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The problem of constructing a representation of the Poincare group corresponding to a directly inttmcting
system of a finite number of particles and satisfying the condition that the interaction be separable is
considered by expansion of the group generators in powers of 1/c'. It is established that the problem has a
solution to order 1/c, but, except in special cases, the solution requires that the interaction contain three-
body terms to order 1/c' if it is the sum of two-body terms only to nonrelativistic order. Furthermore, there
is considerable arbitariness in the 1/c ~wrder interaction term, and we discuss the possiblity and significance of
removing this arbitrariness by a unitary transformation. Finally, we discuss higherwrder terms in 1/c', where
we present arguments to show that an N-particle system will eventually have some N-body interaction terms
at some order in 1/c' even though it contains only two-body terms nonrelativistically, and we then present
some applications.

I. INTRODUCTION

In a paper' published in 1961 one of the present
authors considered the problem of describing
relativistically a system of particles using as
dynamical variables only the familiar canonical
dynamical variables of position r„, momentum

p&, and spin s& for a system of a finite number N
of particles (g =1,2, . . . , Ã). This was an attempt
to carry out a program proposed by Dirac' in 1949
and led, in a somewhat roundabout manner, to
results found earlier by Bakamjian and Thomas. '
In that 1961 paper, however, a requirement which
went beyond those proposed by Dirac and
Bakamjian and Thomas was suggested for such
theories to be physically sensible, namely that
they possess a property call.ed separability of the
interaction, but which has also been referred to
as cluster separability or cluster decomposition, '
This separability problem was not solved in that
paper but was taken up by Coester, ' who succeeded
in showing that one could construct separable
interactions for systems of three particles. The
method there employed could not be extended to
a larger number of particles. Since 1961 a con-
siderable number of papers on the subject of
direct relativistic interactions in particle systems
have appeared. ' Some of these have dealt with the
problem itself, other~ have been concerned with
the handling of internal and external interactions
of such systerpp, partially in connection with
electromagnetic interactions of such systems and
the low-energy theorems, and still others because
of possible relevance to quark models. We do not
propose to review these papers here since they
are not directly relevant to the central theme of

this paper. '
Our present interest in the subject was in fact

stimulated by a paper of Shirokov' as well as one
by Zhivopistsev, Perolomov, and Shirokov, ' both
published in 1959, of which we only recently be-
came aware, together with a private communica-
tion from Coester that the results achieved by
these authors were consistent with separability of
the interaction. As in the 1961 paper referred to
earlier, the approach to a relativistic interaction
between particles is made through an expansion
of the generators of the Poincare group in powers
of 1/c', but no attempt is made to go beyond this
order of accuracy. We also shall limit our prima-
ry attention to this same order but shall comment
on higher-order results. What we show below is
that the result of Shirokov is a particular relativ-
istic description to order 1/c' for a system oft particles which is trivially separable, but the
extension to the N-body system by Zhivopistsev,
Perolomov, and Shirokov (ZPS),' in which the
interaction is written as the sum over all pairs
of particles of the interaction obtained by Shirokov
in Ref. 8, is only correct in special instances,
such as when the interparticle potentials depend
nonrelativistically only on their spatial separa-
tions. We shall show further that a covariant and
separable extension can in fact be made to an N-
body system with direct interactions including all
spin and momentum (and isospin) dependent non-
relativistic potentials, but that this in general re-
quires that the interaction terms in the potential
energy to order 1/c involve three-body terms as
well, and more-body terms to higher order.

Furthermore, we shall show that one can easily
construct a more general separable solution than
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that of Shirokov and consequently a more general
separable solution for the N-body extension. We
shall then note the possibility of removing this
arbitrariness by a unitary transformation, and
discuss the significance of such a transformation.
Finally, we shall discuss higher-order terms in
1/c', and, briefly, applications of our results.

Our investigation will begin with the Lie algebra
for the Poincare group, which has been written
down many times, but can be found in Ref. 1 in our
present notation. We shall also keep our notation
as close as possible to this reference and shall
take certain of the results, such as the form of
a "standard representation, "' directly from this
paper; reference should therefore be made to it
for any questions about matters which are not
made adequately clear below.

Q Q(0) +QO ) + ~ ~ ~

Expanding H, R, U, and 0 in this way and using
a "standard representation" in which 5"='0, one
finds'

gt ~ = M5- tg,

where

I= mu, = muru M.

We shall make repeated use below of the fact that
the nonrelativistic center-of-mass 0 is canoni-
cally conjugate to the total momentum gt. One
then has

[V,&'&, J,]= t5„U&0&/c',

II. FORMULATION OF PROBLEM

Since essentially all details of notation and our
starting point are explained at length in Ref. 1, we
shall pass quickly to the essential modifications
in its development. With ru, pu, su the position,
momentum, and spin operators for the pth par-
ticle of the system of particles we take the gener-
ators of space translations, gi, and of space rota-
tion, S, to be

= 2 p~ ~= g ( ~ "p~+sv).
u u

For the generators of time translations, H, and
Lorentz transformations (boosts), k, we write

M[g( U(1)] + [/(1) f(1) U(0)] ~ [f(1) H(0) U(0)]

+[0"', U ]=0, (14)

where
2 2

g(1) 1') 1
Q PP + PP r sP PP

u 2mu 2mu mu

ygo) U(o) p
2i

u
2 PPfu

Ho) Uo)—
8mu

and, in addition, the relations

Hu+ U, (2) [gt 00~]=[f1 U&0~]-[S t~o&] 0- (18)

~ (rpHp+ Hpr p) — ~ —tpp l + 0)
2c Hu+ mu~ J

(5)

(6)

(t)

(8}

2' +p 2P)1/2 (4)

and U and Vrepresent interaction terms The.
Poincarh graup Lie algebra imposes on U and 0
the requirements

[jy, U]=[X, U]=0, [Z„V,]= „,V„

[V„J,]= t5„U/2,

[U, R —0] + [H U, f] [U,+f]=-0

[K, —V„V~]+ [V„K)—V~] + [V„Vq]= 0.

Equations (5} simply assert that U is translation-
ally and rotationally invariant while V transforms
as a vector under rotations.

We shall represent the expansion of any operator
in powers of 1/c' by series af the form

[gj Uc)]. [f Uu)] 0 (18}

(20)

Our object is to find farms for U"', P'&, and U'"

such that Eqs. (12)-(14) and Eqs. (18)-(20) are
satisfied and that furthermore they possess the
separability property which we now define.

We shall modify very slightly the definition of
separability given in Ref. 1. What was there re-
quired was that if the system of particles be sep-
arated i.n any way into two or more'0 subsystems
I and II such that every particle of subsystem I is
infinitely removed from every particle of subsys-
tem II, then H and therefore U should each assume
the form of the sum of two terms, Hg +Hajj and

Ui+Uu such that Hj and U» involve only dynami-
cal variables referring to particles in subsystem
1 (i.e. , commute with all dynamical variables of
particles belonging to ~ubsystem jII), and con-
versely for H» and U;, . '7his ensures that the
dynamics of each of the two subsystems is inde-
pendent of that of the other when ffiey are i.nfiv~ite-
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III. SOLUTION OF THE PROBLEM TO ORDER 1/c'

Our first result will concern itself with the case
where U" contains only two-body terms, which is
the case of most immediate practical importance,
and we shall show that in fact the solution to the
problem we have posed for the case that the sys-
tem is composed of N bodies can be divided into
two parts: an appropriate solution of the problem
for the case of two bodies, and a solution for a
three-body piece arising from the intermingling
of two two-body terms. We shall then explicitly
construct a solution to the E-body problem and
discuss the general solution.

At this point it is convenient to introduce the
notation

Mpv pgp + pSv1 rp jf v y ~pv p]1+pv

0„v = (m„r„+m„r„)/Mvv ~

pvv = (m„pv —mvp„)/Mpv

(21)

These will be recognized as center-of-mass and
relative coordinates and momentum for the non-
relativistic system composed of the pth and vth

particles al.one. Hence they have the familiar
properties of these: The pair ff„„,P„, and r„„,p„,
are each canonically conjugate and the two pairs
of variables commute. One has also

PP + PV. . . QVw i ~

2m' 2mv 2Mvv 2(mgmv/Mvv)
(22)

if vv = r v xp v +xr v+psv + s v

ff~v x Pvv + rvv Xppv+ 8p + S v (23)

Let us now explicitly assume that U') is the sum
of two-body terms

(24)

ly separated. We shall now require further that
the same shall be true of R and hence of 0 so that
the Lorentz transformation properties of the two
systems will also be independent under these same
circumstances. Since this is already true for 0
and S, this means that under the circumstances
described, the representation of the Poincare
group becomes the direct product of two represen-
tations, one appropriate to each of the two infi-
nitely separated subsystems. We remark that the
noninteracting parts &- U and R- 0 possess this
property since, like 0 and S, they consist of the
sum of one-body terms, but that U and '0 will
generally involve two-body, and perhaps three-
or more-body terms, and it is these that must be
arranged to have the requisite separability prop-
erties.

where u» =u~ and u» =0 for p. = &. With u» de-(o) (0) (o) (o)

pending only on dynamical variables for the pth
and vth particles, and using the fact that dynami-
cal variables referring to different particles
commute, Eqs. (18) require that

[P„„,u'„')] = [f„„,ut'„)] = [P„„,ut'„)] = 0. (25)

This still permits u» to be any rotationally in-(0)

variant function of r», p», s&, and sv, but to
satisfy the separability condition we must require
that u„, go to zero sufficiently rapidly" as r» -~.

We may now immediately write down a separable
two-body form for fc:

0''= ~ Q N„vu„v.
P V

(26)

One can easily verify that Eqs. (12), (13), and
(20) are satisfied and that furthermore fu'will
be separable if u„„vanishes sufficiently rapidly
with ~„„-~.

The central problem is now to determine U("
from Eq. (14) subject both to the conditions of
Eqs. (19) and to the condition that it too be sepa-
rable. To this end let us first take note of the
fact that, with our solutions for U ') and fC)

together with Eqs. (15) and (16), the second and
third commutators in (14) contain only two-body
terms. On the other hand, as we shall shortly
demonstrate, the last commutator in (14) contains
only three-body terms. This suggests that we
write U(" as the sum of two parts,

qadi) U(i) + Uo) (27)

V CJ| T'

(26)

The important observation is that each commuta-
tor in the sum vanishes unless one of the follow-
ing four conditions is satisfied:

(i) jl = O', V 4T;

(ii) g=7, vto",

(iii) v=c,

(iv) v=r, ). vcr.

(29)

Hence on using the condition that u» is symme-(0) .
trie in its subscripts, one may write

where the first term is the sum of two-body terms
only while the second is the sum of three-body
terms only. When inserted into the first commuta-
tor of Eq. (14), the first term is then to cancel the
second and third eommutators of that equation
while the second term is to cancel the last commu-
tator.

Let us now consider the last commutator:
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(3o)

which is the sum of three-body terms only. One
now finds that this sum is canceled by Us') in Eq.
(14) provided"

where

~pva=pv+pv+pa~ Mvva=mv+mv+ma.

Now if we write for U,"'
(~)

U, '-, Q u„„,

(32)

(33)

U, &=,~ gy„„. [n„„"„'&,"„'&]
tf, p, o

(o) (o) .+[op ug, uv ] ' Pv oj/Mv„,

and require that all of the two-body terms in Eq.
(14) referring to a particular pair of particles
separately satisfy the equation we have

2 2 2 2 2 2
(&)] ~ ~ Pt1 PP ~ ~ Pp Pp ~ SP PP Sp p„(O) 1 ~ (O) P& p„M»[&" u"]+2+ ", +, "+"»+2 gy +2 nugu ' +' 0

mp mp my mp 2m@ 2mp-

(34)

and clearly if this is satisfied for every pair then Eq. (14) will be satisfied. But determining u„'„ from (34)
is nothing more than requiring the solution of our original problem in the case that there are only two par-
ticles; thus the N-body problem has been reduced to solving the two-body problem, summing over all
pairs, and then adding the three-body term U,'.

The solution of Eq. (34) for u'„'„ is readily obtained by standard commutator algebra as used in Ref. 1; a
particular separable solution, which is derived in the Appendix, yields for Una&

U,"&=
~ Q — "",u'„". +

' " " [(r»P„.)p„„' p+»(P„„r„„),. tu'„]&

p, v mpm pp

+4, [(r&v'&»)(p&v'&&v)+(&&v'p&v)(&&v'r»), u»]-2M — xp»'&» uIv
4Mpp 2' pp mp

Zf&'&= —'[5 O&a&] (38)

where Ota& is rotationally invariant to satisfy (20).
Combining this with (36) tells us that 0&a& must be
translationally invariant. If we also assume that
0" is a sum of two-body terms only (with appro-
priate mass factors) then nf '& can be written in
the form

This is identical with the two-body interaction of
ZPS, though expressed somewhat differently.

%e have thus far obtained a particular solution
U' of the commutation relations which is also
separable. %e are now in a position to exa~i&e
the question of how to determine a general solu-
tion. For this purpose we return to Eqs. (12} and

(13) and ask what form of an addition Sf" to g'&

as given in Eq. (26) is permitted. We see that the
essential conditions on it are

[A%",S,]=0, (36}

[R„AVE'&] —[R&, aV~('&] = 0. (37}

The second of these implies that h'5" be of the
form

sf&'&= ~ Q[5», o'„'&],
V

(39)

with o'„'„a rotationally invariant function of 0»,
r„„p&„, s&, and sp, symmetric in p, and v and

zero if p. = v. The effect of the addition of such a
term to 0"& in Eq. (14}is (in disagreement" with

Ref. 8) to induce a change in UC& of the form

2

(o) (o)
+p ~v, v,a [upv, ova]/M pa, (4o)

where the first sum consists only of two-body
terms while the second generally contains both
two- and three-body terms. Ig, addition one can
add to U' the sum of two-, three-, or more-body
terms (of order 1/c') which are rotationally in-
variant functions of internal variables only (i.e. ,
commute with 0 and 5) and which are separable
(see last paragraph of the appendix); for such
terms (examples of which are easily constructed)
the commutator with 5 in Eq. (14) vanishes by
hypothesis and Eqs. (19}are automatically satis-
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fied.
It should also be clear at this point that had one

included in h8') of Eq. (39) three-body terms of
the form

e = exp(Q),

1 M (0) (o)6 = I ~ oyv/M»+ I ~ o»~/M»g,2c Sc ~„~

(42)

~ Q [ff„„., o'„",.],
]1,V,O

(41)
one has to order 1/c2

~g~-'=K+ f[S, R] =R -i[MR, 6]

with 5»~ = tn& r„+m„r „+m,r,}/(mq + m„+ m, ),
one would in general generate additional two-,
three-, and four-body terms in U". Finally, one
could drop the restriction to two-body terms in
U '). The required generalization appears straight-
forward. Arguments parallel to those already
given would indicate then that, in general, terms
of higher particle number than three-body terms
would be generated in U".

We can now summarize our results of this sec-
tion. We have shown that Shirokov' has found a
particular solution of the Poincare commutation
algebra corresponding to 4„,= 5»uI,'„=RU'" for
the case of two interacting particles. However,
the N-body extension of ZPS' is only correct pro-
vided U,' vanishes. Consequently, except in spe-
cial cases, two-body nonrelativistic interactions
require at least the presence of three-body terms
in the interaction of order 1/c'. The exceptions
occur when all the two-body interaction terms
commute with each other. This will be the case
if they depend on particle coordinates only, or,
for example, involve isotopic spin in such a way
that the above condition is satisfied; the Coulomb
interaction between nucleons in isospin notation
is such an example. It is an academic one in
view of the fact that the spin dependence of nuclear
forces is such as to cause a violation of the con-
dition in any case. (If one avoids isospin notation,
which one can always do, then this case is sub-
sumed under the earlier exception. )

Furthermore, we have shown that one can easily
generalize the results of Shirokov, ' and conse-
quently the N-body extension as well, by adding to
0 ') an arbitrary term hfo such that the resulting
AU' can depend upon the total momentum of a
subsystem of particles, and we have given some
explicit two-body as well as three-body examples.
We also note that one can easily modify these re-
sults by adding an "integration constant" of inter-
nal variables to UP) and V~'), or by adding a three-
body term, or more-body term to U

IV. A NOTE ON UNITARY TRANSFORMATIONS

Examination of the arbitrary terms in EVo) as
given in Eqs. (39) and (41) shows that (to order
1/c') they can be readily eliminated from R by a
unitary transformation on the representation of
the Poincare group, for, with%, defined by

2 Q [5»)0»]

VOy OPVOSc

= K —~0(". (43)

This would also eliminate terms in hU "from U"'
which depend upon the total momentum of any sub-
system of particles. Thus for the two-particle
case this would again yield a result for U' identi-
cal with that obtained by Shirokov, " though appar-
ently for different reasons. "

Furthermore, one can easily show that any hf ')

added to 0 ' of Eq. (26) can be removed by a uni-
tary transformation. Suppose one has the opera-
tors

(44)

K' =K+ n, '0')

H' =H+ gU(')

(46)

where, to order I/c~, 15, S, K, and H are defined

by Eqs. (1)-(4), (24), (26), (2'l), (31), and (35},
aV ' satisfies the equations

[ny(o ~ ] 0

[gy( ) g ] fe ny(~)

[R„d,V()O] —[Rq, d,V~)')] =0,

hP~~ is determined from

(48)

(49)

(50)

(52)

[s"', &]=[s'",5 =0,

n,g"=i[MR, S(')].

(53)

(54)

The last equation can be solved for $ ' provided
the 5 curl of hV' vanishes. But this is just Eq.
(50). Consequently, with %l, defined by

~iS(~)
1

we have to order 1/c'

[Mn ~U(')]+[de" H")]=0 (51)

and both [5,J, R, Hj and [O', S', R', H'j satisfy the
usual commutation relations of the Poincare group.
One can then always find an operator S ' with the
following properties:

$(&) $(&)



12 SE PARABLE SOLUTIONS FOR DIRECTLY INTERACTING. .. 1705

(55}

(56}

where from Eqs. (51) and (54), we have

[R, a&'&] = 0

and trivially that

[p r&,
' ] = [3 6 ' ] = 0 (58)

Thus b ' is at most an arbitrary translationally
and rotationally invariant function of internal vari-
ables only, so for the two-particle case the re-
sult for U' is again identical with that of
Shirokov. " (di'~ is essentially the "integration
constant" for hU ".)

We will not consider b "further, except to note
that 82&, V'~, and dn are related by

[V&&'&, P&] =i 6 (U&'&+ a"&)/c', (59)

where higher-order terms in 1/c' such as V~»

will be discussed in the next section. It suffices
to say that by a previous argument" one may con-
struct a "standard representation" of the Poincare
group to any order in 1/c' from any particular
solution. In any case the simplicity and reduction
in arbitrariness introduced by such a transforma-
tion is sufficiently attractive to demand a discus-
sion of its significance.

Of course unitary changes of representation are
always possible in quantum mechanics. The only
point on which care is required is the recognition
that the operator representatives such as r„, p„,
and s& after the transformation now represent
different physical observables from before. The
observables represented by these symbols before
the transformation presumably possessed soMe
operational significance defined by some partieu~
lar though unspecified measurement process.
After the transformation the same symbols repre-
sent observables defined by a different measure-
ment process. In the case at hand one has no real
conception as to what the difference between the
two may be, and since for example 8 vanishes in

Eq. (42) except when two or more particles are
within their range of interaction, the physical sig-
nificance of the observables differs only in these
regions and not when the particles or subsystems
are asymptotically separated. Hence the S matrix
for scattering and the energy eigenvalues of bound

subsystems in the asymptotic region are unchanged

by the transformation. Thus, for many purposes
it could be argued that the transformation has no

physical consequence unless one can indeed iden-
tify the operational significance of the fundamen-

tal observables —a viewpoint which would be es-
poused at least by pure S rnatricists. To those
who aspire to more detailed know)edge of particle
interactions, one can interpret the unitary trans-
formations as those of a class which in particular
carry two-particle potentials into "phase-shift
equivalent" potentials. These have different off-
shell extensions of their scattering amplitudes
from the directly measurable on-shell amplitudes,
and would hence be of great significance for pre-
dicting multiparticle interactions from knowledge
of two-body interactions. Qf course, such a sig-
nificance is diminished when there are many-body
direct interactions as well. . Also, for those who
wish to determine the off-shell scattering ampli-
tudes by the use of bremsstrahlung or other elec-
tromagnetic interactions, it is essential thay they
have prior knowledge of electromagnetic inter-
actions in terms of fundamental dynamical vari-
ables of specific observational significance, and
hence must resist losing this information through
a unitary transformation containing arbitrary ele-
ments such as the 0„„.(o)

Finally, as a specific example of how a unitary
transformation may be misused in the name of
simplicity, considez the following. Suppose one
had chosen as the simplest form for 5"the ex-
pression %"=OU0 for a system of N particles,
where N&2. This represents a particular solution
to the Poincare commutation relations to order
1/c' and by the argument presented at the begin-
ning of this section, one could then find a unitary
transformation which would remove any d,'0"
added to this particular solution, and so, for the
sake of simplicity, argue that this particular so-
lution and the resulting U ' be accepted as the
"standard representation" of the Poincare group
to order 1/c2. However, this "standard represen-
tation" would not satisfy the condition of separa-
bility if r„, p„, and s„were considered as having
their usual meaning. "

At this point it is somewhat futile to argue the
relative merits of simplifying the representation
by a unitary transformation on the one hand, and,
on the other hand, adhering to a rather tenuous
insistence that one indeed knows what the opera-
tional significance of the fundamental dynamical
variables must be. Rather, we point out the pos-
sibility of such a transformation. but emphasize
that discretion must be exercised in its use. Along
these lines, it is of interest to pote the close par-
allel of this situation with that of axiomatic field
theory, in which the asymptotic fields are pre-
sumed to have physical significance from an S-
matrix viewpoint, but the arbitrariness in inter-
polating fields makes a case for the observational
significance of the latter somewhat tenuous.
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V. HIGHERARDER TERMS IN 1/e2

Turning our attention now to second-order terms
in 1/c', we note that the critical equations are Eqs.
(8) and (7). Using the result that K&" = MR —fP, the
latter takes the form

M[f1 y(2)] M[R y( 2)] + [ff(1) y(1) y(1)]

[A.o) yo) y(&)] +[y&» y(»)] —p (60}

The subscript on a commutator bracket indicates
the order in particle number of each bracket if we
assume U"' and »N' are two-body operators,
while U"' is the sum of a two-body and three-body
operator. Equation (60) then clearly demands that
f(2& is generally a three-body operator. The con-
dition arising from Eq. (8) can then be written

M[/ U&2&] [I«) V(&) U(»&] + [K&»» V(2) fJ{0)] P[VA& ff (&) P(&)] + [V(2) ff(&&) U&{&)]

+ [V"' U"'],+ [V"',U"'].
~..=0. (61)

This requires that U(2) contains two-, three-, and

four-body operators in general. Even if U") is of
the special form such that U"' conta, ins only two-
body operators, then still the momentum depen-
dence of these according to Eq. (35) would require
at least three-body terms in U(2). Thus as one
goes to higher and higher order in 1/c' one will
generate interaction terms containing increasing
particle number operators. Eventually, then, for
an N-body system there will be N-body forces.

Thus far we have not established that Eqs. (60)
and (61)can in fact be integrated for V"' and U'",
nor whether separable solutions exist should Eqs.
(60) and (61}be integrable. Furthermore, by con-
sidering V"' in more detail we can emphasize
another point: A necessary condition that Eq. (60)
have a solution for V'" is obtained by commuting
Eq. (60) with R, and contracting with «», on all
indices to yield

[2[ff(1) y(1) y(l)] p[y{l) y(1)] R ] P (62)

Equation (62} is just the statement that the P diver-
gence of the P curl of V"' must vanish. The inter-
esting question is whether Eq. (62) is identically
satisfied with our general solution for V"' or
whether it imposes further conditions on V"' so
as to reduce or remove the arbitrariness found to
be associated with V"' in Sec. HI. More generally,
one may ask whether any solution exists for V'"',
whether any separable solution exists for V~', and

whether the existence of V'"' imposes conditions
upon V(" ", where m &1. %e will answer these
questions directly and provide a heuristic outline
of the associated calculations. The calculations are
somewhat lengthy and will be reserved for a suc-
ceeding publication. "

One can indeed show that V'"' exists" for all
m )1, the important point being that V"' can be
shown to exist by finding a closed form expression
for it. To see how the construction goes, expand

Eq. (8) in powers of 1/c' and note that the sth
order expression containing V'"' can be written in
the form

«»&[Mfa'» y'»"'] = «»a8'»»'

This is a vector equation of the form

(63a)

(64a)

is canonically conjugate to the operator

[P/M]l l»» &21»{(»
P())P(&) ' ' 0(&)

where

(64b)

1
P(&) P(2) ' ' P()f)

jt(y) P(2) ~ ~ ~ P(k) 1» P(I)

(64c)

f~ xV&"& = G&"&/M (63b)

where V~ is the gradient with respect to P. To
prove that a solution to this equation exists for
V ', one need only show that V~ 0'"' =0.

To find a solution for V'"' which satisfies both

Eq. (63) and the boundary condition given by Eq. (6)
above, first express the solution to Eq. (63) in a
closed form and then substitute this solution into
Eq. (6). This will yield an equation which is a
function of the arbitrary parameters in the solution
of Eq. (63). This equation can in turn be solved for
the parameters of Eq. (63) to yield a closed form
expression for V'"' which satisfies both Eqs. (6)
and (8) to order 1/c'". Furthermore, from this
expression for V'"', one can prescribe a procedure
by which separable solutions might be constructed
to all orders in 1/c'. Briefly, this procedure takes
advantage of the fact that, for an N-particle sys-
tem, the operator

R]) &») &2& ~ ' '~&» ™)&»& &2&
' ' ')&&»»&») &2& ' ' ' )»&) &
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[1{&)P(&)' ' (&) Z p. , (64d)

V&» t (2) P&~) (64e)

(64f)

and k, l, m ~N. Consequently, by using only separ-
able functions in the closed form expression for
V'"' and "integrating" these separable functions by
replacing ~R with [MR]„&»„&». . .„&» and P/I with

[P/g&&»&&». . . &&», one can produce another func-
tion which is again formally separable. What is
somewhat disappointing is that the existence of
V'"' does not remove or reduce the arbitrariness
in the choice of V'" ".

The operator U'"' is determined from an expan-
sion of Eq. (7) in powers of 1/c'. The nth order
expression containing U'"' can be written in the
form

v f/"'=G&nP (65)

VI. APPLICATIONS

Interest in the construction of directly inter-
acting relativistic particle systems stems from
two sources:

(a) interest in whether such a theory can be
made self-consistent irrespective of the accuracy
with which it might describe nature. In this re-
spect it is a theoretical alternative to field theo-
ries and their problems.

proach to practical calculations on

To show that a solution exists, "one need only es-
tablish that the condition V~& G'"' =0 is satisfied.
One can then show that [O',"', P, ] = 0, so that a closed
form expression for U'"' can be found which sat-
isfies Eq. (7) and the boundary condition given by
Eq. (5), [f/'"', P]=0. Separable solutions might
then be constructed by using the same procedure
as for V'"'.

One other point should be made with regard to the
solutions for V'"' and O'"'. Note that the expres-
sion for V'"' will in general involve lower-order
terms in both U"' and V"', where k &. n. The ex-
pression for U'"' on the other hand will depend vari

general upon lower-order terms in U"', whex'e

k & n, but upon V' ' such that m ~ n. So the above
procedure, by which separable V'"' and U'"' might
be constructed, has a "bootstrap" feature: Given
a separable U' ', a separable V"' may be found;

iven U'0) and V&" a, separable U&') may be found;
given O' ' V&" and U"' a. separable V"' may be
found; and so on.

many-body systems where real or virtual particle
production is not expected to play an essential role
and it would be expected that other re1.ativistic ef-
fects are small. Examples where such approaches
a,re useful, in spite of their limitations, include the
physics of atoms and nuclei at moderate excitation
energies and primitive quark models of elementary
particles. This type of approach could, we hope,
allow one to gain useful insight into a variety of
interesting physical phenomena and theoretical
principles. An example of the last is the general
need for many-body forces that has been empha-
sized above and earlier.

We shall dwell on only one aspect of an applica-
tion of the latter kind. Nuclear structure calcula-
tions are achieving an accuracy where relativistic
corrections are significant insofar as selecting
from among alternative expressions for the phen-
omenological nuclear interaction. To consider
such corrections was the motivation of the work of
Zhivopistsev, Perolomov, and Shirokov. ' Further
work in this direction has been carried out by
Bhakar, "and more recently by Coester, Pieper,
and Serduke. " Except in the last work no consid-
eration is given to either the necessary presence
of many-body, particularly three-body forces, nor
to possible ambiguities in the relativistic correc-
tions to two-body forces owing to the arbitrariness
in U',". In Ref. 19, on the basis of consistency
arguments, the three-body forces pointed out here
are neglected for the purpose of calculating the
binding energy and equilibrium density of infinite
nuclear matter since three-body correlations are
also excluded from consideration. On the other
hand, apart from the problem of phase-shift equiv-
alent potentials, the question of the ambiguities in
two-body forces does not appear to arise explicitly.
We can only conjecture at this point that the a,m-
biguities referred to above may be transferred to
the off-shell behavior of the two-body potential or
that different possible connections" between single-
particle and center-of-mass variables may corre-
spond to generating phase-shift equivalent poten-
tials from any one phenomenological potential.
Further clarification of this point is clearly need-
ed.
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APPENDIX: SOLUTION FOR TWO-BODY TERMS

We explicitly solve for the function u&('„of Eq.
(34). We note first that the spin-independent terms
of the second commutator in (34) can be rewritten
as the sum of two terms C", v and C,"' by writing for

lg and rv

mv mg
rg =Rpv + rgv r rv =Rpv rpv q (Al)

gV gV

and using (21), to yield

2 2 2 2
Cg v R Pg Pv Pg Pv R (O)

2c' "" 2m 2mv 2m„2mv
2 2 1 2 2

Pg Pv (p) + Pg + Pv (p)
2c' -2mg

(A2)

g v 1 Pg Pg ~ ~ Pv Pv ~ (0)
2 2 2 2

C2 2M ' mv "V2 +2 m' g™g""2 2gv m g mv mv
(A3)

On the other hand, the third commutator in (34) can be reduced:

2 . 2
Cgv = R (P)c' "" ""' 2m„2mv.

1
R u " + — + u R " +

2 2 2 2

2c' "" "" ' 2m 2mv 2c' "" g" 2m„2mv-

R Pg P" ( ) Pg P" R R
1 2 2

g"2m 2m 2c "" ' 2m 2mv "v 2c ""2m 2m„

(o)
Rgvy 2m

+
2m

(A4)

The first pair of terms in the last expression for C,""simply cancels C", ". Substituting from Eq. (22) into
the second pair yields the results

2 ~ 21 Pg (0) 1 (0) „Pg i —
u(o)Rgv, 2~ gv +

2 2 gv Rgv y 2~ ~ 2 gv gvC C

2
u'"'2M (A5)

Thus with a term
2

a u'" =- "' u("
gv 2M 2 2 gv

gv ~

in u„'g we will cancel this term from Eq. (34).
Now let us turn our attention to C,"". By substitution of

(A6)

m g mv
pg=pgv+~ Pgvp pv = —pgv+~ Pgv f

gv gv

it splits into three terms which we now evaluate:

gv 1 ' mv 2 g 2 (o)
C21 2~ 2 2 ( g Pyv Ppv rgu) 2 ( gtlPg +Pgy Ip spy

gvc ~ mg mv

mv mg r 2 2 (o)l
2 [rgvPgv +Pgv rgvq ugvJ

4mgmv C

51 Eflux t 2 2 (0)g~gv Rgv & ~ +~ 2 Lrgv Pgv +Pgv rgv y ugv ]' Pgv'
,

~

"m„m„&S„,c
(AB)

Hence, by including a term
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~ g

(1) (~u u) 2 2 ~ (0) &.&2&Vv = . 2 Ivv.pVu +ppu rVu~ Vu] puu4mvm pMgv c

in uv'„' we will cancel this term from Eq. (34). In addition we have

PV 1 mV Phyll ~ 2 ~Q (o)
22 2 2 M M 2 pv pv M }1~ 2 pv pv yupv Q

y
V PV

and lastly,

(A9)

(A10)

C„"=, , [m„{r„.(p„„p„,) +(p„„p„.)F„,)+ m„{r„„(p„„p„„)+(p„„p„,) r „],u„'„']
M„v c

= 4M, [rvv(pvu' pvu) +(Ru' pvu) vu+( vu'pvu) pvu+pvu( vu' pvu» "v'u]
M~vc

4iif 2 [(rVu' PVu) pVv rVv(ppv' pgv) (pVv' PVu) rVv+pVv(rVv' PV v)l SVv ]Mpvc

The first commutator of (A11}can be canceled from Eq. (34) by a term

(A11)

4Mpv c

in ui„'J. The second commutator of (A11) can be rewritten as

(A12)

2 [(rV v XPV v) X PV v
—(Pp v X rg v) X PV u, Sp v ]=—

2 [(rgv pVv) ppv I Spv]4Mgvc 2Mpvc

If we use the fact that R&„and P„„commute with u„", and that

[JVv I npv] [rVu peru+ SV+Su& SVv]

we can rewrite the preceding expression

(A13)

2 [(SV+Sv) Ppv ~ SVv ]
2hf~v c

Finally the spin-dependent terms in the second commutator in Eq. (34}are

(A15}

1 s„xp„
c 2m)f

Svxpv ioi 1 SuX[puv+(mu/Muv) Puv]
2m

s„x[p,„-(~„/lif„„)P„„]
2m. PV

Sg Sv ~ (o) (o)
XPVu, SVv -

2 .(S&+Sv) XP», u„v ].2c ply p PSV - 2Mpv c (A16)

The second term cancels the expression (A15}
while the first term will be canceled from Eq. (34)
if we include a contribution

V
().) x ~ Iy u'"c' m mJlV g V

(A I'I)

in u„'„. Thus with

+1+vv + +2+vv+ +3+vv + &pv» (A18)( I } (1) (1) ( 1) (I)

we have obtained a particular separable solution

to Eq. (34}, for s~vg, and hence have achieved our
objective.

Kith respect to the generality of this solution
we may remark that any other solution must be
such that its difference from the above commutes
with R». Hence it will consist of a rotationally
invariant function of the nonrelativistic internal
variables" r„v, p„v, s„, and s,. It thus has the
same structure as u('v and, like it, for separa-
bility, must vanish sufficiently rapidly as r„,-~,
but will be of order 1/c'.
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