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By means of a canonical transformation we investigate nonlinear field theories that possess exact classical
solutions. This transformation is equivalent to the method of collective coordinates recently applied to the

same problem by Gervais and Sakita using functional techniques. It is pointed out that, because of the

operator orderings, extra terms occur in the quantized theory which seem to be absent in the straightforward

functional approach. Ordinary perturbation treatment of the resulting Hamiltonian reproduces results

previously obtained by Goldstone and Jackiw using a different technique.

I. INTRODUCTION

Certain classical field theories have been known
for a long time to possess exact nonlinear wave
solutions. There is a large body of literature
concerning these solitary waves (kinks) and their
frequent occurrence in applied science. ' They
are of interest to particle physicists because they
are believed to represent new states in the spec-
trum of the corresponding quantum field. These
states might possess some of the features of ex-
tended hadrons.

The occurrence and interpretation of such so-
lutions in various models have been examined by
various authors in both the classical' and the
quantum theories. ' ' In particular, Goldstone
and Jackiw' have interpreted the classical solution
as the Fourier transform of the quantum field
form factor of a baryon in a static limit, and have
developed a complete calculational scheme in the
one-baryon sector. They used a method based on
the quantum equations of motion which is similar
to techniques applied by Kerman and Klein to
many-body problems.

A quite different approach to the problem was
recently advocated by Gervais and Sakita. ' These
authors utilized the method of collective coordin-
ates' for the functional quantization of the solitary
solution in a two-dimensional field theory. In
this approach the field 4(x, I ) is separated into
two parts, (+, and X. Q, is the classical static
solution which is parametrized by the parameter
X, the kink position. X is then promoted to a time-
dependent dynamical variable. X represents the
meson part of 4. The Hamiltonian can be ex-
pressed as the sum of a free meson and a kink
(baryon) part plus the meson self-interaction and
the kink-meson interaction part.

In this note we show that this development
amounts to a canonical transformation of the orig-
inal theory and give the corresponding classical
and quantum Hamiltonian formalisms. In the

quantum version we find that, as a result of the
operator ordering, some terms of order 8' arise
in the energy-momentum tensor, so that it is not
given simply by the symmetrized classical ex-
pression. These terms are necessary for the
Lorentz invariance of the theory. It is not obvious
how they should be obtained in the functional ap-
proach.

Finally, ordinary perturbation theory can be
used to obtain a systematic expansion in the cou-
pling constant. In particular, the basic Ansatze
and results of the calculational scheme developed
in Ref. 5 are derived from the perturbation series.

I i. THE CANONICAL TRAN SFORMATION

We consider the class of field theories in one
space and one time dimension described by the
Lagrangian

8 = 2 s„48"4 —U(4),

and which possess exact space-dependent solutions
of the form P, (x —X). Here X is a parameter.
These solutions are the well-known kinks or sol-
itons and are believed to describe some stable
particle.

To investigate these solutions further we intro-
duce the transformation

@(x, f}=y.(x-X)+ X(x-X, I).
We also decompose the canonical momentum
II,(x, I ) of the theory described by (I) in the form

II,(x, t) = p(x-x, I}— P, '(x-x),&+ jvX'

where $
=—J}t'p, ' and M,

—= JQ, 'Q, '. A prime denotes
differentiation with respect to x. Unless we in-
dicate otherwise, all integral signs denote one-
dimensional unrestricted integrations over x
where, for notational simplicity, the differential
dx is suppressed. X is now considered as a new
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dynamical variable X(t) conjugate to ihe new mo-
mentum variable P(t). However, since we started
with only two variables 4 and Ilo, conservation
of degrees of freedom demands that the new var-
iables be considered as functionals of 4. This
is achieved by imposing the conditions

gx, t c (4a)

n'x, t, 'x =0.

The transformation (2) and (3) subject to the con-
ditions (4) will be shown to be a canonical trans-
formationn.

The old variables 4 and II, have the usual canon-
ical Poisson brackets,

not vanish weakly:

( 0 M, '}

0

Constraints of this kind can be made strong equa-
tions by a modification of the conventional bracket.
According to the well-known Hamiltonian formal-
ism for constrained systems, ' the new canonical
bracket is

{X(x,t), v(y, t)}
= &(» - y) -{X(x, t ), 0i }(& 0i, 0& }) '[0i, r(y, t }}

or

{X(x, t), w(y, t)}= 5(x —y) ——Q, '(x)Q, '(y).1

0

{4(x, t ), 4 (y, t )}={II,(x, t ), 11,(y, t }}= 0,
{4(x,t), 11,(y, t)}=6(»-y). (5)

We also take

{X,p} =1,
Consider now the new set y, m, X, p. Let us, for
the time being, assume canonical brackets for
g and lT:

{X(x,t), &(y, t)}= 6(x- y) .

Then the conditions (4) do not commute; they are
in Dirac's terminology' second-class constraints.
Indeed the matrix of the brackets of (Ij, and P, does

with all remaining Poisson brackets vanishing.
If we now express 4 and II, on the left-hand side

of Eq. (5) in terms of X, s, X, and P we can show
by straightforward computation using the brackets
(7) and (8}as well as the constraints (4) that the
right-hand sides of Eq. (5) are reproduced.

The components of the energy-momentum tensor
in terms of the new variables are

Too = gIIO (x, t ) + 24 "(x, t ) + U(4)
I

=-', »'(»-X, t) v(x X, t)--", 4, '(»-X)

/ 2

+ — „",„y,"(x-X)+~/X"(»-X, t)+gy, "(»- »+X'(»-X, t)yg'(»-X)+ U(yg+ X), (ea)

T„=—,'ll, '(x, t ) + -'4 "(», I ) —U(4') = T —2 U(4, + X),

r„=II,(x, t}4'(», t)

r '
= v(»-X, t}[4,'(x-»+ X'(x-~, t)j —Mp1 &X~ )[4.'(»-»X'(»-~ '}+&."(»-»~ .

(eb)

(9c}

The Hamiltonian is then given by

a= r =I +
' (P'~'X')'+ XJ I ' 2M (I+ (jM )'

where

xf(», t)=-,'7P(x, t) -,' +X( tx)+ &(X, y, ),
&(X, 4. ) = U(4. + X) —X(», t )U'(0, ) —U(4. ),

(11)

(12)

and primes denote differentiation of U with respect to the argument. In obtaining (10) we used (4), the
fact that Q, satisfies the classical static equations

(&3)

(14)
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and shifted the variable of integration x-x+X. Equation (10) is the result of Gervais and Sakita. '
Similarly the total momentum of the system is found to be

P= T =P

X, the variable conjugate to P, can then be viewed as a center-of-mass coordinate.
The equations of motion for g, ~, X, and P are

& (, t) ={X(, t), H}

p fx'
= (, t)+ („(/~).x'(, t)-~ (!4,'( ),

«(x, t) ={«(x,t), H}

pfX",, „t,I,„,„pfX'
M (I+(/M )

' M ' ' M (I+(/M )

+)("(*,()-)"()(,0)+I ('. '(*)( Jl x'(. " ~ I )" ( ), .'

0

where

y ( ~) (X)4c
eX(x, t) '

and

X={X,H}=, p={p,H} =0.

(16a)

(16b)

(16c)

One can verify that Eqs. (16), together with (2) and (3), are equivalent to the equations of motion of the
original variables 4 and II, that are derived from (1).

Finally the Lorentz boost generator L at t =0, obtained by integrating xT~ over x and shifting, is given
by

5+fX ") x ' ' — p+'f "X x« ' XL $T00 XH+ 1+2M 2 1+$ M 2 +Ac 4'c —
M 1+$ M

l &&4c + &&y.

In explicit examples the integral fxj&, '
(I),

' vanishes by symmetry. However, we do not use this fact
Lorentz invariance is shown by proving that H, P, and I- form the Poincard' algebra,

(18a)

{L,p} =H,

{L,H} =P.

The relations (18a) and (18b) are trivial. Equation (18c) follows after a somewhat lengthy calculation.

(18b)

(18c)

III. QUANTIZATION

Ne now proceed to quantize the theory by postulating the usual correspondence between classical brack-
ets and commutators. The only nonvanishing ones are

'
[ «(x, t), g(y, t)] = 6(» —y) — (p, '(x)(t), '(y),

0

t[p, x]=1.
We must also order the noncommuting factors in the canonical transformation (2) and (3). We take

4) (x, t) = (P,(x —X) + 1(x—X, t),

(20)

(21)

11,(x, t) = «(x X, t) y-, '(x-X—) p+ X'«+ p+ «X' y, '(x-X) .1, 1
(22)
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A straightforward calculation shows that, just as in the classical case, Eqs. (19) and (20) ensure that
4 and Qo satisfy conventional commutation relations.

We now proceed to evaluate 002 as a preliminary step in obtaining the quantum expression for T„„.De-
fining

we have

1 ~ 1
1+ gy'~I ' (23)

1 1,2 ~ i 1
Uo & ~[»4(& &A]++ 2Ma [4'(; &A ]+ 2~ x& 1 + ~ji}f 4'c

1
4M'0

~[a' (j& "]+~[(t)"a '] —2ia "' "'
I c () I I t/~
&c'4c' t '

& t 4c" i 4)c"
I+ g/l}((, 2 ' ' 1 (/+ 2 1 ]/1}f

where [,], denotes an anticommutator, and we reorderd all factors in the expression that results from
squaring (22} so that a and at are the rightmost or leftmost factor in each term. Evaluating the commuta-
tors we finally obtain

A]

} d (j&
'

( — } }('4 "
4M (I+~/ (24)

In evaluating integrated expressions in the classical theory we shifted the variable of integration x-@+X.
In the quantum case we can do this only if every factor under the integral sign commutes with X. It is for
this purpose that we brought II, in the form (24}, the last three terms of which give quantum contributions
absent in the classical expression. Using (24) and proceeding as before we obtain

8iit,' (I+(/i}f,}' ' (25)

P=- T =P (28)

1 fx4."0"
&[+ H]++ 1+

2 2 A »4(& (t&c 2
A& »wee + x f 8~2 (I+ (/~p

1 1
+ 8~a (1 ]j~)s X (j)c ~ (27)

Comparing with the classical expressions we note that apart from symmetrizations the last term in (25)
and the last two terms in (2V) are the new quantum contributions.

The equations of motion now are

X(», t) = i[H, )((», t)]

1 1, 1
=»(x, t)+ 1, y'(x, t) — f(j&, '(x), A2~ 1+ f/i}i0 M (28a)

ir(x, t) = i [H, x(x, t}]

(j&,"(x),A, A + 1, s'(x, t)+ —
(t&, '(x) '

v(j&,",A
1 1 1 1, 1

I E~+

~ x"(x, &) —&"(x, (.&+ I 4.'(x& fx'4."+ &"4.' ' ~ f4 4 .
& I ~

&* A."(*), ."".
0 (1+5/ }' (28b}
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1 I 1X z[E-f, X]-
2 1 /, «4 (28c) g y.(x)it,'(y)=6(x-y)- —y. '(x)y. '(y) .(32)

1

By a slightly tedious calculation one can verify
that Eqs. (28}, together with (21) and (22}, are
equivalent to the quantum equations of motion for
the original variables 4 and 0,. The presence of
the last term in (28b}, which is absent in the clas-
sical expression, is important in this connection.

Again it follows trivially that

f[P,ff] =0

i[P, f.] =a.
The proof of the relation

f[ff, L,] =P,
which establishes Lorentz invariance, is very
lengthy and will not be reproduced here. The ex-
istence of the new quantum terms in H and L, is
necessary for obtaining the result.

IV. PERTURBATION THEORY

The Hamiltonian (25) can be separated into a
free and an interacting part

Furthermore, there are two possible sets, [g» )
and [g»'"', , corresponding to "in" and "out" states
as determined by the appropriate boundary con-
ditions for (31}. We can work in terms of either
of these two and in the following we shall not ex-
hibit the "in" or '*out" label explicitly. The com-
mutation relations (19) are then satisfied by

[5», b» ] =5»»,

[5»«b»«] = [b», b».] = 0.
One can set up a Hilbert space of baryon-multi-
meson states [P', (k&)) characterized by a total
momentum P' and a set of meson moments (k,}.
There is no difference between "in" and "out" for
the no-meson state which we call the baryon state.

We can now do ordinary perturbation theory by
going into the Schrodinger picture where we use
the expansion (30) for the full operators X and e
with t =0. Though, of course, the development is
completely general, it will be convenient in the
following to refer to a specific model. We take
the 44 model examined in Refs. 4, 5, and V. Then
the potential is given by

H=HO+H (29a)

and

+b»t g»t(x)e' »']

i/2
(«, «)=Q ( —')(«' («, (.(«)« ' "

(30a)

—b»tg»t(x)e' »'], (30b)

where (»)» = (k'+ i»')'~', with i» the meson mass.
The expansion is in terms of the complete set of
solutions of the free field equation

—x"+~"(4.)x = ~'x (31)

This set includes the zero-frequency mode g,
= (1/V~ }Q,' (see Ref. 5) which must be excluded
from (30) because of (4). Therefore, the expan-
sion (30) is made in the set (())» j with the complete-
ness property

f( "( )-*'-'*««"«(«,,«) l«'(*, ()(("(&.)).
(29b)

H, is the Hamiltonian of a static particle of mass
M plus that of the free meson field x. The quan-
tization of the free X is performed in the standard
fashion by expanding

1
X(x, t)=g

(2 ),z, [bg»()»e x'
a

v(e) = ——m'c'+ -.' xe'=2k (34)

Q,(x —X) =,g» tanhm(x —X), (35)

with ()),(x) -«k, , , for x- +~. The corresponding
classical energy

4 m'
M= 0"=3

~ (36)

is of order ~ ' and the meson mass equals 2m.
The interaction Hamiltonian in the theory (34) is

a =2~ 4.X'+-.' ~ X'

1 1 2

2MO
' 2(1 g/Mo), ,

1 1

8MO (1+)/M )'

-=HI
~ +H12+&i, +&g4

H» is of order A.'~'; the other three terms in (37)
are of order g.

which breaks the symmetry 4 - —4 in the vacuum
states 4, » =+ m/A. '~'. The classical solution is
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The baryon energy E(P) to zeroth order, i.e.,
the matrix element of H, between no-meson states,
is easily found to be

(PIH, I
P') = Z, (P)8(P —P'),

and includes the first kinematic corrections to the
static baryon.

To lowest order the matrix element of 4(x) be-
tween baryon states is

z.(z)=M, !fg 2, 'g,'(*)p,(*),
(38) (P'

I
I' (x) I P) = (P '

I &4(» —X) I P)

where we used (31) to simplify the expression.
This is the result given in Refs. 3-5. It is the
sum of the classical energy plus the zero-point
energy of the meson field. In the explicit evalua-
tion of (38) we have, after a vacuum energy sub-
traction, a remaining ultraviolet divergence which
can be removed by meson mass renormalization. 4

This renormalization is actually sufficient to re-
move all divergences from the theory.

The next correction to E,(P), to which all four
terms in H& contribute, is obviously of order ~

P' X' X' fI), x- X" X" P

x dX' dX"

e' '
y (x X') dX'.

21r
(39)

The classical solution is then the leading term
in the expansion of the Fourier transform of the
form factor which is the Ansatz used in Ref. 5.
The next correction is of order A.

' ' and is given
by

(P'I4(x)IP)'" = g(P'IC(x)Im) " +g- " &mIe(x)IP&
p m

m p lS

dX'e' dy6A Q y ~
—, gk X-X' gk y +g» y g„x-X' —

gk y pk~ y
kk'

(40)

which again agrees with the result found in Ref. 5.
In the computational scheme developed in Ref. 5

the main object of interest is the connected matrix
element of 4(x) between m and n ("in" or "out")
mesons. The no-meson to one-meson matrix
element to lowest order is clearly given by

For the general connected m-n element it is not
hard to show from the perturbation series by a
counting argument that the leading order in its
expansion in powers of X is X '" " '. This is
the essential assumption in Ref. 5.
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