, v), etc. -

Finally, to pass to an explicit matrix notation it
is convenient to regard the upper (lower) index as
giving the line (column) of the respective entry.
Thus for any matrix (with barred or unbarred in-
dices)

t'Mf, Mw

a a
Mg M8

and in matrix form Eq. (3.1) becomes

L =OS .

(3.2)

(3.1')

Now consider a matrix with a null right 4xN cor-
ner

the scalar (dilatonlike) field. Conformal symmetry
breaking thus yields again one scalar field. The
breaking of IGL(4+N, R) yields (4+N)(5+N)
&& (1 —1/2) = (4+N)(5+N)/2 = 10+4N +N(N + 1)/2
Nambu-Goldstone fields. Of these, 10 are again the
components of the gravitational vierbein, 4N will
turn out to be the Yang-Mills fields, and N(N + 1)/2
are Lorentz-scalar Nambu-Goldstone bosons with
tensorial transformation properties under G. As
before, the scalar dilaton field is related to a com-
bination (the trace) of the vierbein fields and
therefore, modulo this technical point, we restrict
our considerations to the breaking of GL(4+N, R).
As in the 4-dimensional case we write the general
element of GL(4+N, R) in the form of a (4+N)
x(4+N) matrix L

(3.1}

where K, besides having a null right 4+M corner

(K; 0
K=I

~~Ka Kat (3.6a)

also obeys

Kq =K, , K8 =K (3.6b}

/e, 0
8.8c'=&. 8»e» =n» (3.7)

where q, =diag(- ——+) and q» i-s the NxN unit
matrix (this specifies our metric convention).
For reasons that will become clear in the next
section we shall call a matrix of the type (3.6a)
and (3.6b} a Kaluza basis Now. , any regular
(4+N)&&(4+N} matrix L can be written in a unique

way also in the form

L„=0~Kg

or

L =OK,

(3.8)

where 0 is a pseudo-orthogonal matrix andK a
Kaluza basis. ' Comparing Eqs. (3.1) and (3.8)
we find the matrix relation

K = (0 '0) S . (3 8)

There is thus a one-to-one correspondence be-
tween the fields S and the Kaluza basis K. For
our purposes it will be more convenient to choose
the Kaluza basis K rather than the symmetric
matrix S to represent the Nambu-Goldstone fields
for the spontaneous breaking of GL(4+N, R} in-
var ianc e.

As in Sec. II, we can now derive the transforma-
tion law of the Nambu-Goldstone fields K~ under
general coordinate transformations (alternatively
one could consider the related fields S~ but they
are less convenient to us}. For the general regu-
lar coordinate transformations

and 0 is an element of O(3, 1)x O(N), i.e., a matrix
of the type

0

The exponential of such a matrix

¹exp6
again has null right 4xN-corner

Any such matrix N can be written in the form

(3.3)

(3.4a)

(3.4b)

(3.5)

«A «IA «IA(«s)

with

Bx N

fNx

we have

L'=LT =O'K',

so that from Eqs. (3.12) and (3.1') we obtain

K'=QKT, O=O' 'O

the desired transformation law.

(3.10)

(3.11}

(3.12)

(3.13}
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We now consider the special class of infinitesi-
mal transformations for which the matrix of Eqs.
(3.11)-(3.13) is given by

T(8)„"=q„'+5T(8),"

duced in Eq. (3.1)] will be ultimately related to
the gravitational coupling constant and e to the
Yang-Mills coupling constant. We end up finding
the transformation laws

( o

qKa„8" f,",,8'p
(3.14}

elm pm
Pl fl

K'," =(d&K~+f~ 0 K", (3.18)

where g~ (p = 5, . . . , 4+%) are X arbitrary infini-
tesimal functions of the x, (a = 1, . . . , 4), x is for the
time being, an arbitrary constant, and f,"~ are
the structure constants of the group G. The trans-
formations (3.14} close since

[6T(8), 5T(8')] = 6T(8 x 8—'),

with

(g ~ gt})t f Jl gftgtP

(3.15a)

(3.15b)

Under the transformations (3.14) the coordinates
change according to

x =x +Kx 8g8 +fg~x 8~

(3.16)

Note that space-time (x') remains unaffected and

only the internal-space coordinates undergo space-
time-dependent transformations. This is sugges-
tive of gauge transformations and we will now

show that these transformations are indeed gauge
transformations.

From Eqs. (3.6a) and (3.14),

(KT)„"=Kg T„

A'™=A,+—8,8 +fg~8 A," .
1

We now unambiguously recognize the transforma-
tions (3.18) for what they are: local gauge trans-
formations of the group G provided e is the Yang-
Mills coupling constant. The K„are invariant,
the K," transform nonlinearly, and the A. , fields
transform precisely like the Yang-Mills gauge
potentials. We thus conclude that any generally-
invariant theory in 4+N dimensions is also G

gauge-invariant(i. e., invariant under G transfor-
mations with x-dependent parameters). We have,
so to speak, derived G gauge invariance from the
spontaneous breaking of general invariance in
4+/ dimensions. Some of the corresPonding Nam-
bu-Goldstone fields become the gauge fields of the

group G. These Yang-Mills gauge fields are thus
also Nambu-Goldstone fields for the breaking of
GL(4+%, B) symmetry The.re is, however, one
difficulty: All these fields depend not on 4 but on
4+N coordinates x". To circumvent (not remove)
this problem we will provide in the next section a
geometrical interpretation of this field theory.
The more radical solution of considering super-
gauge theory will be discussed later.

(K„'+~K ",8„8'

o

K,"+ft',O'K" )
IV. GEOMETRICAL INTERPRETATION

OF THE FIELD THEORY

A ~ m
hatt) id — 1T

Since (KT)," is not symmetric, we must correct
this with an O(N +3, 1} transformation

To construct a usual 4-dimensional field theory,
we provide our massless fields K„with the geo-
metrical interpretation of components of the
"4+%-bein" corresponding to the bundle of ortho-
normal frames of a Riemann manifold. The met-
ric of this manifold is given by

We thus have to lowest order in the infinitesimal
functions g

&'g = (~&T)w

u&K ~ +f ~~ 8'K ~~ )

yg~ —K ~A. ~q„~, or ". =-K h. . (4.1)

The matrix 0 '0 of Eq. (3.9) being pseudo-orthog-
onal, the metric -~ is at.so equal to S S when ex-
pressed in terms of the symmetric Nambu-Gold-
stone matrix S of Eq. (3.1'), and thus analogous
to the usual 4-dimensional definition of Refs. 3-5.
Using Eqs. (3.6} and (3.I 7)

We define new fields A., by

(3.17)

t ggy+e K gypA~Ab
&~s =

I

eKg &A

g8~ '} (42)
g 8

where e is a new constant. The constant x [intro- where
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Aab +a+b lmn & 8a8 ~ et~a rgu ' (4.2b)

We immediately notice the striking similarity of
the metric (4.2) with that of the non-Abelian gen-
eralizations"'" of Kaluza-type higher-dimensional
unified field theories. The differences are that
{i) the g ~ rather than being the Killing metric
of the group G, are fields themselves, and {ii)
all fields depend in a (at this point) nontrivial way
on the extra "internal" coordinates x', . . . , s' .
We could now write down an action principle of
the Einstein-Hilbert type starting from the (4+N)-
dimensional metric (4.2). This would lead, how-
ever, to field equations yielding explicitly x,, . . . ,

x~-dependent fields. This is quite different from
having a usual field theory. This {4+X)-dimen-
sional theory may yet have its own meaning and
relevance for physics. At present, however, we
want to confine ourselves to fields that depend
only on the usual 4 space-time coordinates. To
this end we have tn somehow restrict ourselves
to "cylindrical" solutions just as in Kaluza's
original theory and in the subsequent work of
Klein. " This appears to spoil the original pro-
gram of constructing a theory that maintains
exact 4+% general eovarianee in the Nambu-Gold-
stone manner. We rather wish to think of the cy-
lindrical theory as a. subsector of the full general-
ly eovariant theory. The reason for which the
x„.. . , x~, dependence of fields is unobservable
could possibly be blamed, according to Klein, "
on a much smaller "typical scale" in these dimen-
sions say of the order of Planek's length dG - 20 "
em.

There is an alternative way out: that the addi-
tional dimensions are unobservable by being fer-
mionic as in local supersymmetric theories. %'e

shall further elaborate on this important alterna. -
ti.ve in Sec. VII.

Here we achieve independence of the N internal
coordinates by appropriately restricting the (4 +N)
dimensional manifold. Bather than let this mani-
fold be a general (4+%)-dimensional Riemann
space, we require it to be a fiber bundle"' "
P(M, G, II), physical 4-space M (with metric g„)
being its base manifold, and the internal-symme-
try group G its structure group. A~„as we had

seen, transform as gauge potentials under gauge
transformations. Therefore, they ean be related
to the connection form ~ on the bundle. " In de-
tail let $,(x) be commuting basis vectors of the tan-
gent space T, (M) to the base manifold M at the point
x-,=-M. I et o(x) be a cross section of the bundle

(i.e. , a homeomorphic mapping of .M into P such
that li(a(x))=x. Further, let the mapping o map
the vector $, into the vector o Q in the tangent
space & &,& (P) to P at v(x). Finally, let ~ be the

components of the connection form of the bundle
(the connection form maps vectors in the tangent
space to the bundle into elements of the Lie alge-
bra of G). Then the desired relation is

exA", (x)=~ to ~ $ (x)) (4 2)

We then write the action

(4.5a)

y =- (- I)"det(f~s),

R4+„- is the scalar curvature of the Riemann space
P, the integrals d G and d x run over a fiber and

over a cross section of the bundle, respectively,
and C V are the gravitational constant and the
volume of a fiber, respectively. The fiber inte-
gration is trivial and we find

(4.5c)

The scalar curvature is most conveniently evalu-
ated in a different basis: the horizontal lift basis"
D„with commutation relations

I.DA, D81- ~ABDC,

'
x 'f" for A=cr B=P C=@

C~c~ & ex+~ for A. =a ~==b C=y

0 otherwise,

(4.6a)

where

F & = a, A )—8 ~ A&+ ef~qA", i, . (4.6b)

Again e appears as the Yang-Mills coupling con-
stant. In the basis (4.6), the metric is

~ah 0

~AH 0 {4 q)

with the constants e and & as defined above. As
was shown in detail in Ref. 12, y» is a metric of
the bundle in the noncoordinate basis D„, the com-
mutation relations of which a,re

[Dx Q] =QwsDC
(4 4)

z 'f&8 for A. =n, B=P, C=y
CC~a='

0 otherwise.
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Dagos = 0

Da g sy ~ (fa sgys +fa yg s s 4

DagSC= eg'a4:s

D,gs„=s,gsy —e~A~gsy.

(4.8)

AB k y (DAyBD + &AD WyAB
cg

g 1—CADyBB —CBDyAB }+ B C„B,

and the Riemann tensor is'4

R"BDD= CDXBB-DD1'cB+Dof'm

(4.9b}

The second of these equations shows that gs& trans-
forms like a symmetric tensor under the group G.
In geometric language we have chosen a right in-
variant metric on the group manifoM.

Introducing the reciprocal of the metric tensor

so that

FysFca +I csFna y

A E A 8

NN
~e+N ~ + MAN

Equations (4.6)-(4.9) yield the Lagrangian

(4.9c)

(4.9d)

y "»
~

~

y yBB=6B (4.9a) (R„„-x)iy1

the Christo5el symbols are given in this noncoor-
dinate basis by'4 where

(4.10a)

1
16 G

Nap no a 8+——
4 16 C( gas)g 'g +av v,~Y~

&s,= —16„G[Ag ~gyg "(V g yV gss-V g sVgys) sg V-g Vg s-g sg "V V, g s]~y

-2
a5 & . p a a8 gh~ ss =16vG ~&fasfsyg + &fayfssg g" gvv+~ ~}~&'~

(4.10b)

with

vy =(-detg )'~'[(- )1" edtg ]'~' (4.10c)

and V the simultaneous Yang-Mills and gravita-
tional convariant derivative, so that

+mga 6 Dna~a 8;

V V„g„s= Dj„g„s—F „Dvg s,
(4.10d)

V. THE UN1FIED FIFI IL' THEORY

The Lagrangian (4.10) is composed of four
types of terms ICp ECp'y cCsgp and Ss2 If we
equate G with the universal gravitational constant
then ~ is essentially the Einstein-Hilbert Lagran-
gian for the massless G-singlet tensor field of
gravity corresponding to the 4x4 metric tensor
g„. There is a difference in that there is the ad-

with the Yang-Mills covariant derivative D as de-
fined in Eqs. (4.8) and the Christoffel symbols 1"v„

given by Eqs. (4.9b}.
%e now turn to a detailed discussion of the uni-

fied field theory built on this Lagrangian. In the
process, we will understand the significance of
the constants x, e, and A. introduced above.

ditional factor [(-1}"det(g s)]' ' which amounts
to a space-time variation of the gravitational cou-
pling just as in the Jordan-Brans-Dicke theory. ' "

In „we essentially recognize the generally co-
variant form (i.e., coupled to gravity) of the Yang-
Mills Lagrangian for the gauge field A of the
group G provided

8 K

16m G

Again there is a difference in that the Yang-Mills
fields are contracted (in the internal indices) with
the right-invariant metric g,, ;:, which depends on
space and time. Usually this contraction is made
with the right- gnd left-invariant Killing metric.
There is a second difference in the appearance of
the over-all factor [(-1)"det(g„s)]'ys. All these
factors have their counterparts in the Abelian Jor-
dan theory. ' We also note that in order for 2& to
have the proper sign (so that the energy is posi-
tive-definite) the internal dimensions (x', . . . , x"")
must be spacelNe.

~s ~sl +s2 is the Lagrangian of the scalar
fields that self-interact and interact also with gra-
vity and the Yang-Mills fields (on account of their
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tensorial G-transformation law).
Now, let us analyse the pieces Z» and Z» in

more detail. 2» looks quite complicated but is
essentiaQy a general and gauge covariant form of
the kinetic Lagrangian of the scalar fields. To see
this, expand the scalar and tensor fields around
the flat metric

8
4. 64.G*'"' '"

x 2(a+b+c)-~(abc) '(ah+bc+ca)'+1 16wG

(5.5)
so that the equations

gab lab ab ~

~ aB ~oB +~eB &

(5.2)

BV

~geB

have the unique solution

(5.6)

where 7' and v are proper dimensional constants.
We now insert these expansions into the Lagrang-
ian Zz, [Eg. (4.10)] and retain only terms up to
quadratic in 8 B and of zeroth order in T,b and A, .
This way we find

+exact divergence

+ interaction terms . (5.3)

V= -Sg2. (5.4)

For simplicity, consider the special case N =3,
G=O(3), so that f~=e,~. By an O(3) transforma-
tion, g B can always be diagonalized. Let -a-',
-h ', -c ' be its diagonal entries. V is then
given [using Eg. (5.1)]by

In this equation the exact divergence terms arise
from the expansion of the second-order derivative
term in I» and its transformation through partial
integration. We recognize (5.3) to provide the kin-
etic term for the scalar fields up to the arbitrary
dimensionless normalization constant o'/16vG
just as in the Abelian Jordan-Brans-Dicke case.
Finally the term proportional to X is a cosmolog-
ical-type term (again multiplied by the square root
of the determinant of the scalar fields).

As was hinted at before, in the Abelian case the
theory reduces to that proposed by Jordan' and
further developed by Thirry, Brans, and Dicke. '
For a non-Abelian group (N x1) the theory still
provides an unambiguous unification of the inter-
actions of a tensor field, a set of vector gauge
fields, and a well-defined set of scalar fields.
Just as in the Abelian case, the unification is not
complete in that the universal coupling constant
e of the gauge field, the gravitational coupling con-
stant x- ~Q, the scalar coupling o, and the cos-
mological constant X are still arbitrary. This is
in part due to our cylindricity assumption.

One may wonder whether the natural scalar fields
g B of the theory might not somehow automatically
play the role of Higgs fields for further symmetry
breaking from G to a smaller group. The classical
potential for these fields is

e2

4 8GA.
(5.7)

VI. COMPARISON WITH YANG'S APPROACH
TO THE THEORY OF GRAVITATION

Recently, on the basis of an analysis of the geo-
metric structure of gauge theories, Yang' has pro-
posed a new theory of gravitation. As we will pres-
ently show, his geometric analysis is essentially
identical to the fiber-bundle approach taken here.
Nevertheless our approach to gravitation is of the
Einstein type and thus differs considerably from
Yang's. We want to establish the reason for this
difference. If a pure gauge theory over a 4-di-
mensional space-time is contemplated then Yang's
approach is the natural one. If, on the other hand,
one wishes to derive gauge invariance from a
theory with spontaneous symmetry breaking, then
the approach espoused above (i.e. , an Einstein-
Hilbert type gravity sector) is natural.

Now, to Yang's geometric interpretation of gauge
theories. Yang starts from a 4-dimensional space-
time manifold M and an internal- symmetry group
G. To every curve y in M that runs between two
points x and y&M he associates a group element

which is O(3)-invariant. This is a true minimum
of the potential, as can be seen from the second
derivatives of V. Equation (5.'I) emphasizes the
role of the cosmological constant in stabilizing the
vacuum. Therefore, as it stands, the theory con-
tains no in-built mechanism for further spontaneous
G- symmetry breaking.

We shall not explore here other classical solu-
tions or the problem of quantization for the unified
field theory.

We want, however, to point out that the tensor
field need not be that of gravity, but could well
be a field of strong gravity. " In a sense the setup
is very similar to that in dual models, "which in
the zero-slope limit yields Yang-Mills gauge fields
(the open strings) and a massless G-invariant ten-
sor field (the closed strings of the Pomeron sec-
tor). In our theory as well, the G-singlet tensor
necessarily accompanies the gauge fields, as do
for that matter the scalar fields.
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g(y„,) E.G. For x and y =x+dx infinitesimally close
he parametrizes g(y ) in terms of what then turn
out to be the gauge potentials. He then calculates
the group elements corresponding to an infinites-
imal parallelogram of sides dx, dx and finds it
to be 1+8 dx dx'"H, (H =generators of G). The
field strengths I' thus acquire the meaning of
"internal" curvature. Our identification with
Yang's approach is achieved if we can find the fiber-
bundle meaning of the group element g(y„,) attached
to the path y„. We claim that g(y„) is to be deter-
mined as follows. Let a(z) be a cross section of
the bundle that intersects the fiber over x (y) at
a(x) [o(y)]. Let y be a curve in the base manifold
M with end points x, yF- M. There exists a unique~'
horizontal lift y„", of y„ through o(x) [i.e. , a unique
curve y" in the bundle P such that (i) it passes
through o(x), (ii) its projection in M is y„, and (iii)
its tangent at any point is horizontal].

On the other hand, there is a unique curve y„', sit-
uated in the cross section that projects onto y„, in
M. The curve y'„„ intersects the fiber over y at
o(y), while y„"„intersects this fiber at a point h(y).
The points o(y) and h(y) of the bundle P, being both
situated on the same fiber, are connected by a
group transformation. In other words, there exists
an element g,„~G such that

The element g,„of G is precisely Yang's g(y„,). A
change in the cross section is then obviously a
gauge transformation. ""We leave the quite triv-
ial proof of these statements to the reader.

In the gauge theory the potentials A~ are then the
coefficients of the connection on the fiber bundle
and the fields Il the components of the curvature
tensor. In the case of gravity Yang proposes" the
structure group GL(4R); the connection coefficients
are then the Christoffel symbols l',„and the curv-
ature tensor is Riemann's tensor R',„„.So the
dictionary between gauge theories and gravity the-
ory is

curvature, I' -R'

connection, A - 1";

The Yang-Mills Lagrangian in gauge theory is
quadratic in the fields E „. The dictionary trans-
lates this into a Lagrangian quadratic in the com-
ponents of the Riemann tensor R', „and Yang pro-
poses precisely such a Lagrangian. However, this
raises certain problems. For instance, the gravi-
tational field equations become third-order equa-
tions and no clear prescription for the inclusion of
matter is provided. These difficulties disappear in
the usual Einstein theory. But the perfect analogy
between gravitation and Yang-Mills theories ex-

ploited by Yang appears to get lost. However, we
have seen that in higher-dimensional unifications
the Yang-Mills Lagrangian becomes a piece of the
(4+N)-dimensional scalar curvature density and
that its gravitational counterpart is the Einstein,
not the Yang, Lagrangian. So, were one to impose
the requirement of a higher-dimensional unification
of gravity with a Yang-Mills gauge theory we would
be led to Einstein's rather than Yang' s theory. One
may wonder what the requirement of the possibility
of such a unification means. In line with our above
discussion this requirement means that all gauge
fields be at the same time Nambu-Goldstone fields
associated with the breakdown of a higher symme-
try. In other words, were one to only require
gauge invariance and general covariance, both the
Yang and Einstein type theories would be possible
with Yang's theory being the more "natural" one.
If„however, one requires in addition all gauge
fields and gauge invariance itself to originate in the
spontaneous breaking of a higher symmetry, then
Einstein's theory emerges.

At this point one may wonder what would happen
if in the (4+X)-dimensional unified theory one were
to consider a Lagrangian quadratic in the (4+X)-
dimensional Riemann tensor R"aca [Eq. (4.9c)].
With the metric (4.2) one then obtains as one term
the 4-dimensional gravitational Yang Lagrangian,
but the gauge field Lagrangian is not of the Yang-
Mills form but rather contains terms such as
V E „~V .Ea~ g ag g"" g ~, so that also the
gauge field equations become third-order equations
just as Yang's gravitational equations.

We finally wish to emphasize that the alternative
between the Einstein and Yang Lagrangians is
meaningful only classically. In a quantum theory,
renormalization may bring into play terms of the
Yang type even if one were to start from an Ein-
stein type theory.

VII. DISCUSSION AND PROSPECTS

We have shown how gauge fields and gauge invar-
iance emerge from spontaneous symmetry break-
ing. In this context we were led to field theories
in higher- dimensional spaces. A "cylindrical"
subsector of these theories was identical with a
usual 4-dimensional field theory. This theory is
a new non-Abelian generalization of Kaluza- Jordan
theory. In addition to gravitation and Yang-Mills
gauge fields it contains also scalar fields. These
scalar fields have no relation to the breaking of
Abelian dilatation invariance as in Jordan- Brans-
Dicke theories. Rather they are Nambu-Qoldstone
fields related to the breaking of GL(N, R) invari-
ance. This theory is interesting in its own right.
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In this 4-dimensional subsector of the theory, the
unification is somewhat lost in that the relative
strengths of the gravitational, Yang-Mills, and
scalar couplings are arbitrary. This underscores
the fact that while in principle interesting, this
way of welding the concepts of Nambu-Goldstone
and gauge fields has its obvious shortcomings. We
could possibly entertain the idea of "hidden" inter-
nal dimensions of space-time. Speculations about
extremely rapid variation (say with characteristic
length of 10 "cm) of fields in a fifth dimension
have been offered by Klein. " Obviously one could
extend them to even higher dimensions. Yet, there
is a religious flavor to such ideas. One would
rather like to benefit from the existence of higher
dimensions, while at the same time not have to
realize them physically at all. In this context the
most promising avenue is that of supersymmetries. '
In supersymmetric theories one deals with a space
which along with the usual four "bosonic" space-
time coordinates x, also has additional fermionic
coordinates 8 . The dependence on these fermionic
coordinates is only polynomial (on account of their
anticommutative Grassmann nature). So the fields
depend nontrivially only upon the space- time co-
ordinates. It is clear that one could construct a
theory invariant under super space- dependent
supersymmetry transformations. Such a "super-
gauge" theory would contain spin 2, —,', 3. , —,

'
and even spin 0 fields (from H, -dependent fermionic
transformations). Since even spin 0 and ~ fields
appear as gauge fields, in supergauge theories a
total merger of the concepts of gauge and Nambu-
Goldstone fields can occur. It is an interesting
problem to prove the following conjecture: There
exist supergauge theories sn which every field that
appears in the Lagrangian is both a gauge field and
a ~ambu Goldstone f-ield We hope to re. turn to this

problem in future publications. "
The arguments of the present paper involved only

Bose fields and usual symmetries and, as such,
all fields were Nambu- Goldstone fields but not all
(e.g. , not the scalars) were gauge fields. It is only
in the presence of supersymmetries that scalar
fields can become gauge fields and correspondingly,
only in supergauge theories does our conjecture
have a chance of holding.

Finally it is often claimed that Higgs and Nambu-
Goldstone fields are composite" and thus somewhat
less fundamental than the Fermi and gauge fields.
In the kind of theories investigated in this paper
this distinction is blurred. Gauge fields are Nam-
bu-Goldstone fields just like scalar fields. So if
one wanted to derive the Nambu-Goldstone and

Higgs fields dynamically one would be led to de-
rive also the gauge fields dynamically. In super-
gauge theories al/ fields (including the Fermi
fields) are Nambu-Goldstone (and at the same time
gauge) fields, so that all fields are e|lually elemen-
tary or dynamical in origin. A theory that starts
only from fermions is no "more fundamental" than
one that starts from fermions and bosons. It is
therefore an interesting question whether unified
field theories are fundamental or are maybe them-
selves to be derived from some more fundamental
"dynamics. "
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