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In two dimensions, we find a construction for an SU(N) quark field in teens of N real Bose fields. Hence,
equivalence is shown between certain massive SU(1V) Tlumng models and systems of quantum sineGordon-
type equations. From the point of view of the bosons, the "soliton-quark" SU(N) is topological. To
minimize guesswork in the development of such correspondences, we employ a systematic blend of
Mandelstam's operator approach with the interaction picture.

I. INTRODUCTION

Recently Coleman' established the surprising
result that the quantum sine-Gordon equation is
equivalent to the massive Thirring model, at
least in the zero-fermion sector. He also gave
simple arguments which imply that the Thirring
fermion is the soliton of the sine-Gordon equation.
Soon afterward, Mandelstam' gave a nonperturba-
tive proof of this by constructing the fermion out
of the Bose operators. Such results are of obvious
significance to particle theorists trying to per-
ceive the medium in which they are immersed.
Extensions may even lead to a "derivation" of
dual models as extended solutions of local field
theory.

It is my purpose in this paper to extend such
correspondence to SU(N). I have in mind finding
representations of SU(N) quarks in terms of Bose
fields, and hence finding the quantum sine-Gor-
don-like (SGL) equations that correspond to cer-
tain interacting models of these fermions. Thus,
SU(N) quarks will be quantum "solitons. " As pure
fermion examples, one seeks correspondence
with massive SU(N) Thirring models, but it would
be nice to have the results in a form whereby
other interactions, such as A„ Ibk y"g (gluon),
can be explored. Vfe also have a disadvantage in
not knowing ahead of time the form of the SGL
equations.

I have chosen an approach which handles all
this, and which circumvents, in an orderly fash-
ion, a great deal of guesswork. The approach is
based on the following observation: If one knows
free-field correspondences, it is generally very
easy to add many interactions in the interaction
picture. Getting back to Heisenberg equations of
motion is quite simple (at least when there are no
coupling constant renormalisations). One can
always check one's results directly in the Heisen-
berg picture, either by calculating matrix ele-
ments, or, preferably, by Mandelstam's operator
manipulations.

The plan of the paper is then as follows: In Sec.
II I give a brief discussion of the interaction pic-
ture for certain (soft-chiral-breaking) SU(N)
Thirring models. Section III is a rapid rederiva-
tion of Coleman's correspondence, starting from
the free correspondences. In Sec. IV I guess
generalizations of Mandelstam's operators for
the case of free SU(N) fermions. The represen-
tation involves N bosons. In Sec. V I leap quickly,
via the interaction-picture method, to the corre-
sponding SGL equations. The intricate form of
these equations compliments the method; the
structure seems quite difficult to guess (but easy
to check} in a more direct approach. From the
point of view of the bosons, the SU(N} of their
"soliton-quarks" is topological. For example, the
diagonal component of isospin (say I,) is a matter
of asymptotic behavior of the soliton, just as was
baryon number in the U(l) case. The scalars
themselves have no simple transformations under
SU(N), and the SGL systems no obvious invariance.
In Appendix A, however, I discuss the sense in
which the scalars form an extraordinary nonlocal
representation of SU(N). This may be interesting
in its own right, but the connection with the quark
isospin is highly indirect. In Sec. VI I make some
preliminary remarks about the more difficult
case of hard-chiral-breaking interactions. There
is another appendix, B, in which I note that many
of the manipulations and correspoodences within
two-dimensional field theories are known in dual
models.

II. INTERACTION PICTURE

I will briefly review the interaction-picture
formulation for a baryon-number current-current
interaction, thus a simple SU(N) Thirring model.
Ne will be interested later in mass terms and
other interactions. Ne seek correspondence then
with the family of Dirac equations
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where 8„a= 1, . . . ,N is an SU(N) quark, and

J"=P %.r" 8 =Fr"8. (2.1)
8=1

SU(N) currents J" =$y" 0X g, Tr(X"Xo)=25, are
interesting objects, but we shall not include these
in the interaction until Sec. VI.

In the interaction picture, we deal only with
free fields, and we expect to guarantee both Lo-
rentz invariance and the usual Feynman series
by studying Ho„and 8~„, the free and interacting
energy-momentum densities in the interaction
picture (all functions of free fields, or free cur-
rents). We assume' ' for the free objects

~(e = —-0g&a' ~lan=- ~00 + 800
E t 1 ES E&

2

e~~ already satisfies this, you may pick any other
e~, with the result that

b = - —n G, G = (1+Cngn) (2.V)

[8m(x), Jon(y)]=1J„(x)8,5(x y),-
[8noo(»), J,D(y}]=iJ,D(x)a„5(x- y),

(2.8)

and similarly for J„. These are useful in estab-
lishing that J» is a two-vector in the IP.

As shown in Ref. 3, this guarantees a Lorentz-
invariant S matrix {the Feynman series, if ex-
panded in gn).

We next turn our attention to the Lorentz-trans-
formation properties of the currents. In the inter-
action picture (IP)

EB :Jm+&iI: MOE dx x eED+xeEM

EY e a
8oo = 2~:JonJon+J1D J1D: ~~v

(2 2)

801 PD 18D 801 801
E & t- EB EV

2

EB 1 EP' . a a .
~ol = —:Jan Jla: 8 8 Ol

= —:JOn Jla:
CB

' '
CP

(2.$)

where b is to be determined and gB will turn out
to be that of Eq. (2.1). The form assumed is in

general not a Lorentz scalar because there are
Schwinger terms in the current algebra, '

[Jon(x), J1D( y) ]= iCna, 5(» —y),

[J,n(»), J,'D(y}]= if" J[D(x)5(x- y}

+i5 DCva, 5(x —y),

where C„=I/2». We will also need

[J.n(»), 8D( y) ] = -On(x)5(» —y),

[J111(x) tt D( y)] = ror18D(x)5-(» y}, -

[J:n(x},kn(y)]=-
2

ln(x)5(x-y)

(2.4)

(2.5)

[J1D(x),Sn( y)] = yoy, 2
8D(x)-5(» y)-

The subscript 8 denotes all free quantities, and

Cn =N/v, C„=(N+ I)/2w. Now for the interaction.
We assume a form, H1 = f dx 8~~,

8~ = .gn(Jon}'+—b(J1D) 8o1 =o
Jo =-(Jon GJ1n) (2.10)

is a vector. This result is well known in the
Thirring model, and as noted above, it is a gen-
eral phenomenon for any field which has Schwinger
terms with e~.' J„~remains a vector under this
interaction.

We next make contact with the Thirring-Dirac
equation. Applying U ~ ~ ~ U to ilfgn = 0 and using
(2.5) we obtain immediately that

iAn=gn:An: (2.11)

completing the correspondence. We also list the
obvious relations

[J,(x), 8n(y) ]= gn(»)6(x y),--
[J1«» fn(y}]= Gyoy A 8(»-y}-
[Jo(x),J,(x) ]= iGCD8, 5 (x —y),

(2.12)

[M01,Jon(x)] =i(ta, +»a, }J~(x)—iJ,D(x), (2.9)

[M01,J,n(x}]= i(ta, + xa, )J,n(x} —iJ'on(x),

and similarly for Jz. However, because there
are Schwinger terms in the commutator (8~,J„),
this will not persist in the Heisenberg picture
(HP}. Define HP fields as gn= U gnU, U=-iH&U,
etc., and the full Lorents generator Mor, (aoro, 80r,).
Then applying Ut ~ ~ ~ U, one easily establishes that
J~~ is not a two-vector in the HP. However, in the
same calculation, one sees that

The way to determine 5 in terms of g is by re-
quiring Lorentz invariance, that is, Schwinger's
condition

[8 (x), 8 (y)]=i[8,(x)+ 8,(y}]8,5(x-y) (2.6}

on both the free and the total e~ = OE~+ 8~. Since

all other commutators going over form-invariant
to the HP.'

As a quick application of the method, we derive
the Sugawara stress-tensor form for these theo-
ries. '6 Adding 8E~ and 8~, in either picture, and
remembering to use J&, we find
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4L ply
(2.13)

III. A QUICK DERIVATION OF
COLEMAN'S CORRESPONDENCE

Suppose we know the free-field correspon-
dences" for U(1):

~ Pt q
~ O' Q ef2&1T QDC

yD 2D' y

(3.1)

A word about renormalizations is in order here.
The IP methods suffice to define the unique one-
parameter (gs) unrenormalized Dyson S matrix
of the Thirring models. However, we have ignored
wave-function renormalizations in our passage
to the HP. Vfith an adiabatic limit, one can show
that [Pe(x), g„(y)]+—-Z5(x- y}. The finite currents
that we want are then J~=Z '.g„y"f~, J~
=Z ' /sr. " 2X™g»'., and (still) Z„=(joe,GZ, „). We
shall understand this identification in Eqs. (2.10}-
(2.13) and so on. No renormalization is needed
for ge (see, however, Sec. VI).

As a warm-up for Secs. IV and V we will next
apply the method to Coleman's correspondence.

2 = —,'(1+ it)(a yQs)

1=
2G

(a, (t& „), ~ = Csgs (3.3)

t2(~c) jt' j
~M yH/PHe ~ Lv ]fe47 7

that is, a misnormalized free field. The way to
see this is the following. Starting from (3.3) with
z unknown, go to Hamiltonian formalism, and perturb
in small ~. The correct breakup is 8«= 8«+ 8«,

coo- ~[&H +(aAH) ]
(3.4)

00 2(I+ «)
vs 2

{ 14H} I

where v„=ag/ap„= (1+g)a,$„. Now go to the IP,
Q~=U /DU. Because Un~U =e, f|t)D, then 8«
in the IP is immediately compared with (3.2); it
is the same when z =g~C~.

The dynamics of (3.3) is entirely trivial. We
write

U'y, U=y, =MG j,
(3.5)

U /DU=6
v'C

where we have introduced the properly normalized
free field P. The second identity is immediately
obtainable by differentiating the definition of f~
in terms of Pn. With the help of (3.5), we im-
mediately transform our correspondences (3.1) to

N„cos(2 Wir &pn), :Z'g„g„:=- "N„cos[2{vc)'"$],Cp,

m
(3.6)

where all fields are free (g = spinor field and

P = Bose field}, and y, is the mass at which we
choose to normal-order the P field. For corre-
spondence with a massless fermion, one should
take p-0 (after operator manipulation or calcula-
tion of matrix elements}. Later, however, we will
follow Mandelstam's convention, and identify
p, with the Bose quantum mass in the sine-Gordon
equation. In (3.1}all expressions are in fact
independent of p, , but, in general, the limit must
be smooth because the Fermi side is smooth. The
constant C is the same one that Mandelstam de-
fines in his Eq. (2.3).

Now the IP is just the place to use these. %'e

rewrite the U(1} theory of Sec. II. Equations {2.3)
and (3.1) give

P =(cG )'"e""a j
=Z ':(4r'4&, GO&r'0&):.

Here, as promised in Sec. II, I have left room for
a wave-function renormalization, and a (different)
mass renormalization Z'. The fermion fields
solve the massless Thirring model, and the Bose
field is free and massless (p-0 after calculation,
as above).

The final step is the simplest: Add a mass term
to the Thirring Lagrangian. In a "second" inter-
action picture, where the fields have the time
dependence of the massless Thirring model, we
use

+ 8~ =+m':Z'rPg:

(3.2)

This is quadratic, and when taken with 8«
= —,'[(a,P)'+ (a,$)'], is easily seen to be only a
finite wave-function renormalization on P. I will
first state the result and then prove it. The inter-
action (3.2) is equivalent to the HP Lagrangian

where m' is finite.
This interaction commutes with itself at equal

times, so we need do no work. Going immediately
to the final HP, we obtain the sine-Gordon La-
grangian
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Ic
2, = —,'(8 „p) + N„cos[2(»G)'"p] .

Comparing this with the standard form,
(a/P')N„cosPP, we read off

(3.8)
~ ~ ~

1/2 X

N„exp is» d& P, ($)+P,(x)
21r «00

(4.3}

2(»G)'I~ = )3, 2
= 1+—» (3.9) 1/2 x

N„exp

ilaw

d$ p, (()—P, (x)
2m

Following Mandelstam's convention, we choose
p to be the (tree-approximation) Bose mass. Then
n = p', m'= g»/CP'. The identities (3.6) are form-
invariant under this last transformation, with the
understanding that g solves the massive Thirring
model and fY| solves the sine-Gordon equation.
Taken together with the commutators (2.12), this
completes the correspondence.

Mandelstam's operators' can also be boosted by
these transformations from free to interacting
fields:

1/2 x

ex)e')Wiir j (&) ~ y (x) I.2r OO

(3.10)

Then P»= Ut)})~»U is, using (3.5), the same form,
but with Q» - (I/MG )4), Q» - MG)I)).

With my machinery well oiled, I proceed to
guess free-field correspondences for SU(N}.

IV. FREE-FIELD CORRESPONDENCES FOR SU(N)

Begin with the case of SU(2). We need two quarks
)})",, r=1, 2 (Lorentz index), »=1, 2 (isospin index}.
Mandelstam's representation' is immediately
generalized to

X.' = $14.'

~
~1/2 x

N„exp i'm -d$ Q.($) + P.(x}

generalizes to all SU(N). Here $, =(-I}»~, $, =1,
and a=1, . . . , N. I chose the one I did for SU(2)
(a special case} because bilinears are so simple,
X,"X',= p, "g» and normal ordering with respect to

$ is the same as normal ordering with respect to
The normal-ordering equivalence persists for

all SU(N), but, in general, the bilinears contain
('s for N~ 3. "Diagonal" bilinears, such as the
mass term, etc , an.d SU(N} symmetric quartics
are $ free. In any case, the $'s cause no trouble
with the correspondences. As a matter of taste,
I would leave them associated with the g's; they
amount only to certain phases in a final calculation
of Fermi Green's functions.

I am going to concentrate on working out the case
of SU(2) in detail, with occasional remarks on gen-
eral features of SU(N). At the end of Sec. V I
will give a. general discussion for SU(N). More-
over, I am going to assume familiarity with
Mandelstam's manipulation of these operators,
except when a step is somewhat unusual.

A. Bilinears

The calculation of the bilinears follows Mandel-
stam closely. First, the "diagonal" currents (we
will in general use:: for Fermi normal ordering),

Xa = ~14a

(4.1)

1/2 g
=+i N„exp it» -dt' Q,(()—P, (x)

21r

=-~ca&" ~U(I)'+~
(4 4}

Here" we have introduced two (Lorentz) scalar
free Bose fields p, (a=1, 2). $, =(-l)"' is the Klein
transformation operator, in terms of N1 the
number operator for the isospin-up quark. The
fields X, anticommute when a = b as they should,
but commute when cW b. The Klein transformation
corrects this for g,"; thus

(4.2)

etc. is easily verified following Mandelstam.
There are many other equivalent Klein transforma-
tions. For example, the scheme

~1/2~ v4-~
(2w)

where now C»=2/», and for later purposes, we

have introduced the normalized combinations

P, = (1/W2 )(4),a 4),). For SU(N), Z" will be the
sum over all f„etc. Before going on, these
forms are worth consideration. As in the Abelian
model, the time components of these currents
are total derivatives, so, e.g. ,
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13 = dx Jos

(4 8)

Thus, Q„4), do not transform under l, (or B).
This tells us that when we get to the SGL equations
whose solitons are these quarks, then, from the
point of view of the 4)'s, the isospin of their quark
solitons will be essentially topological (a conser-
vation of asymptotic properties). The 4)'s them-
selves must have no simple isospin properties.
Parenthetically, a group theorist mould partially
presage these remarks; he knows that SU(N}
cannot be represented (linearly) on N real fields.
These remarks are explored further in Appendix
A.

Proceeding, we give the charged currents,

J,(7,) =J, (v )

=2'0'~C'

X

x exp i( 2w)'~ d&4) {&)+4) (w) ],
(4.6)

=2:Pi &a:

xem ((am)' f a(j (()-0 (s) I.

Here J, =Joe J, and 2v, =x, +is, . These appear
spatially nonlocal, in distinction to the neutral
currents. This may be an interesting effect in a
theory probed by W mesons and photons, or a gluon
interaction. Note, however, that in an SU(2) sym-
metric theory, any Particular component of J"
can be made local. I remark also that every time
I have studied some property that all J„should
have in common, it all works out. For example,
one easily calculates directly by differentiation
and C3 Q~ =0 that

(4.8b)

= —(i(,, g )'"N, cos[(2w)"*((),]

x N cos[(2w)'"(I)) ]. (4.8c)

In the last step, we have used Coleman's identity'
N„(cosPQ) = (i). '/i), )8 ~"N„(cosPP) to re-normal-
order {3nj, at different masses p, I shall have
more to say about this later. For those who
understood Secs. II and III, Eq. (4.8c) is very
close to the interaction in the forthcoming SGL
equations. For SU(N), this term is a sum of co-
sines for each P, .

For reference, I will simply state the other
bilinears. Defining

1 0)
(0

we obtain

(I 0')

(0

P = (g, p. )"'N, sin[(2w)'~4), ]cos[(2w)'12(j) ],2iC

S, = —(i(,,p )'"N, sin[(2w)'"P, ]sin[(2w)"'4) ],2C

S, = ——(y.,p.)"'N, sin[(2w P"4),]

pected. This was obvious for the neutrals (from
our representation), but is extremely indirect
for the charged currents. It appears that, despite
appearances, all J„are on equal footing. I also
remark that J„(J„)are made up entirely of

(4),); hence they commute. Commutators of

f, with the isospin generators are discussed in

Appendix A.
The "mass" term has the form

N„[cos{2)tw4), )+cos(2 v w 4),)]p, C

(4.8a)

N„ cos[(2w)"'(()),]cos[(2w}"'(t) ]
2@C

(8,+s„)J,=0,

(8 v e,)J,"= 0, a = I, 2, 3 .
(4.V)

r
xcos (2w)"' 4) (t'}d$

~ssQQ

The simple calculations, however, go along dif-
ferent lines for charged and neutral currents.
Equation (4.V) is equivalent to s„J"=s„J,"=s„J"„

=8„J," =0, and therefore all currents are propor-
tional to gradients of free scalar fields, as ex-

SI = - —(p, i))"'N, sin[(2w)'", 4),]

X ~

xsin (2w}'" (I) ($}dt'
~a

(4 8)
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P, = ( i,(, g )'"N, cos[(2w)'"(f(, )sin[(2w}'~p ],2iC

P, = — (p,.p) ", N, cos[(2w)'~(}(, ]
2iC

xcos (2w}' f ( (()a(

P, = — (y, i(, ,)'"N, cos[(2w)"'@,]
2iC

xs (2w)"' I (, (((d(

B. Some quartics and current algebra

Evidently

:J0Jo:=Nq —(a,4(,),

:J,J,:=N„(a,—A.)' &

:J~&:=N( —

l(aorta.

)4-]' ~

(4.10)

Here, I am using the abbreviation N, for N,
These equations all follow straightforwardly, with
the observation that exp[iti f dt' P, (()] normal-
orders just as exp(ipse, ) We. now turn to some
quartics. As examples, I will work these out
for currents, and current algebra.

:J,J:= -N~ —8),p 8
1"m"

one must, however, take more care with products
of charged currents. Following Mandelstam,
we obtain ((I( —= aop)

i(2w)'I'J (T, x) J(7', y) —
(

. p ——, . [0 (y)+a„(}( (y)]

—
2

'9(2w)'"la, 4 -( y}+a,'4 -(y}l - »l(a. +a,)4 -]'k+ O(x - y) (4.118)

J,(T , y) J (v„x) ——, .—— . [p (x) +a,g (x)]
1 1 1 i(2 w)'~

x~y

(-i(2w)'~[a„y (x)+a,*4 (x)]-2w[(a, +a,)p ]']+O(y-x) (4.11b)

Here we were careful to expand the exponentials to second order. (4.11b) is just (4.1la) with x—y and

p - -P . It is crucial to note now that reexpanding a first-order term at x, around y, can change sec-
ond-order terms. I choose to compare the two expressions at y. Thus, I reexpress (4.11b) as

1 i(2w)'i'J,(&,y) J,(& x) —
( )

[(t'-(y)+a P (y)]'-

—2,(+i(2w)"'[a„j (y)+a„'4( (y)]-2w[(a, +a„)4 ]')+O(y —x) . (4.11b()

Note the sign change in the next-to-last term. Without this care, we would blunder into nonlocal current
commutators. Now using (z- iz) '=Pz '+iws(z), together with (4.11a), (4.11b'), and (4.4), we obtain
correctly

[J,(r„x),J(r, y)] =4J', (x)5(x —y)+i-a, s(x y) . - (4.12)

The rest of current algebra follows smoothly: Commutators of charged currents with neutral currents
are much easier.

With the help of (4.11a}, and (4.11b'}we can also construct the point quartic

:J,(r, , x)J,(r, x):=: Q J,"(x)J', (x}:.

This object is symmetric under r+—v, so we define

J,(v„x)J,(v, x) =- hm z [J,(r+ i x)J,(r, y) +J,(7, x)J,(r„y)]. (4.13)
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We combine (4.10) and (4.14) into some more
familiar forms:

1
600 =:JOJO+J&J&:pg

B

= N„-2[(4,)'+ (s. 4, )']
= e'„(y, ),

g EV,JCXJ CX +JCXJ CX,1
00 2' ' 0 0 1 1'

V

(4.15)

You may also further symmetrize with respect
to x and y, at no cost. After an ordinary Fermi
normal ordering to remove the c-number vacuum
expectation value, we obtain [just from the last
term of (4.11a) and (4.11b')]

:2, (v, , x)J,(2, x): = N„—[(S y S,)y ]2 (4.14)1

"diagonal" currents squared. Out of many iden-
tities of this sort, I mention also

(4.17)

and a similar equation for f' with J . These
follow immediately on commutation of |I) with
(4.16), and we will make mention of (4.16) and
(4.17) again in Sec. VI.

None of this will directly help us simplify a
J„J~~ interaction, however; to construct this, we
need to calculate

2.&.(2'. )~ (v ) +~.(v ) & (T, ):

2

N„c os[2(22)'~p ], (4.1&)

or, with (4.9),

~ CX CX~ JCXJ CX +JCXJCX,

=N„-'[(0 )'+(s. 0 )']
= I/00(4-)

. JCXgI)i . .JCXJCX.

2

N„cos 2 2n '"f ——N„B&P

(4.19)

~ JCXJCXx 32 J 3 J3 ~ (4.16)

where e is summed as usual from 1 to 3. This
is a surprise, as the left-hand side is isoscalar
and the right a tensor. Is there trouble, or is
(4.16) true, plus many other relations (by isospin
rotations, commutators, etc. )'P The answer is
that it is true, and it is a simple property of
Fermi statistics. The reader is invited to write
out (4.16) explicitly in terms of free fermions and
see for himself. Such identities are also true in

SU(N), where J,J, equals a weighted sum of

Remember that for SU(2), Cs =2/1/, C„=&/22.
We see that the free Fermi and Bose Hamiltonians
are identical, a result which had to be true. It
is also true for the entire free stress tensor. On
the other hand, the forms (4.10) and (4.14) caused
me some consternation. For example, I can write

We see manifest in this representation the basis
of the statement that such an interaction breaks
(naive) conformal invariance. Although the right-
hand side of (4.19) is independent of I1, it still
provides a mass scale. We will return to this
interaction in Sec. VI. I will not write out the
other quartics (S S, etc ) The. y. are, however,
quite local. I have also checked a representative
selection of the quark algebra among the J"'s,
S's, and P's.

Before going on to introduce interaction, I want
to use a little hindsight to introduce a slightly
different free-field representation. We shall see
that p, = (I/W2)(p, a 412) are the natural eigenstates
of the theory, and they are not in general treated
symmetrically. (The masses of the P, quanta
are not the same. ) It is therefore convenient to
have also

X~ = hjg~

x2-&iA

'"N, exp —i — dip, g +Q, x N exp —i — d$Q $ Q x

1/2
) V 1/2 x

t I V
1/2 x

(i2, i2 )'"N, exp —2 — d$ Q,($)+4(x) 1/ N exps+c — d( Q (()+Q (x)

(4.20)

and similarly for gx (with 4/, — y„y, /t/, )
What we have done here relative to (4.1) is to
rewrite in terms of ct) „and normal-order each
separately at }2,. I believe (4.1) and (4.20) are

equivalent (certainly for the free theory), but the
latter is more convenient for using Mandelstam's
formalism, in which, in the end, one is normal
ordering directly at the Bose quanta masses. I



QUANTUM "SOLITONS" WHICH ARE SU(Y) FERMIONS 1691

will therefore switch to (4.20) for the remainder
of the paper.

For this representation, it is easily checked
that there are only a few minor modifications in
all our correspondences. All forms are the same,
with the understanding that expressions involving

pure P, (or P ) are normal ordered at p, (p, ).
Our mixed expressions, Eqs. (4.8} and (4.9), for
S's and P's, come out directly as (4.8c) and (4.9).
We are now ready for interaction.

(C g)1/2g&vg y

=:Z 'gy g, Gq&'q):,

3 3

P Vr)
1

(2w}1/2 II P-

(5.2a)

1 yyo

where III, is the correctly normalized free field.
Thus (all in HP)

V. INTERACTION AND THE SINE-GORDON -LIKE
EQUATIONS

Armed with Secs. II and IV, introduction of
interaction is mechanical. We first take the sim-
ple J"J„interaction set up in Sec. II. Following
Sec. III, we reexpress Eq. (2.3), using (4.10), as

[~.(»), 4(y)] —-g(»)5(»- y),

I~,(»), C(y)]= ~.y,GC(»)5(. y), —

[do™(»),/} ( y) ] —-2& A(»)5(» - y),

[Z,(»), Z, (y)] =iC 8,5(» —y),

(5.2b)

i/00 —2' (don —Gd la }

= 2gsCw[(82/t/. g) -G(&24.w) ], (5.1)

where G = (I+Csgw) ', Cw =2/w. Everything
sweeps through as before, including ~= C~g~, J„
=(J2, GZ, ), I/ /t/, //U=MG It/, , U I}l, /2U= (1/v G)$, ,

and so on. The isospin scale is not changed be-
cause f is undisturbed. Indeed, all, the isospin
current relations of Sec. IV are completely un-
changed for this reason. There are only the usual
expected changes @,—MG&t/, , P, - (I/V G)I[1,
everywhere. Thus, e.g. , (4.20) is changed to

Xl = ~141

1 /2
] w

1/2 & 1 ~ j/2 x ~

(p, , y)'"N, e, xp~-i — d$ /}1, +v G I}l,(»), exp —i — d$ p +l}l (»), (5 3)
2r «120

etc. , and from (4.8c)

:Z'lT/l}I: =——(i1, y. )"'&, cos[(2wG)'"/t/, ]cos[(2w)'"p ]. (5.4)

Still following Sec. III, we next add in the mass term, -m'.Z'gg:, obtaining the boson Lagrangian:
1

2= 2(S„I}l,)'+2(S„& )'+ (i1, i1 )'~N, cos[(2wG)'"p, ]cos[(2w}'"/}1 ]. (5 5)

This implies two coupled SGL equations for iI},. I will discuss the system presently.
Before that, however, it is wise to check our results directly. Starting from the SGL equations implied

by (5.5), and our final fermions

Xl ~ l~l
1/2 x ~

(p, ,p)'"N, ex),p—i — d( /Il, ($)+V G &,(») exp i — -d$ 4/ ($)+ P (»)
MG

'
«oo

X2
= 5102

1/2
( 1/2 x I 1/2 r ~

( , i1)i'1"N, exp~-i — d$ Itl, (()+v GI}l,(») exp +i — d$ p (])+p (»)
oe Mo « IXl

2
$ g2 (5.6)

Xl 1 1

1/2 & I . [ 1/2
=i

2
(p,, i1 )'"&, exp —2

2
dt I}l,(t) —vG It,(») /exp i2 d] 4 (t) —y -(»)

Xg =(1
1/2 [ w

1/2
=g — (p. g )'"X exp. -i

2m
d$ p,(() —MG1tl, (») I exp&+i — d( 41 ($) —4I (»}
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one can wend one's way back through all the identities to the massive-Thirring-model Dirac equation.
Indeed, following Mandelstam, we find the acknowledged wave-function renormalizations Z [in the form

(x- y)'] the same for baryon number and SU(2) currents. The renormalizations for all the S's and P's are
the same among themselves, but different from the currents, hence Z'. Indeed, we recover all the results
of the interaction picture, i.e., all~ the results of Sec. IV, with the simple map p, -MGp„p,- (I/v Q)Q, . In going all the way back to the Thirring-Dirac equation, one calculates derivatives of (5.6).
The useful identities analogous to Mandelstam's' Eq. (4.6}are of the form

X

vN', dg((cos[(2vG)"'y, (g)]sin[(2v)'"q (g)]+sin[(2vG)'~4, (&)]cos[(2v)"'p ($)]Q', (x))

Q N, cos 2mQ ']2~ $) cos 2m)'~ y -(&) xi & ~ 5 7)

where X' is Mandelstam's "block" normal order-
ing, and the second line is a commutator. Recog-
nizing Pg in the last line, one obtains the Dirac
equation for g. Multiplying in a $, from the left
results in the expected equation for g. Everything
goes through smoothly, so we turn out attention
back to the SGL system (5.5}.

We transform (5.5) into a "standard" form, say

Zl =,N, cos(P, P, ) cos[(2v)'I'p ].

(5.9)

Ne also notice the curious fact that the "mass"
of the P quantum is ffxed in terms of g,

(mass of P, ),

2m
P

p
2 + (5.10}

and thus m'=(g, /4C)G ~~4= p, li, '~2(v/2C}(2v} «4.

This fixed mass ratio is easily understood: The
corresponding massive Thirring model has only
one dimensional parameter ns'. The fact that
p.,w p. is also the last blow to any hope that the
SGL system would exhibit a (linear) SU(2} symme-
try. It apparently has no (linear) continuous sym-
metry at all. In Appendix A, however, we discuss
the sense in which the sine-Gordon-like equations
may be thought of as providing a (spatially) non-
local representation of isospin. Of course, (5.10)
is not a reliable prediction as large (calculable}
higher-order corrections are expected from the
interaction (even for small P, ).

%Yhat about soliton-like extended solutions of

Again following Mandelstam's convention, we
choose to set p. , equal to the Bose quantum
masses. Thus a= p, ,', (m'2C/v)(p, p )'"=p,'P, ',
and

P. = (2vG)"',

2%~ = 1+8'~C
+

the classical SGL equations? I have not tried
to find them analytica. lly, but, by our very con-
struction, they do exist [and will be free —no

scattering —when P, = (2w)'"]. The qualitative
features of the solutions can be seen through the
discrete symmetries of the system:

y, -p, + —andP -P + },I, (typeI),
(5.11)

2gn 2'™
p, —p, + or Q —Q +,2,», (type II},

+ L2& J

where n, m are odd for type I. Thus, we expect
solutions with such (say one-sided) asymptotic be-
havior. Consulting Eqs. (5.2a), now in the form

1J" = ——'q" 8„Q„J,"——,
2 „],e" S„fII}

m (2w)

(5.2a')

that is, B=(P,/ }Pv, ~'„", L,=[I/(2v)'"]P ~'„", we
easily correlate asymptotic behaviors with quark
content. Assuming P, (-~) =0, then a solution for
which (x- + ~)

(5.12}

is a quark with I, =+ —,
' (plus perhaps qqq in I, = —,',

etc.). In general, states with asymptotic behavior
of type I [Eq. (5.11)]have half integ-er isospin
correlated with odd quark number. States of type
II have even quark number and integer isospin.
It is not clear to me whether there is a simple
way of reading tota/ isospin from the classical
solutions.

Finally, I will mention that, having repeated
Coleman's' variational vacuum calculation on the
Hamiltonian corresponding to (5.8), I find p,'«6w

(gs &-—,'w), or else the energy is unbounded below.
This is to be compared with the "obvious" bound

g~ & -mg.
GeneraL remarks on SU(N). So much for SU(2).

What can we say about SU(LV)? In general, the
isoscalar interaction
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1—gill = ~(2)

l. /N ~ C S l./N

P =-(CsG)'I')e""8„@„G=(I+gsC )
'

1
v'2

1 1 1
41 ~4+ ~ 2 ~ 3t

(5.14)

but 4 2 3 can be orthogonal ly m ixed . In gene ral

1
y, +D,p„+D„=o,

D,qD~, -g

We expect and will note later that the masses of
the 4, are degenerate [a bosonic O(N- 1}symme-
try?] under the isoscalar interaction, so the con-
venient quark representation [analogous to (4.19}]
is constructed as follows: Start from (4.1);
break g, up into $„4„and shift P, - (I/MG)p„
P, -v G P, . Normal-order P, at y,, and C, at p .
The breakup of the normalization factor is

scale shifts only (II), , leaving undisturbed the other
N —1 orthogonal combinations 4, , a = 2, . . . , ¹

It is, of course, a matter of taste how to choose
the 4, . A choice for SU(3} might be

x 2GQ, ' 2 I 4,'). (5.17)

Thus m' has the promised O(N- 1) symmetry.
Calling p, the mass of fI}, and p. all the others,
we find p. '=G 'p, +', as above. Normalizing to

p, , then m' =(p, /4C)G '~ "'" We also remark
that as in Sec. IV this peculiar p, , pattern in the
mass term (5.20} can be obtained directly from the
representation (4.1}by re-normal-ordering in the
free theory before interaction, as in (4.8c).

Do we have a. real bosonic (linear} O(N —I)?
The answer is no. The rest of the interaction
completely ruins it. As a simple example of what
is going on, consider a t:oy Lagrangian

2 = —,'(s p, } +2(s2&,)'+ p, '(cosp, + cosp, }.
The mass and kinetic energy terms have a U(1}
symmetry, but not the interaction. We could make
a U(1) transformation on the Lagrangian, thus
introducing a parameter, but it is not a symmetry
transformation, only a change of variables. This
is precisely the situation among the C, in our
SU(N) models, except that in the SGL equations the

symmetry is required and then broken. Its break-
ing must then be calculable [For tha.t matter, the
deviation of p,

' from p.+'G ' is also calculable in
our SU(2) model. ] It is certainly not surprising
that there seems to be no direct connection be-
tween this O(N I) and the -quark SU(N).

As a closing remark in this section, I mention
that although we have worked in terms of an SU(N)
quark representation for the fermions, one can
as easily take quarks with color, octets (baryons),
etc. As in Sec. IV, one simply takes one P for
each independent Fermi field.

1/2 ~ C 1!2N ~ C (1 1/N ) /2

(5.15)
VI. REMARKS ON HARD-CHIRAL-SYMMETRY-

BREAKING INTERACTIONS

The SU(N} currents are functions of 4, only. The
Fermi-mass term generates the SGL interaction

&g = -m '.Z'$t):

4C /J C

1/2
x icos 2 — P, +2&mD, P, . (5.16)

a

Expanding to second order in the fields, we obtain
the boson mass matrix m',

We have previously concerned ourselves only
with interactions of the form gee"8& (baryon
number current-current interaction), and mass
terms. Collectively, these imply at most a soft
breaking of the chiral SU(N). Other hard-breaking
interactions, such as g~J„J" are presently under
investigation, and I will confine myself here to
a few preliminary remarks.

In the first place, we are on much more treach-
erous grounds with these interactions: It is
known" that g will require a renormalization,
and it may even be necessary to include at least
one other interaction (say g~gg$g) for a consistent
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renormalization. " We expect our interaction
picture approach to be less useful, but still
suggestive.

Following Sec. II, we can write

=A»8oo +B„J,J +Assoo +BsJ+J, (6.1)

=Jo +J Av = (kg»+ cb»)4C» Bv = kv
I 1 1 1 I
2bvs AB (sgs + obs)4Cs, Be = —,gs —;be, —and we

have used (2.2}. Also J,J =J„J". These are con
venient for evaluating Schwinger's condition. We
obtain

sign of gv (but reverses gs). We obtain, in the
notation of Dashen and Frishman, precisely their
Dirac equations, and b = -1, C, = 1/2w, C,
= (n + 1)/2w, a = [1 —gs (n/w }] ', a = 1,
Co = -(n/w)[1 gs(n/-w}] '. Unfortunately, plugging
into their Eq. (17), we get -1, i.e., an "anti-
spinor" (with an interchange of g' and g'). Pre-
sumably then, this is not their solution. Indeed,
a glance at their equations (15) shows that a solu-
tion for 5 = -1 is the (' g' interchange of the
5 =+1 solution.

We turn now to a few remarks about the (t}, rep-
resentation. Using (4.19), we rewrite the vector
part of (6.1) as

Av +2Av=4Bv CvCv ~

A~'+2A~ =4B~ C~'.
(6.2) i'oo = o(4-} +-, (e„(II) )

The second restriction is essentially that given in
Sec. II; the vector restriction is new, and bears
comment. Its solution has a two-sheeted struc-
ture, only one sheet of which is perturbative
(b„-0 as gv-0). Presumably, this sheet defines
ordinary formal unrenormalized perturbation the-
ory for the vector interaction. If we further re-
quire the Dirac equation in terms of a simple re-
scaling J„=(Jo,AZ, }, we need gvX= —2b„. The
requirement that J„be a two-vector in the Heisen-
berg picture is X- (A„—2B»C») =1,
A.

' —(A„+2B„C„)=1. The entire set of require-
ments is, in general, inconsistent (except at
g»=0), indicating that our scheme of passage to
the Heisenberg picture is too naive: gv needs a
renor mali zation.

Curiously enough, there is one nontrivial value
of the coupling, on the second sheet, for which
all the equations can be satisfied. That value is

4m

a+S'

and Bv=O, A„=-2, A, =-l. The value of gv is the
negative of the Dashen-Frishman' value, and

B„=O means conserved axial-vector currents.
A. = -1 is a change of sign in the axial-vector cur-
rent commutators with the field. This was sug-
gestive enough to pursue. For correspondence
with the Dashen-Frishman equations, it turns out
that one must map |((-x, t)~&„, =(»(x,-I), and

similarly for all the currents. This changes the

—B» |Vcos[2(2w)'"Q ].
2

(6.3}

We see immediately that, in general, g„renor-
malization will be tangled with normal-ordering.
Note that we can sweep out the quadratic form
into a covariant wave-function renormalization
(as in Sec. III},

2= —,'(1+ w)(&„P )' —B„Ncos[2(2w)'"P ],
(6.4}

if w =A„+B„/w and -x/(I+ x) =A„—B„/w. This
form is suggestive of the requisite SGL equation,
but I do not trust it. These conditions on a are
inconsistent with (6.2) (being instead the conditions
on A, above). I think the point is that the cosine
interaction is quite bizarre. Remember that it
represents Q', J„J"which certainly does not
commute with itself at equal time. As a matter
ef fact, the same problem exists in the Abelian
Thirring model, where [g(1+y,)g, ((I —y, )&]
-[e'' o, e ' o) appears to be zero, and yet, from
the g's, must be proportional to b(x —y) J,(x)
-6(x- y) psoTo see. such things, one must do
(at least) a smearing in time.

Our final remark in this section concerns the
explicit P, construction of our solution to the
Dashen-Frishman Dirac equation. One can work
through the interaction picture, as described
above, but I will just state the result directly.
Take their equations in the form

+ oo

( o+s.){('i =:gP', C. +gv 4 dy J+(»&:(y},KF(x):,

where the last term is a commutator, and similarly for tt)~D&-. . By J I mean Heisenberg currents that trans-
form as two-vectors. When g»=4w/n+ I, this is their case 6 =-l. Now for the solution: Consider our

g„=0 solutions (Secs. IV and V}, e.g.,
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x~ = &&4'

c '& 1/2 x 1 ~ 1/2 x

(x, «.)'"Nexx -i — di —d+,d ed( )xNexx -i — d(d (()-'d (*)-I,

(6.6)

and so on. Leave 9 undetermined, however, for
the moment. Construct the Dashen-Frishman cur-
rents out of these, as usual [P = (2-9/w)'"e""S„p„
g)'= j'" = —{I/2w)' )e""8 (t), etc. ], t)gf take the
Dashen-Frishman fields to be PD'„'= g' '. Thus
in terms of our fields (6.6), Eq. (6.5) reads

(e.~ e,)d'=:d d'd e,d, .—,
' 'j* dxd, d:, d'(*)

(6.7}

Recall our identity (4.16}. Since Q is not excited,
it is true for 9xx 1 and the last term in (6.7) is

merely

:gv~~2 J', (x)(I"

Now', it is a simple matter to differentiate our
g's. We obtain, e.g. ,

i(a, + e,)y,'= N„—1+ —J,+ 2'', , q',,', l,

and hence gs =-,'w(1+1/9), g„=Norw, as required.
All this is as I reasoned it from the interaction
picture, and it is no surprise that our solution

&D„ is an "antispinor. "

NOTE ADDED IN PROOF

By a simple extension of the approach in Sec. VI, I have been able also to construct the "correct"
Dashen-Frishman (DF) solution. The solution has the form

X

(x):=( (d ) =x, =(d' =«Nexdi-( e d(d (() ~ dd(x)
ee ~ee(X)

x

x exp ]- f(s/2 }"' d$ (I) (()+p (x)
«ec)

x

(XN) Dl' 5 ((1)NR) D(: X2 5'g4 xNexp i (fan (I) (5) +PA+( )x]

x exp +i w 2 '" d$ {t) g +f
«

r
(x'),: =i (d'): =x'=(, Id =i«N«xxI-I e d( d(() —dd„(x)

»-x —(Xx)'" I «d (() d(*)—
~O

g

(x ):=(.(d.):= (,(.x)
I
(«iN=e«Ndi d t(-) —dd, (x) I

X

x exp +i(e/X)' d(d (()-d (x)

Here g= (Cp/2w)'", and we have generalized (6.6),
leaving two parameters o. , P; this mill allaw the
proper "spin. " Follawing Sec. VI, xwe take the
isospin currents as in (4.4) and (4.6). Indeed, we
do not tamper with the 4) (isospin) structure at
all, so current algebra follows, with C, = I/2v,

C, =3/2w. Because we maintain the g' —{)' inter-
change of the text, 5=-1, and the equation to be
solved is still (6.7), with its companion remarks.

Anticommutativity of the Fermi fields requires
aP/s= —,+2j with j an integer (j=0 is the solution
of the text). The baryon-number current (nor-
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malized to a= 1) is easily seen to be Z„
=-a 'e„,s"(t(, ; then 5=-Pa ' and Co=a '. Dif-
ferentiating |t(Cl'4(, =0), and comparing with (6.7)
we identify g„=4w/3, gs =a((w+P). Finally, one
calculates the spin [either directly via the Lorentz
generator in terms of Q„or just by substituting
into DF(17)]. The result is s = —s[2j+ 1]. The so-
lution of the text is j=0, s=-g, now we choose
j= -1, s =+ &. The final algebra is trivial, and
we record (s =+ $)

a= 1+ 3, C, = g~+—

Sr 3m
O" =gg+ — P = ——

y2 2'
thus completing the DF solution.

It is easy to add a Fermi mass term. Following
the method of the text, we calculate [(()(()(}oF= Pi((]
the equivalent SGL system,

2=-,'(sy, )'+-,'(sy )'

2C pm'
cos(2PP, ) cos[(2w)'"(j( ]

with P = -(3w/2)(gs+3w/2) '". The over-all sign
of the interaction can be changed via a redefinition
(}(-y,(c(. Comparing with (5.8) we see that the bo-
son systems for 5 =+1 are the same, with the
identification gs ~3w+9gs (a are 5 =+1). In this
sense, the 5 =+1 solutions are themselves equiva-
lent. This does not, however, imply equality of
particular Fermi Green's functions.

I wish to thank M. Kaku for bringing to my at-
tention recent similar work on this model by
Dashen and Frishman, and by Bhattacharya and

Roy.
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tween quark isospin and p transformation prop-
erties. Yet, there is a curious sense in which
the scalar system provides an eldritch (spatially)
nonlocal representation of isospin; I will now

sketch how this goes.
Using Eqs. (4.6), it is not hard to show that

[J,(v „x),(}( (y)] = a (2w)'a 8(x —y) Z, (r„x),
[J,(~„x),4 (y)]=+(2w)'a5(x-y)Z, (~„x),
[J (r„x),P (y}]=+(2w)'a5(x —y)Z (r„x),

(A2)

where the + in front of (2w)'" always goes with
Note that the first equation of (A2) is non-

local. Such commutators are easy to find in these
constructions, even in the original U(1) case. I
do not think any noncausality is implied. Defining
I, = f„dxJo(v„x), we obtain the isospin trans-
formation properties of Q:

((„(t (x((=+(2 ("*f a*z.( „*),
[I„y (x)]=+(2w)'"Z, (T„x),

(A3)

0'(t, = —sin(p, p, ) cos[(2w)'"(t( ], (A4a)

cos( p,p, ) sin[(2w)'a@ ) . (A4b)
a(2w)'"

I will concentrate on the left-hand sides, and
skI[I)hth the result for t'he right-hand sides. Define
iafmai;tesimal transformations 5,Q„6,Q, by the
commutators (Al), (A3). Here 5, means the
change due to I, . One shows directly from (A3)
that 5,P, = (d/dt)5, g„and thus

The right-hand sides of (A3) are of course wild
(spatially} nonlocal functions of P . I have checked
the Jacobi identities among (Al) and (A3) and they
are satisfied. p appears to be a legitimate rep-
resentation.

Let us see how such transformations can be in-
variances of the SGL equations (5.5), and (5.8),

5, Q'fII) = 0, (A5a)

APPENDIX A: THE 8CALARS AS A (SPATIALLY)

N(.WLOCAL REPRESENTATION OF ISOSPIN

As discussed in Sec. IV it is formally true that

[I 4.1=-[P'.4 J.=[l ~ qi J=l»4.)=0

[I„4,]=[I„j.) = 0.
Here, I, are isospin-raising and -lowering opera-
tors. Thus, although one may say that fQe}, is an
isoscalar, the isospin transformation of (j( cannot
be simple. Indeed, as discussed in Sec. V, the
quark isospin arises as a topological property
of Q, so there can be no direct connection be-

6,Cl'p =+(2w)'"[s,Z, (7,) —s,J (v, )]. (A5b)

The right-hand side of (A5b) is proportional to the
divergence of the charged axial-vector currents.
Using the equations of motion, these vanish for the
free theory and are proportional to P(r, ) in the
interacting theory. Thus, for the free theory,
we already see that our transformation is an in-
variance. I find it intriguing that a single free
massless Bose field can formally support an iso-
spin in thus way. With interaction, we need also
transform the right-hand sides of (A4). For
brevity, I will ignore P, , (2w)'a's and normal-
ordering in sketching the transformation for (A4b}:
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co«go, s(o( "cos(,(s}cos( (s)f a(Z(c„()
that

—sin(-', 8)(I(,(8}= (i(,'(-u) . (84)

(A6)

The commutator is proportional [see Eqs. (4.9)]
to [P„Z (or, )], which is proportional to P(T, ) Th. is
emctly parallels the change (A5b} in the left-hand
side of (A4b), and again the transformation is an
invariance. For the right-hand side of Eq. (A4a),
a chain of identities parallel to (A6) leads to
[P,Jo(r, )]-0, so this equation is also invariant.

Is this invariance an observable symmetry in,
say, a perturbative approach to the Bose system?
I do not think so; our manipulations, though for-
mal, suggest why. Notice that I„ though well
defined with respect to the fermions, fail to an-
nihilate the boson vacuum. In fact, I, are quite
poorly defined with respect to that vacuum (in-
finite expectation value, for example. ) From the
point of view of the bosons then, the isospin is
(something like) spontaneously broken; it is thus
not observable in any ordinary sense until. the
soliton-fermions are obtained.

Actually the (-u) is only a convention to keep dual-
model creation (and annihilation) operators in
correspondence with field-theory creation (and
annihilation) operators —with (+u), they are anti-
correlated. Let us see how this goes. In the dual
model one expands [drop SU(N) labels, with im-
mediate generalization]

y(8} Q (
((((+ (/o) eb - (.+i(o)ed(

h= 1

whereas
0

(t'(u) = „, dp[d'(p)e'""+ b(p}e "o").

(85)

(86)

We can calculate, say 5„„„in terms of the field-
theoretic operators,

1
d8e 'e("+"')(I((8)

1/2+ n
0

APPENDIX 8: CONNECTIONS %PITH DUAL MODELS

e = . , 0& 8&2@, -& u&~.
u+t '

Useful identities are d8/du =2/(u'+ I), and

5(u - u') =2 sin'(-', 8)5(8- 8'),

(8 I)

(82)

—6(u-u'} = [2 sin (e8)][2 sin (e8')]seb(8- 8') .
Q

Then it is easy to see from

As I was going through these two-dimensional
theories, and the relevant correspondences, I
noticed that much of the field-theoretic work has a
direct map onto past work in dual models. I will
begin by discussing free-field connections, and
return to interactions later. Consider a free SU(N)
Fermi field in two dimensions. Introduce u= t+x,
v = t —x; then (t(,'(u), (t,'(v) form two independent
spaces. I will focus on (t,'(u) alone, remembering
that the complete system is a doubling. The elmi m

is that (i(,'(u) is the Bardakci-Halpern' dual quark
field" (().(8).

Towards this result, an appropriate map is the
projective transfor mation

f s .(( «)'s( .)

0
=v 2i dP b(P)e ~oL„(2Po) . (87)

With the usual orthonormality properties of L„,
one easily verifies [b„,«o, bt, » ]+-—o5„ from
[b(p), b («)], =5(p —«}. Evidently, 2 conformal
spin —,

' dual quarks correspond to one Lorentz
spinor.

We can go much further. We turn for a moment
to scalar fields. It is knows that if CI2+ =0, then
(t(=f(u)+g(v), and, for example,

f(u}= «, [e '"~oa(k}+e"~oa (k)],
dk

„(2«2ko}«'

In the last step, we have recognized the I aguerre
polynomials L„(Z}=e d" /dZ"(Z"e ). A similar
calculation gives

0
bt „„=-i v 2 dp b ( p)e ~oL„(2pe).

[(t,(u), (1)o (u')] = 6,&6(u —u'),

[(t,(8), (t,'(8')], = 2vb„b(8 —8')
(83)

(88a)

(88b)
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Comparing with the dual model (fifth dimension,
no four-vector index) conformal scalar-vector
system, "

[Q,(8), w, (8'}]= -2w 5(8- 8'},

w, (8) =is.Q, (8) (»)

and satisfy

[g (8),J'(8')]=2wif" "J (8)5(8 8'-)

-wi5'be(8- 8')

[g(8},g(8')] = -2wins eb(8 —8') .
(816)

we identify Thus, comparing with Refs. 5 and 6, we identify

Q, (8) =-i2v w f(-u),
Wws „f(-u)

sin'(-', 8)

(810)
Z, (-u) = -sin'(-,'8)d (8),

Z, (-u) = -sin'(-, 8) Z(8) .~ 2

(817)

The troubles in normal ordering the exponential
of a free massless scalar field are thus the same
as those of the dual vertex. In dual models, it
was known" how to construct a w, (8) from the
quark field,

iaeQ, = w, (8)

=:ii'(8)i((8): . (811)

(812)

when k,' = -&. That is, the spinor field can be
expressed in terms of the scalar when k, is chosen
so that the exponential is a conformal spinor.

Vfe can go still further. The field-theoretic
identity" [back to SU(N), 8, = 8~+ 8„]

8,(u) = iy "a„ii'

(J,"J,)+
2 J,J, :e e (813}

[C„=(n+ 1}/2w, Cs =n/w] maps directly onto"

@8}= — 0'seP-
2

J (8)Z (8)+ —J(8}Z(8):.1 1
'@+1 2n

(814)

Here the dual quantities need some comment for
nonexperts. Z(8) is the conformal density, i.e.,
the object from which we build the conformal
algebra I. = (1/2w) g"e i™eZ(8) The curren. ts
Z(8), J (8) are formed as

Z (8)=:q'2 y:,

J'(8) =:g g:
(B15)

This dual identity is then the familiar field-theo-
retic statement that vector currents can be written
as gradients of free massless scalar fields. Some-
thing that was not realized in dual models is the
analog of Mandelstam's representation in the field
theory. Using that fact that for free fields

f d$ P(&) =f(u) -g(v}, we easily show the inverse
of (811},namely that

g(8) . ios&&).

.~~2@5Q5( 8) .

Identity (814) appears explicitly in Ref. 15 for the
case of SU(3). (Caution: Here I have normalized
the currents with &X". In Ref. 15, they are X".)
It is clear then that the dual method of defining
normal-ordered quartics [(8}']is the same as the
field-theoretic method.

Going on toward interaction, we note some more
general correspondences. The fact that Q(8) is a
conformal spinor) —Q(x, t) is a Lorentz spinorj.
The fact that {w(8) is a conformal vector) —gy" g
is a Lorentz vector), and so on. The most impor-
tant of these is the fact that under the correspon-
dence

8,(-u}= —sin'(-,'8)Z(8) (816)

then, the "conformal-Schwinger condition" [Eq.
(11) of Ref. 6] is equivalent to requiring that 2
is indeed a conformal density,

(Z(8), Z(8')) = -2wi[S e Z(8)5(8- 8')

+2@(8)8,5(8- 8')]. (816)

I believe these correspondences provide the
opportunity for further flow between the two fields.
E4,'., any conformally invariant two-dimensional
field theory [hence a 8,(u)] provides us with the
eonformal algebra of a dual model: Just construct
2(8) via (816}. Conversely, any dual Z(8} provides
us with a 6), . From the dual-model viewpoint, the
Dashen-F rishman phenomenon corresponds to
reversing the sign of the Schwinger term in Z (8).
This corresponds to taking a b~ 0) =0 vacuum for
J, but a b'( 0) =0 vacuum for 4 . Hence the diffi-
culty in constructing a proper ]It}. Much work has
been done on 2 in dual models, most of which has
involved four-Lorentz indices which would be
superimposed above the two-Lorentz indices of the
field theories. One application for which this
feature will not appear is discretely broken SU(N).
Such an application has been discussed" in the
dual models, and hence one may be able to do the
same in a conformal field theory. Quantized
couplings occur all the time in dual 2's, and,
in general, I believe this is the same as the
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Dashen-F rishman phenomenon: Conformal in-
variance quantizes couplings.

In general, however, because there is a doubling
of two dual operators to one "Thirring operator, "
or, more simply, a u and v, the field theories
correspond more closely to Vixasoro-Shapiro
models. Indeed it takes only a moment to show
that the Thirring model Green's functions [for
$(lay, )g at px=8v] are the Virasoro-Shapiro
N-point functions, with a fifth dimension to bring
the ground state up to k"k„=0, all evaluated at

k„=0. The sum of these functions, Z(J) for the
massive Thirring model, is then the function
W(Z) useful in the dual-model spontaneous-break-
down approach of Bardakci and Halpern. "

I finally note that the work of the present paper
is equivalent to constructing an SU(N) out of dual
fifth-, sixth- (etc. ) dimension orbital operators,
even though the orbital operators have no simple
transformation properties under SU(N). In the
dual model, of course, N «22 for orbital models
and N «6 for models with spin.
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