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The field theory of strings is developed using the functional calculus as a practical technique. A Schrodinger-

type equation and its eigensolutions are derived in light~ne coordinates. Vertices and amplitudes are
represented entirely in a Fock space of second~uantized functionals. Two different open-string interactions
are explicitly investigated. The three- and four-string vertex functionals are calculated for arbitrary times and
compared with the asymptotic expressions obtained by other authors. We discuss how more exotic string
configurations can be incorporated into the theory and emphasize the utility of the functional calculus in

describing these topologies.

I. INTRODUCTION

In a number of recent papers considerable prog-
ress has been made in the development of a con-
sistent field theory of relativistic strings. Such
a development marks a novel approach to the study
of quantum systems that are extended in space.
The early analysis' of the dual resonance model
was algebraic, and the operatorial techniques were
developed after the construction of the dual scat-
tering amplitudes themselves. Since the pioneer-
ing work of Goddard, Goldstone, Rebbi, and
Thorn' (GGHT) it has become progressively
clearer that the conventional dual model has an
elegant formulation in terms of the scattering
of relativistic strings —entities that move freely
and sweep out an extremal area in space-time.
Kaku and Kikkawa' (KK) have incorporated this
idea in a second-quantized field theory and have
indicated how amplitudes are constructed as light-
cone expansions of ordered Feynman-type graphs.
Cremmer and Gervais' (CG) have discussed cer-
tain processes, albeit in a formalism that mixes
first- and second-quantized theories. Their am-
plitudes coincide with those proposed by Mandel-
stam' in his sum-over-string histories approach.
In studying these methods we are conscious of
certain differences between them and we have
tried in this paper to unify string field theory into
a coherent formalism, stressing those points at
which we feel work still remains to be done. We
are particularly concerned with developing tech-
niques that will be as useful in describing arbi-
trarily complicted processes as the first-quan-
tized operator formalism is. Although algebraic

methods possess this virtue, they do not lend
themselves to very great generalization. This is
undesirable in view of the limitations of current
dual models as physically acceptable theories.
String theory has a rich variety of structure that
can be visualized pictorially in terms of space-
time surfaces. It is our hope that some of the
methods to be discussed will assist in the realiza-
tion of more general string models.

We attempt to identify our formalism as closely
as possible with the methods of conventional quan-
tum field theory. We shall work with second-
quantized field operators that create and annihi-
late strings in specified states. Our tools will be
those of the functional calculus and a considerable
simplification in the formalism is attained if one
adheres, wherever possible, to functions and
kernels instead of their customary Fourier com-
ponents. We believe that this approach has great
generality and is able to incorporate different
string topologies. We shall explicitly discuss
open and closed string configurations.

The quantization of the free dynamical string
is accomplished in Sec. II using the noncovariant
canonical approach in the GGRT orthonormal
transverse gauge. This exposes the independent
degrees of freedom to be quantized and leads to a
first-order Schr5dinger-type equation for the
wave functional. ' We extract the Hamiltonian for
this equation in a way which we believe is simple
and unambiguous, using Dirac's method7 of La-
grangian constraints in theWnctional phase space
of canonical fields. In Sec. III we solve for the
complete set of energy eigenfunctionals of the
open string. From these eigenfunctionals the
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Feynman propagator' is evaluated in a number of
representations. The second-quantized formalism
is constructed in Sec. IV and commutation rela-
tions postulated for the field operators. The ques-
tion of three-string interactions is discussed and
the difference between the vertices of KK and CG
studied. Since we do not use a Fock space of
first-quantized mode operators, general expres-
sions for three-Reggeon amplitudes (i.e., excited
couplings) are given. The four-Reggeon vertex
is also written down and its evaluation from finite-
time Neumann functions discussed. We conclude
with some remarks on how the formalism can
accommodate more exotic string topologies.

II. EQUATIONS OF MOTION

Although the general classical equations of mo-
tions for the free string are nonlinear, GGRT
showed that a great simplification occurs if one
adopts the transverse orthonormal gauge. Essen-
tially this choice of coordinates enables one to
use the fundamental constraints (arising from the
gauge invariance of the action) to eliminate non-
dynamical degrees of freedom. Furthermore, a
noncovariant canonical scheme can then be set
up and a Schrodinger-type equation written down
for the first-quantized theory. The procedure is
well established in the literature.

The classical motion of a free open string is
derived from the action functional

time. The Lagrangian 1.=J dc((- detg)'f' is
singular and the constraints

p, =P, X'=0, (II) =P, +X' =0,
P X =0 P '+X'=0

(2.2)

(2.3)

follow from the covariant equations of classical
motion 5S/5X„=O; i.e. ,

8 . +98+ BL,

~X X' (2.4)

(2.5)

and the definitions

eL „a (2.6)

X =p+t, P,'=I+=9,
where

Xq=(X+, X,X*) .

(2,7)

(2.8)

In these equations the overdot and prime refer to
differentation with respect to t and 0, respectively.
Quantum mechanically, following Feynman's for-
mulation, the probability that a string propagates
from one configuration to another in space is given
by a suitably weighted functional integral of
exp((i/I) S[X]j.

The orthonormal transverse gauge is defined in
terms of the light-cone time and the component
P, of the total string momentum:

s[x„]=
02

do(- detg)' f' (2.1)

in terms of the metric tensor g 8
= ~ X ~ X

((j.', p=o, t) on the surface X„=X„((f,t) in space-

Solving for X and P, [and denoting them by X (()
and P, (*) to indicate the functional dependence]
leaves X*, P,*, and q as independent variables. '
In terms of these variables the functional propa-
gator in phase space is written

K[jf(t( )j (f(tf) j Xj (o j t(), Pj ((f, t;), Xp((t, tf) j Pj ((7j tf) t( tf ]

1
DX„DP,"exp — dt d(rS[X, P„A„A ] 5(P,'-p, ) 5{P,—P, (*))5(X' —tp') 5(X —X (*)),

t.1 &i

(2.9)

where

S =XP( —~j4j —442 .

After integrating out the redundant variables, we
can identify the Hamiltonian,

a[X*,PP] = —,
'

do[ P*'+(X")'] (2.10)

From this classical Hamiltonian we first-quantize
the free string by adopting H[X*, —ig(5/5X )] as(
the operator Hamiltonian in the Schrodinger pic-
ture Within op. erator reorderings (to be discussed
below) we write the eigenequation for the wave

functional 4'[X*, t ] as

H X*,- N 5, @[X',t] = —. —„e[X*,t],
(2.11)

which after a trivial integration by parts and im-
position of boundary conditions (open or closed
string) gives (I= 1)

r 1 &2 1
d(( ——

5
+ —X*(v)(-8,') X*(o) U„[X*]

= E„U„[X*] (2.12)

for the "stationary" state functionals4 = e 's~'U„[x*].
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Before proceeding to second-quantize the theory
we shall solve this equation.

III. V(AVE FUNCTIONALS IN THE

FIRST-QUANTIZED THEORY

U [Xg] e-»*'G'» /2 (3.1)

Kaku and Kikkawa observe' that Eq. (2.12) de-
scribes an infinite number of uncoupled quantum
oscillators, each with its own characteristic po-
tential. The solutions U„' [X*]then follow immed-
iately in terms of the Fourier modes of X*. It is
our intention to solve Eq. (2.12) by functional meth-
ods. Not only do the fundamental kernels of the
theory make their first appearance in the solution
but considerable insight can be gained into the
question of setting up equations for more general
topologies. We discuss first the internal degrees
of freedom by supposing that the center of mass
x*, of the string is at rest.

It is convenient to parametrize a in the range
0 to mg. To motivate the functional solution and
establish notations (see Appendix A) consider the
trial solution

1
a*[z(o)]= ~ +z~(a)

which obey the rules"

[a'[z(o)], a~ [z(a')] ~] = 5(a —a') 5, ~.

In terms of the kernel

(3.5)

(3 8)

introduce the variable z*(a) = G'~'X* and write
Eq (2.12). in the form (see Appendix B)

(a* G a*) U„[z*]= ~ U [z*] .

The functional

(3.7)

rest mass of the ground state will be introduced
below when we discuss the center-of-mass motion.
Its value must be fixed by considerations outside
the noncovariant framework. "

A convenient way to organize the general open-
string eigensolutions is to introduce the functional
operator s

1
a*[z(o)] t = ~ — + z *(a)

where

X*~ G X*= do
0

do'X*(a) G(cr, a') X+(a') .

(3.2)

vv(f. a*')'"
n'

n

satisfies Eq. (3.7) with eigenvalue

(3.8)

Substituting Eq. (3.1) in Eq. (2.12) we find that
U, will be an eigenfunctional with eigenvalue

z TrG=zd~ J daG(a, a) provided

X*~ G G X*=-X*~ 8 'X*.

Qgn ~n

n X*„. (3.9)

G(&, &') =Q Z. f.(&)f.(&') .
f1=i

(3 3)

For the open string the fundamental orthonormal
basis functions in the internal space of excitations
are

The function X*(a) may be expanded in the set of
basis functions f„(&)on the interval (0, vq) that
satisfy the boundary conditions for the topology
under consideration. We shall identify solutions
with a particular topology by demanding that the
kernel G be diagonal in that basis, i.e., have the
form

(&*„jspecifies the set of integers n, A*„ that occur
in Eq. (3.9). These eigenfunctionals are ortho-
normal since

Dz*U(g*) [z*]U(~*) [z*]=8(g*)(q*) . (3.10)~ ~

We have made these solutions precise since they

play a fundamental role in constructing the string
propagator. In Appendix B we express these solu-
tions in terms of Hermite functionals

(3.4)

Restricting G to have positive eigenvalues (so that

U, exists) we readily obtain the open-string kernel,
with g„=n/q. We sliall handle the infinite zero-
point energy TrG of the ground state" in a con-
ventional manner. All excited levels of energy
will be measured with reference to it. The proper

-X+'C 'X+/2xe (3.11)

This last form is particularly useful for the evalu-
ation of excited string amplitudes. We shall show
in Sec. V that these may also be written in terms
of the Hermite operators, there being one
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H ),«(f„G ' ~ 6) for each }).«-fold excitation of the
nth string harmonic.

%e observe that a string with definite energy
does not have a specific shape. j U(),«[X*]('DX«
is a measure of the probability of find ng the
string in the state specified by the set {A«)with
a configuration between X*(o) and X«(o) +DX«(o).
(In practice X*+DX*can be replaced by those
Fourier coefficients which significantly differ
from those that synthesize X«.} It is possible, of
course, to construct string wave packets from
these energy eigensolutions. Such packets will
disperse in time since they are superpositions of
functionals, each with its own time dependence.

In the foregoing discussion we have deliberately
written the eigenfunctionals in terms of the field
Z«(o). When considering a more general topology
satisfying Eq. (2.12) we can apply the same tech-
niques as in the open-string topology. Once a
basis appropriate to the boundary conditions is
adopted then the kernel 6 is defined by demanding
that it be diagonal (with positive eigenvalues g„)
in that basis.

Up to this point we have discussed only the in-
ternal motion of the quantum string. The use of
light-cone coordinates enables one to isolate the
internal dynamical degrees of freedom. It is use-
ful, once the transverse variables have been se-
lected, to rewrite the Schr5dinger equation (2.12}
(including x*,) in a form reminiscent of a Klein-
Gordon equation for a system with internal struc-

ture .To this end, consider a string with X„(o)
=(t, q, X«(&)) described by the complete functional
4 [q, t, x'„x*], satisfying in the GGRT gauge

{Z+m,'+)Is«'[Z] G a«[Z]/e[q t x«x«]=0.
(3.12)

In the absence of internal excitation this describes
a spinless particle with rest mass m, . The inter-
nal structure is attributed entirely to the trans-
verse excitations in this gauge. Defining the gen-
eralized Fourier transform

«= p fa (e" r(),.)[z']i( (. , ), );,[i„)),

(3.13)

where P„=(P«,P, P«0) in light-cone coordinates, we
have a general solution to Eq. (3.12) provided

X=6(p'- m,
' —)}e(z«})A()«} (p«, p, p*,)

1 1 .2 2

2p+ 2g
6 p ——(p*. +m. +re(i*})

n

(3.14)xA(x«}(p, ,p po)

We observe that the upper (lower) mass hyper-
boloid p, &m, (p, &-m ), ~p(& 0 now lies in the
positive (negative) p, p, quadrant. For the present
discussion we must assume that m ' is positive.
Identifying antistrings as those with p, ~0, P +0
we write the solutions

q [q, t, x'„x*]= g dP +o )', z, U(~«} [Z«] [e' '*A(~*}(p„p«) +e ' '*A(q«} (p+) p0)] ~ (3.15}

1 1
A(, «}(p,p«)= „,A(,*}(~p„gp,+p«) 8(+p ), p = (po«*+m, '+r}e(,«}), p X= p, q+p t p«x«. -

The positive-frequency part of 4 breaks up naturally into a part depending on the internal modes and a
part describing the barycentric light-cone variables,

(3.16}

As usual with a theory expressed in these coordinates, once the "longitudinal" modes are isolated the
barycentric coordinates appear to describe a nonrelativistic particle w'ith momentum p~o and mass P+. '~

IV. SECOND QUANTIZATION

The free string is second-quantized in the ortho-
normal transverse gauge by postulating for the
Fourier coefficients in Eq. (3.15) the commutation
rules

[A(-,.}(p*., n), A(„.}(pl', q')]

=6()I-)}')6(p*.-p ) 6(i«}(,«} (4.1)

We regard A(q«} (p«„r}) as a creation operator for
a string in a configuration specified by {}).«j, p«0,

and g. The equal-t commutation rules for the
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string field follow immediately from this postulate,

[4'[q, t, x+, x*],q [q', t, x*,', x*'] ]
=5[Z' —Z~'] 6(x*,-x", ) A, (q-q') . (4.2)

tives only by writing Uo[Z] =exp(& Z') exp(-Z') so
that

n- exp
2 &

L,

When the "times" are unequal we have Xe -Z +2-Z a&2
(4.10)

[e[q, t, xdo, x*],q[q', t', xdo', xd"]]

dg

, /2 Kq(q-q' t- t' x~-x~0')

x K„(x*,x*', t —t'),
where we identify a free particle propagator

(4 4)

4(l2

(P„= dP*exp (P"(H —d"')-P(d —P')+ ((-('))0 0 0 0
2n

(4 5)

and an internal functional propagator

X~e
-ip'(x-x') ii) (x-x')}-e

(4.3)

where P is given in Eq. (3.15). We interpret the
first term in this expression as the propagator for
a positive-energy string in time. We write this as

K, [q —q', t —t', x+ —x+'x+, x+']

We can linearize the last factors with the func-
tional integral representation

e = DQexp —2 Q*'+i 2 Q* Z* 411

so that evaluating the functional derivatives gives

K = (z 42+ z+'2) /2~=8

Dq~Dq~rexp ~ @~ 2 1 Qgl2+~ ~2 Q*e Z+

+tv 2 Q+ Z~' —Q* L Q") .

(4.12}

This is a coupled functional Gaussian integral
which will be met on several occasions in this
paper. Using the results of Appendix A

1exp(- & Z* L, Z*-
& Z*'L, Z*'+2Z~ L Z*')

n [d t(1 La))ud /2

(4.13)
where

1+I.
L (o, o') =

K„[X*,X*', t-t']= g U(, ~}[Z~]U(,.}[Z*']
= —g cothg„(T- 7')f„(o)f„(o'),

ff =g

where

x U,[Z*'], (4.7)

E„(//, t) =f„(&r)e "~'/'

With the aid of the multinomial theorem we re-
write Eq. (4.7) as

K =U[Z~]e'* ""i-i"'*i"U[Z*'] (4.8)

and we have introduced the kernel

To obtain a closed expression we first express the
exponent in E(I. (4.8) in terms of functional deriva-

xexp ——
e& *}(t-t') .

~n

(4.6)

In terms of free-string functionals we write

U Z. (F. *'[Z]}'" (+. "[Z'])'"
0 i ~ J J (gti)l/2 (gki)l/2

n

L,(&r, o'}= 1.

1=-
2 g cschg„(&- &')f„(d/)f„(&')

and the Wick-rotated variable v =it has been used.
This representation for K„will be useful frequent-
ly in later sections. One can verify that it obeys
the necessary reproducing property,

K„[x*"r"~x*r] K„[x*r~x*' ~'] DX*

=K„[x'"r"
~

x«' r ]. P(4. 14)

The factor det(1 —L')=g„",(1 —e &t' ' ) ) is the
correct one to ensure that U,[Z~] propagates un-
changed in time, since by definition it has a zero-
energy eigenvalue. It will be recalled that K,
propagates string functionals forward in light-
cone time t. For relativistic calculations in these
coordinates we must sum over all time orderings
between interactions. This can usefully be done
if one utilizes a different Green's functional which,
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although employing transverse variables, is sim-
ilar in structure to a covariant causal propagator.
A solution of

( +m '+](ta«[Z] G a*[Z])K (X X')

= 5( T- r') 5(q —q') 5[X*—X*']5(x* —x*') (4.15)

is

K (X, X') = g U(q«) [Z*] U(q*) [Z*']

and performing the eigenfunctional sum as before
yields

'd
K (X X') = — d'P e' ' 'o *0 U [Z*]

s 0

a t[z*l 1,(y).a tfz+']p f Zgi1

(4.17)

where

e iP ~ (r0-x0)
X d4p p' —m, '-])e(z*) '

where the causal p, contour is implied. Parame-
trizing the denominator as

1 1
P -m0 -g6f ) 4)-j.

p' —m(i' —'ge( y«j

(4.16)

I(S, &, o') = g X"'"f.(a)f.(a') .
n=].

For the evaluation of string vertices and ampli-
tudes it is convenient to work with the Fourier
transform of the propagator:

«, (» —»', i —i', »; —Pl', &', p"] = f»«»( »:»l ~-»; *; — i" « '«' «"]

&K,[q —q', t- t', x*, —x*,', X*,X*']dx*dx*'DX*DX«'
OO

=5(p*.-p*.') „,exp —])(q-q')+ ' (t- t') K„[I«,I'&', t t'] . -
0

(4.18)

V. SECOND -QUANTIZED STRING INTERACTIONS

In conventional field theory, quantized fields
interact at points in space. Such local interactions
may be interpreted as the fundamental vertices
linking the space-time tracks of the point particles
created by the fields. In a similar manner, quan-
tum strings are visualized as interacting in light-

cone coordinates when they have one or more
points in common. This picture is intuitively
appealing although it should be stressed that it is
unclear whether it generalizes to arbitrary frames
of reference in a simple manner. However, in the
light-cone representation a second-quantized Harn-
iltonian in the interaction picture is postulated to
describe the general three-string vertex:

(((»,.»., »'. ] f«»»» I»=i, *l «l]» I», , i, *( «ll »(*l., «(, *:., «( «(., «ll»'I», i, *(.«]11»*'..»»«(

(5.1)

where strings one and two are incoming and string three is outgoing. The precise form of the interaction
will depend on the choice of interaction functional I'. Since the interaction is local in q we can immediately
extract conservation of "longitudinal" momentum q:

3
HZ 'dt 'Qy + 'Q2 p3 X }0y Xz fq X 10 y Xyp t QI} X20}X2p t ((I}}) X3(}} 3y Q &0 z z/2 a )

I=1
where

g *ti ,(*;«*,i] =fd»e»'» ip, ;*;— «' ",I» '"'(;(('»»( ([z*]((] ((»;, »I.

In a momentum representation (Appendix 8)
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«5(z), + z}. z[-.)5(P,*.+P*. P-*.)FtPf.,&t]4„,[P,*., &,*,~]4,,[P*., &,*, ~l 4„',[P;., &,*, I]

(5 3)

where

—zz(~gy'z
0'„(Po* J'*, ~) = Q &

" U(~+)[I'*]A(~~)(Pg, z)),

F[n„llz, nz]= F[y, , yz, yz]

x exp(ill, y, +zli, ~ y, —z11, ~ y, )

x Dy, Dy,Dy»

y, (&}= 8,([z)[x&,+X,*(o)],

specified by the quantum numbers {&„*],pg, and z}.

The second-quantized string-number operator in
this space is clearly

N = A I„*)(p,*,z))A j„*)(pg, ]7) (5.6)

(cf. N„as the mode number operator in the first-
quantized Fock space}. This concludes the formal
construction of the string fieM-theory. Light-cone
Feynman diagrams follow from the standard Wick
procedure applied to matrix elements in the above
Fock space of the scattering operator

n, ([z) = 8,([z)
"+P,*(&z) S=T exp i +s t dt (5.7)

e,(o) = 8(o)e(z[[7 —o') (i=1,3)

= 8([z- zz[7,)8(z[z}z —c) (i = 2).

In terms of open-string bases we write

&f(&) = p P.*f.'(&),
n~1

where

(5.4)

The simplest interaction between open strings,
first considered by KK, is the one in which two
strings fuse at their end points to produce a third.
We interpret this description to mean that at some
instant t = to, the parametrization of one string
must be indistinguishable from the parametriza-
tion of two strings with one parameter point in
common. Consequently we write the interaction
function in a momentum basis as

&I2 ~0
f„'(o') = cos—,i =1, 3

77gg
F[n„n„n,] = ]].5[n, —n, n, ]. (5.8)

(5.5}
2 il n

cos—(zzz)z —o), i = 2.
Wg j

The operators A(q+)(][zg, z)) enable one to con-
struct a Fock space of multistring states from
the vacuum. For example, the state

It should be noted that this functional does not ex-
clude contributions from discontinuous fields n(&).
The interaction between arbitrary excited string
states is conventionally given in terms of a three-
Reggeon vertex containing first-quantized mode
operators. In our formalism the matrix element
for the string transition

l({~.*)P., n)') =
2,) .[Aj „*}(P.*, [7)]'I o&

contains two identical strings each in a state is

{]].& ) +{]].„* ]-{]].„* ) (5.9)

3

,[[l n„[:..n. .,,yl .n, [&:][&:., ], [&.,:,].]. &f, n, 0,~.,„~,[z[=]m', v[n„t, —i nit„n„~,„t,], [5 so],
where

v= Dn,'Dn~n, 'z'[n, r, )n,'~,]6[n,'- n', -n,']fc[n,'~, (n,r, ]@[n,'r, (n, r, ]. (5.11}

In terms of the kernels

B,(z —z', [z, [z') = Gz zLzz = —[7,g ——coth —(7 —z')f„'(o)f„(~'),
n-"1

D,(r —r', o, [r'}=6, 'L,'=- I —each —(z —z')f„'(o)f„'(o')
N=

(5.12)
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we can write the propagator

p0&}e Eg(T T )
E [IIp~ III'']= ' ', .2 ~2 exp(- P2( ~ B, ~ Pg 2-Pf' ~ B, Pf'+2Pf D, ~ Pf"),

[det 1 —L2}]2

where

(5.13)

E', = (p '0+ m0').
2gf

It will be observed that the interaction functional
Eq. (5.8) involves the zero-mode basis functions
of the three fields II&(&} in a nontrivial way. It is
useful to exploit the geometric structure of the
function space on which the fields are expanded to
properly interpret this interaction functional.
Each field can be regarded as being expanded in
its own (infinite-dimensional) Hilbert space H,

containing one zero-mode vector (pf0/wri&}8'(&)
and a set of internal vectors P„*f„'(8)8'(&). We can
decompose this space as

Multiplying by 8'(&) and integrating gives

~3 ~3 P30

=8, II,'+e, rr,'

P10 P20 ' (5.17)

Using the zero-mode 5 function Eq. (5.13) in K, the
integration over P~20' and P,*,' produces 5(P,*0+P200
—P,*,). This leaves an integral over P~0' and P,*'
where we eliminate P22' using Eq. (5.16),

H) Ho)@H (5,14)

where H& is the one-dimensional subspace contain-
ing (pf~/s)), }8,(o} Whe.n the strings are brought
into coincidence the spaces H, and H, form a di-
rect sum decomposition of H, :

P20'= H' - 82 = P,*'+P22'+p~8
mn3

'

where

(5.18)

or
H, =H, eH,

(5.15) 2)4 '~2 ~ sin(m27}, /)I, ) 2 )
n ~ m

m=1

We shall refer to the direct sum of the subspace
H, and H,' as H, . This subspace consequently
differs from H3 by a linear combination of two
zero-mode vectors. It will be important in the
following to make precise which subspace is being
used to represent the kernels involved in the
evaluation of K

We present three alternative evaluations of Eo.
(5.11)using functional methods. A priori, the
simplest method might appear to be the removal
of the 6 functional by integration over II„estab-
lishing

(5.16)

and (5.19)

Pe —~~ PW ~~ P2}C

~$ 03

(5.20)

Equation (5.18}clearly shows that the difference
between the spaces H,' and H,' -=8,'SH2 is the
vector p8 (o). Inserting this value of P,*' into Eq.
(5.11) and defining

3

v II -Is)(2) -t ) v

we find, "using the formula for coupled Gaussians
in Appendix A,

V =[det(B, +B,)(B, B )+[1&2„)—(B,+B,) ' ~ B, ~ (B,+B,) ' ~ B2]'I

5(p10+p20 p20)[e&p[2P, 2 B,2 ' 'P,2+ 2P22B22
'

P22 P~~ (B, +B2) -' ~ B2 B22
' P22]],

where

B,2 =B,+B2 B2'(B, +B2) ' -B2~H,+, B22 =B2+B2 —B'2 (B, +B2) ' B2&H2+,

P,*,=2P,* D, +2P,* ~ D3-P*8 B, .

(5.21)

We observe that since P, ' is defined on the H,' space B,+B, is to be inverted on this space. A more
compact expression will result if we use the fact that B,+B,+B, is B,+B, when projected onto the H,'
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space and B,+B, when projected onto the H,' space since B& and D& are only defined in H& . Working in
the space H" on which P,*'+P,*' are defined we can consequently rewrite

I'= 6(Pio+Ps*o -Ps'o)

x J) D(P~+', P,*')exp[- &(P,*'+P,*') ~ (B, +B,+B,) ~ (P,*'+P,*')]

xe xp[(P ~~'+ P,*') ~ (2D, P~~+2D, Pg+2D, Pf —B, ~ 8 P*)] (5.22)

xexp —~ P„*~ I'" P,*
f'~S =1

p, prOp g I
p F00 (5.23)

where
I'DO=8 B, 8 —8 B, [B,+B,+(B,)„]' B, 8

I'" =28 B~ [B,+Ba+(B~}+~] 'D„—26~8 B~, '

I'"' =6„,B„4D„[B,—+B~+(B~)i ] ' 'D, .

as a single Gaussian in (P,"'+Pg'). Using Eq. (AV),
this gives

7=6(p~, +p,*,-pf, )[det„(B,+B,+B,)]~ ~'

In these expressions (B,)„indicates that B, is to
be projected into the H" basis (i.e., expanded in
terms of f„' and f2). In this space it will be non-
diagonal. Its actual form can be obtained from
the overlap coefficients detailed in Appendix A.
In this method kernels are inverted in the H"
-=H,' SH,' subspace.

The second method of evaluating Eq. (5.11}is
to break up the interaction functional into its H,
and H, components:

6[11,+11,- ii,'] = 6&, &[11,- Ii,] 6&, &[11,-11,]

=~ P,*,'-0~P,,'-e P*~ O„,P,*'-P~' 5 P+'-1~P~,'-e, P,* a„,p~'-P~

(5.24)

In the last equation we have taken sums and differences of the arguments in the zero mode 5 functions to
isolate Pg' conservation. The three PPO' integrations in Eq. (5.11) now yield an over-all 6(P~O+Pga. —P~) as
before. Furthermore, the DPy DPg integrals are trivial, yielding P,"=P,*' in the appropriate ranges.
With the parametrization

Eg)

5 p~- ' '8 P*' = duexp iu P~-- ' '8 P,*'
$9

(5.25)

we can write the P, ' integral as a single functional Gaussian with kernel B,+B, +B, defined in H,'. (B,
and B are nondiagonal in this basis: f„.) The integration yields an ordinary Gaussian in the variable u
and this gives

V=Qdet(B, +B,+B,)]8 ~ (B,+B,+B,) ' ~ 8 j 6(P~, +Pg, -P,*,)

where

x exp —& P„*~ I' P,*- P~ ~ 1""'P*- ~P*'I'"
g~S r

(5.26}

I'~=[8 ~ (B,+B~+B~) ~ 8 ] '

2D„(B,+B,+B,)-'8
8 ~ (B,+B~+Bs) ' ~ 8

I'"=B,6„,-4D, ~ (B,+B~+Bs) 'D, +4D, (B~+B3+B~~)
' ~ 8 [8 '(B, +B2+Bs) ' ~ 8 ] '8 ~ (B,+B~+B~) ''D, .
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These expressions for I""' provide an alternative to the representation in Eq. (5.23). That they are in fact
identical expressions follows immediately when we use the block inversion formula

X 7
(B, +B2+B,) '=

—(X —I"Z-'I')-'I rZ-')

(z —rx 'I'-) (5.2'I)

5[II,'+ll,' —ll'] = JDye'"' ~" '" (5.28)

where y(o) spans the space H, . By q conservation

S,(o)+ 8, (&) = 8,(o), (5.29)

so

(5.30)

02 = ~ 6}3 — {9
n3

'
n3

%'riting
1

(5.31)

+0 2
p, gl 1

peal

to partition H3 into H,"and the one-dimensional
subspace containing 8 .

The third method of evaluation uses the Fourier
representation

verted on their own subspace. The final inversion
takes place in H,'. lt is a nontrivial task to show
that this form is equivalent to the previous re-
presentations, Eqs. (5.26) and (5.23).

The three forms Eqs. (5.33), (5.26), and (5.23),
of the three-Reggeon vertexbetween open strings
have been evaluated in terms of certain inverse ker-
nels. In one form or another these kernels appear
in Ref. 3. These authors show by a number of in-
direct methods that for asymptotic times they may
be related to the Neumann functions discussed
earlier by Mandelstam. They do not, however,
make a precise comparison. In the work of
Cremmer and Gervais an apparently different
first-quantized interaction is used to generate the
three-Reggeon vertex. This interaction imposes
the condition that there are no discontinuous con-
figurations allowed at the point of interaction. In
this case, the authors make a precise comparison
with the work of Mandelstam. Since their formal-
ism is different from ours we have investigated
the vertex that arises from the interaction:

+P*'+P*'-P*'
1 2 3

we can express the exponent in Eq. (5.28) as

(x,*+X*)~ (II, +11,'- ll, ) =x,*(p~,'+p;,'-p,*,')

(5.32)
where

1
~, (o}= —8;(c)+E;(o)

7r7ll

(5.34)

P,[y„y„y,]=5[y, +y2 y3]5(~, y, -~2 y2}

+X* ' 8 P*'

+X* (P,*'+P,*' -P,*') .

The xo* integration can be performed together with
the evaluation of the Pf' integrals in Eq. (5.11) to
produce 5(P,*,+P,*, -Pf,). Integrating the three
Gaussians over P,*',P,*',P,*' successively pro-
duces a Gaussian in X*. A final integration yields

V=5(P~, +P,* -P,*,)[det(B, '+B, '+B, ')]-~ ~'

x exp[- & Q* ~ (B,-'+B, '+B,-')-' ~ Q-+],

(5.33)
where

Q*(o}=p*g +2P,* ~ D, B, +2P2* D2 B2 '

2P4 sa s JP

= 5(o —wq, )6;(c ) .
Clearly the last 5 function imposes the extra con-
straint y, (wq, ) = y2(nq, ) in configuration space.

To compute the Fourier transform

F,III„II„ll, l = JllyDvl)y, ,
x exp[i(II, ~ y, +II, ~

y2 —II, y, )]

"P[y y y] (5.35)

we first integrate over y, with the 5 functional and

then separate out the zero modes in y„y„ II„
and II, . In terms of the variables

In this representation all kernels are initially in- we have
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+i[P* X*+P" X"—P~ ~ (X*+X~)] (5.36)

= 5(Pio+P2'0 - fpfo) 5 (i+)IP i' -A" 'Ps* -P'Ei)5(2+)9'2* -A" 'Ps*+P*E21 (5.37)

where

=5(P,*,+P,*,-P«,)5„„, P;+Pg -Pg+(E, -E,) "'"'Pg ~ e -P*
3

(5.38)

A18(o ot) 1 0102 E (o)e (og)
'93

A'~(o, o')=1,++ "' ' E2(cr)e (o')
n3

and we have made explicit the subspace in which each 5 functional is defined. Using the form Eq. (5.31)
and integrating out the zero modes together with p*, ' and pf ' in Eq. (5.11) we obtain

V, =exp —kgP,* 8, P,* —&p*'(E, 8, ~ E, +E, 8, E~,) 2p'P-,* D, E, +Rp*pg D, E, 5(p~, +pf, -pf }
f

x DP,*'exp —&P,*' ~ g, p3+'+g+' g+ (5.39)

where

&,(o, o ') =8, +A" ~ 8 A" +A" ~ 8, A"

R~(o) =2D, Pg 2A+" D, P~~+2A32 D P*+P*A" 8, A"-P"A" 8, A"

Integrating over P,*' and simplifying the resulting expression we obtain

V, =5(P;,+P;, -j,',Ndetk} ' ~'eXP (- —, PP; I",' P: -PP, . r P'--'. P*'F"),
r.s r

where

r, =e a. e -8 B &,-'a e

I"" = —2D ~ A."'.g, ' Br

I'",'=B„g„,-4D .g~ ~ g, -' A" D, .

(5.40)

Comparing F,"' with I'"' we see that the effect of
using the functional Eq. (5.34) is to insert the ker-
nels A~ into the expressions for I',"'. To deter-
mine the difference between V, and V it is worth-
while to follow CG and relate the large-time forms
of j.""' and F, to the Neumann coefficients obtained
by Mandelstam' (see also Ref. 16).

To do this we first extract the leading T depen-
dence from the kernels in Eqs. (5.23) and (5.40).
The use of a Wick-rotated time for the calculation
of the Neumann coefficients has been discussed

by Mandelstam. In essence, it enables one to map
the t, o mesh on the space-time surface swept out
by the interacting strings onto the complex v+ia
plane. The conformal invariance of the action is
then exploited to map the appropriate Neumann
function for a simple domain into the function for
the desired string domain with a Schwarz-Christo-
ffel transformation (see Appendix C). The large r-
behavior of the Neumann function is then continued
to real f. For large T; —r, (r, & ro, all q, &0) we

observe
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a, -G, -'(1+21, ')

Dq G& 'I )

so that

F"-G„-'5„,+L„1P' L„
where

(5.41)

(5.42)

Thus

5g5 =& [ I]Dn&G-&D~&[ I]
+q [-I]1P'G -'D"[-I]
+g35G '5.

But

(5.50)

N-=e G -' e -e G -'(d, )-' G -' e 5G-'5=G —[-1](2D n+Dnng D )[—1] (5.51)

¹
=2G„' 8 5 —2G„'(& )

' 8

¹'=2G '5 -4G '(b ) ' G

(6 ) '=[G, '+G '+(G, ) '] GH++ ~

In terms of

-1 + G 1 +G -1~H+

(5.43)
using

[-IÃ-'[- ll =G-'

With the aid of the further relation"
3

DnrG 'Drn =G

we note

(~-' ~ 8 )(8 ~ &-')
++ g, g-l, g

(5.44)

Performing the same limits for the kernels in Eq.
(5.40) we obtain the same expressions as above
for H"' except that (a„) ' is replaced by a, ',
where

-1 oA23+G gH+
1 1 2 3 3

(5.45)

The problem now is to relate &, ' and (&„) ' to
Mande lstam's Neumann function.

We first consider the inversion of &„. The
essential details of the relations we need may be
found in Appendix D. Define on H,' the kernels
D"' with matrix elements

we have therefore

5~5 = 2g35 . (5.52)

Before solving for & ' we observe in Appendix D
that

(d„)-'=,1
283

and so from Eq. (5.42)

(5.54)

56) 0.
The vanishing of this vector means that, as a ma-
trix in H,', 5 is bordered by the zeros of elements
containing components in the 6 subspace and is
consequently singular. Therefore we may invert
5 only on a subspace of H,'. Inverting on H,"Eq.
(5.52) gives the relation

2 2+1+2+3 (f') (g )a a„~mn
( m+ S) m n (5.46) H" =—G, -'[-1]D"[-1]G, -'.

7l3
(5.55)

and the Mandelstam coefficients with our conven-
tions are given in Eq. (D6). In terms of the ma-
trix 5 defined by

5 =G —[-1]D"[-1],
where

G mn t)r (G r }mn™mn &

[-1]„=(-1) 6 „

we prove that

1/2

[ 1]Dn'
~l i

1/2
6W" =- ~0 [-I]D".

'92

(5.47)

(5.48)

In terms of the f'„(&r} basis in H,' the matrix ele-
ments of 4 are

&=t) W"G 'W" +t) W"G 'W" +t) G '. (5.48}

Returning to the inversion of &, we observe that

1& =213 (5.56}

despite the presence of different overlap coeffici-
ents A"' in &,. Consequently we must write

27l3
(5.57)

A"=Wn'+ ' ' (8 )(E„)(-1)', r=1, 2 (5.58)
Yl3

It is at this point that we depart from the con-
clusion" of Cremmer and Gervais, who assume
that 5 is nonsingular on H,', and we write (d,, )

'
on the right-hand side of Eq. (5.57). Taking into
account the difference between &, ' and &,+, ' we
are led to the conclusion that the functional F,
leads to a different vertex than that based on F,
the latter agreeing with Mandelstam's asymptotic
form. That 4, and 4 are the same on H,'+ follows
from the relations
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a A'"=O W'" y=i 2. (5.59) and

To determine the precise difference between 4,-'
and (A„,) ' -=5 we must compute the former in-
verse using the block inversion formula, Eq.
(5.2V). Since

(x- Y z-'r)-'=x-'+ ( 'r}(r'x '}
(z r-x-' r)

(5.60)

where Z is a single element, we can write

(5.61)

~].—Z Y'(X —Y Z ~ Y}
(Z —Y X' ~ Y)'

X

Y Z
-Y'X'

Z-Y X' ~ Y
1

Z-YX-' Y

(X' ~ Y)(Y X') X' ~ Y
Z-YX" ~ Y Z-Y X' Y

(5.62)

Taking X=~,+„X '=5, Y=1'+ ~ 4, ~ 8, and Z = ~ &, 8 we evaluate first the denominator function

(Z Y,x 1 ~ Y} g (Ask, G I +18++$2,G 1 QRs+G 1) g g A I++, , I + A, g++

S

Using the relations

g Qs'P ( I}F E I ++ jtsT 1 t+

E„A~=E„5„„r,s =1, 2

8 ~ 1++=-E O -'+E g -'+g g -'
1 1 1 2 2 - 3

=(-E,+E,)(2q, 5-' -G„,-'},

we can obtain

8 -8 A, 5/2r}, =e +(E, -E,) ~ (I'-G„,-'5/2q, )+8 G, -'5/2r},

=(e, -e, ) (1'-G, ' 5/21, ) ~

(5.63)

(5.64)

(5.65)

(5.66)

(5.6V)

We have used the result that E, and E, belong to the subspaces H,
' and B2, respectively, and that 8 +E1

—E, = e, —a, . We conclude that the denominator function Eq. (5.63) is

z —Y x-'r=(e A, 5/2q, —e } A, .e

=(e, —e, ) ~ (1' -G, '.5/2q, ) ~ &, ~ 8 (5.66)

Using Eq, (5.6V} again gives

Z —Y X ' ~ Y=(e, —c,) ~ (&, ~ 8 -G, ' ~ 8 ) +(e, —e, ) ~ G, -' ~ (1+ —5 G, -'/2g, }~ (e, —g, )

=(fq -Em) '(G3 -Gs ~ 5 G~ /2qs) ~ (eq —Em}

(5.69)

With the aid of projection operators we write Eq. (5.62) as

5+(5 ~ & 8 )—(8 ~ A ~ 5) 1"—(5 ~ & 8 ) —(8 ) -(8 )—(8 h 5}+(8 ) —(8 )1 1 1 1
1 C Q Q

1=5+(8 —5 A 8 ) —(8 —8 & 5) (S.VO)

The required relation between &, ' and 5 is then
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6 (G, —6/2rls) ~ G, ' (~i —~, )(e, —e, ) G, ' (G, —6/2%) (5.71)

We conclude that the Fourier coefficients based on
the kernel 4, ' differ from those calculated from
the kernel (4,++) '.

Although we can compare our kernels with the
established Neumann coefficients for large times,
we do not claim to have closed expressions for
the inverses at arbitrary times. These are re-
quired in our formalism if we construct the four-
Reggeon vertex from a pair of three-Reggeon ver-
tices and the functional propagator Eq. (4.18). The

four-Reggeon vertex involves an integration over
the interaction time difference. Cremmer and
Gervais' manage to accommodate this time differ-
ence in their formalism by exploiting an over-all
time invariance in their operator expressions.
The result is that the effective finite-time Neu-

mann coefficients have a trivial time dependence,
at least when used to construct on-mass-shell
amplitudes. Their procedure is designed to pro-
duce the known on-mass-shell dual amplitude. In

the formalism discussed in this paper there ap-
pears to be no ambiguity in the propagator func-
tionals and both on- and off-mass-shell amplitudes
should be considered together in terms of finite-

time kernels. Although we do not offer any direct
methods for constructing general finite-time in-
verse kernels (the power series expansions, for
example, are not particularly useful), we outline
in Appendix C the Fourier expansion of some fi-
nite-time Neumann kernels by utilizing the appro-
priate Schwarz-Christoffel transf ormation. In
this manner we reproduce Mandelstam's coeffici-
ents' in the large-time limit. If we accept the
proof by KK' that the kernels in Eq. (5.23) are
simply related to the appropriate Neumann func-
tion, then the finite-time coefficients follow from
the expressionsgiveninAppendix C. We feel, how-
ever, that there should be a more direct approach
to the explicit calculation of these kernels, par-
ticularly if one is to contemplate kernels corre-
sponding to more general string topologies.

Before closing this section we outline how the
general excited state amplitude Eq. (5,10) is ob-
tained from the vertex. The threefold functional
integral involves Hermite functionals as well as
a coupled Gaussian containing the Neumann ker-
nels. The polynomial dependence is handled by
writing Eq. (5.10) in the form

j -g+/2
Z'z + ~+ &+ = ]([-i)~«'~ 2'~~3& g det(1 —L, ')I 6~, +p*, -p*„)ea r h

(]=a

gf3 ~ Q ~ ~ gli+ (5.72)

where

W[j *„j*„j*,] = DP*,DP~~DP*, exp ——,g P*„' (I '+G, '6„,) P~ —gP*, j„*
L r, s r

Since S'is evaluated in terms of a coupled Gaussian in j*„, the results of Appendix B can be used to evalu-
ate T~+ y+ ), + .

fly lip

VI. FOUR-REGGEON VERTICES

Once the three-Reggeon vertex associated with a particular interaction functional has been constructed,
one can write down higher-order vertices. As we have already noted, there are now integrations over
the various time orderings involved. It is instructive to illustrate our formalism by deriving the form
of the kernels that arise in the four-Reggeon vertex containing a direct-channel propagator.

We consider the fusing of open strings one and two at time t, into a third open string. This propagates
to time t~ befor it fissions into open strings three and four. For a specific interaction functional

F[II„II~, II, ] we define the four-Reggeon vertex (with a propagator from f, to t, ) to be
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We consider first the interaction E(I. (5.8). The zero-mode integrations produce over-all conservation of
P+e

4

J~ Ddp*,.dP* dP&.5(P*,.-p;.')5(P*,.'+P*..' P*-)&(P* Pl.-)&(Pl. -Pl; p:.-') = &(P*,.+Pl. -P*..-P*..). (6.2)
r=l

Performing the integrations over P*, and P*, with the ~ functionals sets

+P+ + gl2p g

P*, =P*,'+P*,'+ &"P,*„
where

1 1
& "'(o) = ()„(o)— e,(o)

7T'gr IT/ s

and

~r g ~s
Prs

q +q ~r0
~ +q Ps0'

Using the propagators E(I. (4.18) we can perform the remaining integrations over P„' to obtain

2 4

V, , = 5(P*, +P* —P*, ) U[d t(1 —L„)] g[d t(1 —L, )] A.
r=i s=3

where

A, , = (det(B, +B2+B,~)(B,+B~+B~)[I—4(B,+B,+B~ ) 2D~ (B,+Bd+B,'D) 'D~])

(6.3)

(6 4)

xexp --' P* B P* -'p*28" B 6" -'p+ 26)" B ~ 6}34+2p* p* 6». B 94+-' * g-1 P*
r=1

r r=l

~ ~ ~

r=3

(6.5)

B12+B,~
Q(o, o') =!

BD 4+ B~7)

In these formulas the time-dependent kernels B„,D„, etc are de.fined as in E(I. (5.12) in terms of bases
on the appropriate string with the corresponding time difference t, —t„etc. The general excited state
amplitude follows if we integrate V, —

~ over t, —t~ and sew on the external wave function with functional
integrals over the variables P*„. Vfe refer to the papers by KK' and CG' for further discussion of the
various amplitudes that arise from different time orderings.

If instead of E(I. (5.8) we use the interaction functional given by Eq. (5.34), a similar calculation pro-
duces the expression

D',",, =(de(Dt„l ' e*e ——,'LP„DP;+22;,'(D, , DP; —DD, ,P;t ~ 2P;,'(D, , D, P; —D, D, P;\

where

- DP*„'(E,~ Bi E, +ED B, ~ E2) —2P34 (ED'BD ED-Ed B4 ~ E4)+~P(, )
~ Q(, ) P(, )

(6.6)

and

2P*'D 'A" +2P* D 'A '-p* (E B A" -E 'B A '))1 1 2 2 12 1 1 2 2

&('i)(o) =

2P 'D 'AD +2P*'D A -P*d(E 'B 'A —E 'B 'A ) )3 3 4 4 34 3 3 4 4

(6.'I)

A«)(o, o') =
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VII. CONCLUSIONS

In this paper we have developed a formalism
to describe the interaction between quantized
strings in close analogy with conventional field
theory. Little use has been made of the first-
quantized mode operators that usually make an
appearance in the ca).culation of dual amplitudes.
Whether this is a positive virtue depends on how

one handles the problem of finite-times vertices.
In our approach there is little alternative to the
direct inversion of the kernels that arise during
the calculations. However, we feel that apart
from this technical obstacle, the formalism is
natural and unambiguous. The question does arise
as to the nature of the resulting amplitudes and
their relation (on and off the mass shell} to the
conventional Venexiano model. With the inter-
action functional t)[II, +II~ -II,] between three
open strings, the three-Reggeon vertex of the
dual model is obtained provided care is taken
when dealing with the zero-mode components of
the fields II„. We have seen that the coupling of
these modes to the internal modes at the time of
fusion is responsible for the distinction between
this interaction and the one used by Cremmer and
Gervais in their formalism.

There are many facets of string field theory that
we have not discussed here. Kaku and Kikkawa'
and Mandeistam" have shown that a four-string
contact interaction is necessary for consistency
with crossing and Lorerdz invariance of the dual
four-string amplitude. It is clear that this inter-
action and any others involving the fields at an
instant in time can be readily assimilated into
our formalism with the correct choice of the func-
tional F. Having established bases for open and
closed strings with the same parametric range,
it is also straightforward to write down inter-
actions between them. Kaku and Kikkawa' have
discussed some of these interactions and drawn
attention to the extra invariance possessed by
the closed string. From our expression for the
open- and closed-string propagators one can con-
struct further mixed propagators. For example,
the transition propagator from an open to a closed
topology is

T"„,,[11',t, ( 11', t, ]

0» 40$7~'D~'g)~" D~"e~ a 'x qc. x

a basis is established for a more complex topol-
ogy, the kernel G(o, o') can be constructed and the
quantum theory of the free system developed from
the appropriate Hamiltonian. Quantum transitions
between topologies can then be formulated with
& functionals involving fields with different bases
as in Eg. (8.1). Goldstone's" three-string baryon
model is an interesting topology to investigate
with these techniques.

We have not attempted to impose Lorentz in-
variance on the theory in this paper. However,
it is wel. l. known' that the Poincard algebra of the
dual model will only close when d~ and m, ' are
constrained. It is not difficult to represent the
generators of the Poincare group in terms of free-
field functionals. One expects similar constraints
in the string field theory. ' It would, however, be
useful to construct the theory in a manifestly co-
variant fashion. The transition from Eq. (3.12)
to a Dirac-Ramond type of equation would then
follow naturally. Once intrinsic spin is incor-
porated into the theory" the variety of interactions
increases considerably. It is likely that the spin-
orbit coupled nonlinear dual models ' wouM find
a string interpretation. Indeed, if string models
are to have any relevance to reality, one is in
need of some principle to accommodate the many
exotic string topologies (and the transitions be-
tween them) that a prion should be considered.
Despite the complexities the functional cal.culus
is a convenient tool to use in these investigations.

4o) =+X.f.(o);

we define

(A1)

r DX -x ~ c x/e

1
xx ' ' exp — AX) G])X)

is

(A2)

APPENDIX A

Functional integrals are in general notoriously
difficult objects to define. We have adopted in
this paper the viewpoint that all our manipulations
with functional integrals can be independentl. y
carried out using instead the limit of an infinitely
repeated integral. Once a basis for a field is
established:

xK„[X ', t~j X ",t ]5[X""-X*' ]

& K„[X"',t ( X~, t,]. (7.1}

where in general

G(o, o') = gG &,f&(o}f,(o')

That different topologies are handl. ed in a unified

way is a general feature of the formalism. Once
and N is a convenient normalization factor. We
are aware that there is no welk-established way
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of defining the measure for an arbitrary functional
integral. However, w'ith the exception of the 6
functional all our integrals contain Gaussian in-
tegrands. For the purposes of convergence of
these integrals we demand that our fundamental
kernels 6, 6 ' be positive-semidefinite so that
they contain no negative eigenvalues. In these
circumstances we can define an appropriate mea-
sure to render our integrals finite. We choose
to establish normalizations for the X and I' in-
tegrals by writing

This measure automatically absorbs factors of
det2G which would otherwise make an appearance
in the formalism. The domain of integration of
the functional. integrals is over all piecewise con-
tinuous functions that can be constructed on the
support of the basis functions. With this conven-
tion all fields of integration carry their own sup-
port.

The functional integrals that occur in the text
can all be generated from a single simple Gaussian
integral

Dg ~-x ' c ' xh~ ~

(AS)

r
~-8 ~ A ~ ~ 8Q

-p ~ 4 ' pQ+fp ' 8
(detA]~ ' (A V}

(A4) where

In terms of a Fourier mode representation

Dx= lid(-")'x„, (A5)

DQ= IId ( )4
Q.

Repeated application of this formula produces the
important integral

DP=~d
(4ws)'+ I

' (A6)

Jt
DQDQ' exp(- aQ'A Q —~Q' 'A' ' Q' —Q'B' Q'+iQ u+iQ' a')

= [ detA detA. '(1 -A. ' ' B A ' ' B)]

xexp[ —~a ~ (A —B A' ' ~ B ) ~ a ——'u' ~ (A' —B A ' ~ B) ~ a'+u A 'B ~ (A' -B A '' B) '' u']. (A6)

This formula is valid even when Q(c) and Q'(o)
have different supports. In this case the last term
may also be written as
u (A -B A' ' B } ' B A' ' a'. But if the fields
have the same support this can be written
u. (A' B ' A -B } ' u'. Of frequent occurrence
are the overlap coefficients W"'„between two fields
defined on the support of strings r and s,

(A9)

where

In terms of our open-string bases, Eq. (5.5), with

&"(o)
fo( }

( )1f2
ÃQ fP

the three-string overlaps are

g7

2q, ~sin(mme, /q, )
~1 mÃ

A)82

2m, q~ sin(ssrg, /q, )
n, ( ' Pn.'/n, *)-

uh

( I )8+1 ~ g/$2

~1

(A10)
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e, ) &1.
With these coefficients the Fourier decomposition

of any kernel is easily rendered, e.g. ,

(A"'8 '8 ' C )„„= Q A~W~B~W», 'B'„W„'„C~
k, l.j

(A11)

is the m, n component in the r, w bases, respective-
ly. In this example A", B', C are taken diagon', l

in the r, s, w bases, respectively.

Writing & = & +-,' TrG we therefore seek solutions
of

[(&-X G) ~ (5+G X)+2e]U[X] =0

or, with

U[x] = -x ' 'x~n [X]

(& 6-2X 6+2~)n[X]= 0.

(82)

(84)

(86)

If we try the solution 0[X] =exp(5 B 5)V[X], we
find

APPENDIX B J3= gG (86)

(5 ~ 5+2(-x r x}U[x]=O, (81)

where 5(o) =6/5X(o) and we suppress Lorentz
structure in this appendix for ease of presentation.
We observe that IJ, = exp(--,'X G X) is a solution
provided

We record here some useful representations
for the Hermite functionals that feature in the
free-string eigenfunctionals. It should be stressed
that with the appropriate identification of the
eigenvalues and eigenvectors of the fundamental
kernel G this section is generally applicable to
more than one string topology.

We write the general eigenfunctional equation
in the form

(at least in the subspace spanned by eigenvectors
of G with positive eigenvalues), where V must
satisfy

(X ~ G 5 —~)V[X] =0. (87)

But

G 'f. =g.f..

(X G ' 5)(f„X)»= a„(x G f„)(f„X) " '

(88)

(BS)=]].„g„(X f„) "

So for any collection of integers (A„~O) we have
solutions

Let f„(c)be the eigenvectors of G(o, o') with eigen-
values g„& 0

& =& TrG

O'X=I X.

If 1" is a positive-semidefinite kernel there exists
a positive-semidefinite square-root kernel G of 1'. or

v{, ) [x]=II(f„x}'",

e{»»} = Q ~»gn ~

(810)

(811)

Q{ ) [X]=exp(- —'5 G ' 5) II(f„x) "
n

=II[f„'(x- G ' 5)] "exp(--,'5 G ''5)1

= exp( —'X' G X)II [»f„(X—G 5)] " exp(- —'X G X}

(8 12)

(813)

(8 14)

(815)=exp(x G X)II(-»f„G ' 5) exp(-X G ~ X).
n

Each of these forms generates a functional polynomial in X. Consider now the action of ,' f„(X-G ' 6)—
on the functional

& {&„}[i G ' ~]exp(- -,'X G X) .

Since

[»f» X g{, )[iG- ~ 6]] = -»f» G ~ 6 Q{, ) [iG '5]
we find

(X —G ' lt]G~ ~]iG ' 5] *' '* '= ' f, 'G ' ~ ——.G I!) G& „~] 'G ' ll]

(816)

(817)

[iG-1, o] -x G 'x/»
(&n+&nd
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Hence from Eq. (B14) we have the simple result

U(»)[X]=t f1{»„)[tG '&]e ''' " (B19)

Multiplying by the normalization factor N~z )
=g (g„/2A„l)', to ensure the normalization Eq.
(3.10) in the text, we can write the normahzed
eig enfunctional as

U(»)[X]=pi "H» (tf„G ' 5)e"'c'"t',

(B20}

APPENDIX C

In this appendix we consider the evaluation of
finite-time Neumann coefficients for interacting
strings. In particular we shall show how the time
dependence of these coefficients differs from the
infinite-time case as well as illustrating some of
the technical problems involved in dealing with
finite-time Neumann functions.

The equations defining the Neumann function
are'

where H»(y) is the classical Hermite polynomial.
To illustrate the utility of this last representation

we calculate the wave functional on the momentum
representation,

(
8 8
~+ ~ N(p, p')=2«5'(p —p'), »

8g 87

N(p, p') =f(p),
gp

(Cl)

(C2)

U(»„) [P]= J/DXe P'«U(» ) [X]

aXe-" '
n&, ) X e-

g g g)~e-x 'c 'x/2-iP 'x

where p= ~+ur, s/ss. is the normal derivative
at the boundary of the area traced out in the p
plane by the interacting strings, and f(p} is an
arbitrary function of p only. As pointed out by
Mandelstam, the Neumann function defined in this
way is conformally invariant. Since the Neumann
function for the upper-half z plane is

N(z, z') = 1n) z —z')+1n) z —z'[ (C3)

=N() )0() ) i e

"U(,„)[G-'P]

(f, G», P) PC'c»'PI2
~n

(B21)

For the open string, the kernel 6 and the basis
functions are defined in Eqs. (3.3) and (3.4}. For
the closed string

f,„( )=(s—
)

sos

(B22)
2nof,„,( }=c— sin

(B23)

we can, in principle, find it for any string config-
uration once a transformation z =z(p) mapping the
area traced out in the p plane by the strings into
the upper-half z plane is known. In practice it is
easier to find the inverse of this mapping. If we
limit ourselves to considering strings which trace
out polygons in the p plane, then the mapping which
takes these into the upper-half z plane is provided
by the Schwarz-Christoffel transformation

(z z) "&-, (C4)
F=g

where z„ is the point on the real z axis to which the
vertex r is mapped and o.„ is the internal angle of
the polygon at that vertex (see Fig. 1}. A is a
constant determining the over-all size of the

polygon.

In both cases 0 ~a ~ mq. In this notation both top-
ologies have the internal propagator

K„[P„P2,t, —tz] =[det(1 —L')]I '

xexp(-zP, G ' L2'P,

—2P2 G ' L 'P2

where

+2P, G ' L,P2),
(B24)

L(os C', t, —t 2) = P f„(C)e'' ' ' f (C')
n~].

and L„L,are given by Eq. (4.13) in the text. FIG. 1. A polygon jn the p plane.
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As particular examples we may consider the
free-string and the vertex function diagrams shown
in Figs. 2 and 3. For these the Schwarz-Christof-
fel transformations are

amples we shall consider the string diagrams
shown in Figs. 5 and 6.

For Fig. 5 the Schwarz-Christoffel transforma-
tion

dz

[(z —z, )(z -z, )(z —z, )(z —zg] "'
(C5}

dz"'="}((. ()(.~ })i ~

=Acosh 'z+const (C10)

p(z) =&J&z[(z —*,)(*—*,)(* —z,}(*—*,}

x (z —z,}(z—z,)] '"(z —z, ) . (C6)

where

= a, ln(z —z,}+ a, ln(z —z2) + a, ln(z —z~},

(CV}

(z, —z, )

(z, -z,)(z, —z, )
'

(z, —z, )

(z, —z, )(z, —z,} '

Allowing one of the arms to go to infinity corre-
sponds to allowing an adjacent pair of z„ to co-
incide. If, for example, we take zy z2 zg zg,
z 6 z7 for the vertex we obtain

( )
dz(z —zB)

(z —z,) (z —z, )(z —z, )

which can be obtained from Eq. (C5} by putting

z2 z3 to inf inity and z, = -z4 = 1 thus using the
available freedom in the choice of the z„. We
can rewrite Eq. (C10) as

z = cosh (p- 7,)
(C 11}

where the arbitrary constants have been chosen
so that the width of the string in the p plane is
wg and its end is at time ~=7,.

We can now write the Neumann function as

N(p, p')=ln cosh ' —cosh

+ln cosh ' -cosh P

(C12)

Expressed as a Fourier series, this becomes

N(p, p') = -(v' —T,) —2 ln2
2

Note that

(z, —z,}
(z, —z,)(ze —z,)

' ~ -(n/q) (v m~)-4g' cosh (r' —v,)—
fl

Q'~++2+ Q~ =0. (C9)
No nCr'

xcos —cos
7l 7l

(C13)

Equation (CV) is the transformation for the string
diagrams shown in Fig. 4. This is the transforma-
tion used by Mandelstam' for the infinite-tine
vertex.

Any three of the z, may be chosen arbitrarily.
It is often convenient to take one of the z„, say
z~, to be at infinity. This may be effected by
omitting the term (z —z~) from Eq. (C4). The
transformation for the diagram of Fig. 2 may be
written in terms of Jacobi elliptic functions,
whereas that for Fig. 3 is not expressible in terms
of standard function. As more manageable ex-

We note that if we take 7,- -~,
2T

lim N(p, p')= ——2ln2
e

-(ff /f) )(7 -T'')
2 gz %X 'll(T

cos cos
2l n

(C14)

up to an infinite constant. This is the infinite-
strip Neumann function obtained by Mandelstam. '

FIG. 2. p-plane diagram for the propagation of a free
string between finite times.

FIG. 3. p-plane diagram for the interaction between
three strings propagating between finite times.
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The Neumann coefficients for the infinite and

semi-infinite strings differ primarily in their
dependence on T' (the time nearest the end of the
strip). The simple exponential dependence on r'
for the infinite strip becomes a hyperbolic cosine
dependence when the strip does not extend to
infinity in both directions. It is interesting to
note that if v' is chosen so that it is always on the
end of the semi-infinite strip (i.e. , r =7,) the

simple exponential dependence on v' is regained.
(However, the Neumann coefficients do not equal
the infinite-strip coefficients. )

Unfortunately, the method of obtaining the
Neumann coefficients used for the semi-infinite
strip is difficult to apply to more general string
configurations due to problems in inverting the
Schwarz-Christoffel transformation. In order to
study the vertex shown in Fig. 6 we proceed in a
different manner. The Schwarz-Christoffel trans-

FIG. 4. p-plane diagram for the interaction between
three strings propagating between asymptotic times.

formation mapping Fig. 6 into the upper-half z
plane is given by

(C15)

where the correspondence between p and z plane
points is shown in Fig. V. Full use of the freedom
in choosing the z„has been made in order to ob-
tain the simplest possible form for p(z). Evalu-
ating the integral we obtain

p(z) =A ln(2 exp[z[ln(1 —z) +ln(z, —z)g —2z+ 1+z,)

—A ' ln(2z, —(1+z,)z+2v z, exp(-,'[1n(1 —z)+ln(z, -z)g) +A ' lnz,
Z Z 1

(C 16)

with the usual convention that lnz is made single-
valued by cutting the z plane from zero to minus
infinity. A line drawn along the real-z axis going
above all branch points maps into the boundary of
the vertex in the p plane. In the limit as z, tends
to unity we obtain the transformation for the
vertex with all arms going to infinity:

mp, and mp„respectively. The Neumann coeffi-
cients where T is taken across arm one and T'

across arm three are then given by

ncr'
N„NI =

P.
do' C OS

t1~3 0 Yl3

lim p(z) = q, lnz+ g, ln4(1 —z),
g1~ ]

(C17)
TJ ] mvx dc cos N(p, p'},

0 ~1
(C18)

where

0
g, =A~

zl

tl, =A(1 — ' ).
The transformation Eq. (C16) has a logarithmic
branch point at z =0 and square-root branch points
at 1 and z, . With t), and g, defined as in Eq. (C17)
the widths of arms one and three in Fig. 6 are

n, m a 0. This can be rewritten as a contour in-
tegral. "

2 PZV mcr
N„ do' cos — do cos ln(z —z'),

~113 C 03 C Il

(C19)

where the contours in the z and z' planes a.re the

curves mapping to the dashed lines shown in Fig.
6 together with the reflections of these curves in

p plane

I

I

I

J,
Te &

D

e- E &Q) ]

I

I

3 I

I

I

I

A

FIG. 5. The free string with one end at finite time.
FIG. 6. The three-string vertex with one end at finite

time.



16V4 J. F. L. HOPKINSON, R. %. TUCKER, AND P. A. COLLINS

the real axis (see Fig. 7). At first sight it seems
likely that for n-string vertex diagrams the dis-
continuities in the integrands arising from the cuts
along the real axis in p(z) will lead to the contours
being disjoint. However, these discontinuities
vanish at the points where the contours meet the
real axis, allowing the contours to be closed.
When n and m are nonzero we can integrate by
parts to obtain

2 ao'' . mcr' 1
&m =

& dz dz' sin sin
v] v]g z z

(C20)

Considering first the z integration we use Eq.
(C16) to substitute for &v and then write sin(vvv(v/vi, )

z plane

Zo

C)
zz

/

I v

/

A

j

Cg

FIG. 7. Diagram illustrating the correspondence
between &- and p-plane points for the vertex of Fig. 6
together with the contour used in evaluating its finite-
time Neumann coefficients.

as a sum of exponentials. Only the e '" "& term
has singularities inside c, . (The pole at z = z'
lies outside c, .) Thus

dz sin —,, = — —,, e ' ") 2z, —(1+z,)z+2/z, exp
vvv(v 1 dz z,i„j in(1 —z) + in(z, —z)

Cy 1

-m~4, /Sp

where

~ py, —1-rj.zr=p
(C21)

T, „(z„v)„v),) = 8,:0' " 2z, —(1 + z,}z+ 2 v z, exp
ln(1 —z) + ln(z, —z)

ln(1 —z) + ln(z, —z)x 2 exp
2

—2z+ 1+z,
-magi /so

(C22)

The z' integration is more difficult as sin(n(v'/v), ) is found to have a cut from z =1 to z =z, . Therefore
instead of just picking up the residue of a pole the z' integration reduces to an integral from z = 1 to z, of
the discontinuity of the integrand. We obtain

r+1
r=o

(C23)

where

" d*' . zZ . , 2[(*' —()(*,—*')]'" nAz, . , 2[*,(*' —()(*,—z')]'"I
Z g

(C24}

and the positive square root is to be taken. By
putting z = 1 in Eq. (C16) we may obtain the position
of the end of arm three (at v = v;, say)

T, =g, ln(z, —1). (C25)

Using this we can rewrite

N„= e ' "v cosh —(v' —v, )
7rmn 'l3

(r+ 1)
m — r ~

r=o

(C26)

Since the coefficients T, „and Q„" contain no
~' or 7 dependence, we see that the effect of keep-
ing arm three of the vertex finite is exactly the
same as for the semi-infinite strip of Fig. 5, i.e.,
the exponential dependence on 7' becomes a.

hyperbolic cosine dependence. In this case we
cannot determine whether a simple exponential
dependence is obtained if v' is chosen to be on
the end of arm three (7'=-7,) because of the com-
plicated forms of the coefficients in Eq. (C26)
which depend on z, (T,).

In the limit, as z, tends to unity we can show
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that Mandelstam's coefficients for the vertex with

all arms infinite are obtained. In this limit

pm 4 -m g3/7) 1{ 1)m -1 -r

x — — -1

1imN = -2e 1 ' 3'"' t'-].& 'g'Om

(C32}

r) 33 (r -233l4)( I)ll-3 ~9

gl~ 1 rl3

x — -m+r+2mn3

jl (C27} APPENDIX D

(C33)

and by going back to the z' contour integral

lim(z —1) "Q"(z ) = — — n —2 —r(((-I )"
~q

4"(n —1)! ))3

x ——n —3 —r~1
n3

x ——n-n-rgl
n3

(C28)

x (-I)"+ q2' q' a ——' a„( + ) )) ni
Pg'g3 + n'gl 7(1

n, m 330 (C29)

g 1V lng

limN„= 2nm exp[m(T —))31n4)/)), +n(7' —)}3In4)/)}3]

In this appendix we outline the relevant steps
used to derive Eqs. (5.48) and (5.53} used in the
text. We follow fairly closely the proof given by
Cremmer and Gervais, "with some significant
differences, however. We consider the inverse
mapping z = z(p} that relates the infinite three-
string domain in the p plane to the z plane (see
Appendix C). We introduce the functions h'(p),
which equal lnz(p) on the ith string and have sec-
tions of the line p = To+ia in common. In terms of
parameters Q, the interaction time Tp is given by

rp = (&y) '(&2) '(-&3)

with Mandelstam's convention

Ql+Q2+ Q3 =0, Q3&0.

(Dl)

(D2)

In terms of the parametrization used in this paper

where

(ny —1)(ny —2) ~ ~ ~ (ny —n+ 1)
a„(y) =

[The factor (-1) '" which does not occur in Ref. 5

arises because we use a different convention in

our transformation Eq. (C17). In his paper Man-
delstam takes cr' increasing from top to bottom in
arm three in Fig. 6, whereas we take both cr and
o' as increasing from bottom to top of arms one
and three, respectively. )

When m or n is zero we have

1 mv 1
Np = — , do' sin , dz

v'm)), )), (z —z')

Ql ~1 & Q2 ~2 & Q3 ~3 '

The inverse mappings are explicitly

I (3) (p) g a(3)gP /a&

n&0

I (2)( )
p I ~+ ~ (2) ll(p-jlla&)/a2~ Qn

Q2

/ (3)Q} P ~P (3)( 1)ll llP/ll

Q3 Q3 &0

where

g'[r~ - g r+ 1
n n

r

(D4}

(D5)

(D6)

and

dz'(z' —z, )
l2+r [(2 1)(z zl) ]

lr2 (C30)
( )

1 y

We introduce the operators

dz' dv sin = —,
'rr Pl7/1 'fj3 (Z —Z )

4 n
cosh {T i ')@-1 '

Trn
(C31)

Again we find that in the limit z, - 1 Mandelstam's
infinite vertex coefficients are obtained

P

(p )
—e 2P/a3 dp eeP/a3

Pp

=e qP/ 3 —eaP/ 3

p

and calculate

(D7)

(D8)
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I g /( ')( ) = a ' q + — (en&/ai en/O/a1-a(p~o)/a3)
n' n

q 0 P— n 2
n &0 Ql Q3 Ql

n2 1
+ 2x.(2)/ 4 ™13 ~ (2) 8-ap/as + q ig(p-offal a2 (f 3 —gn ~3-~7f al /a2+~ 0/1 2 g 3 1 2 0 3I

Q2 , Q2 Q2
(D10)

n 2I((3)( ) ~~ (3(3)( 1)n (enp/a$ &n(1'2-ina$)/a a(p-'/2--ina3)/a3) (D11)

Since

Re I,n', 'I( " (2;+io) = Re I",d,'ii "(v, + io), r = 1, 2

we obtain

y(3)

, (33+q) " " a, ((2,q+ (23m) ' ~ a, (n,q+ (23/i} (q+31). '

(D12)

(D13)

1)n (2 ' (2m' 3)

2

+ (-I)~
(n+q) " "

a2 (a2q+a3m) ~ ~ &2 (a,q+a$n) (q+33)
(D14}

3„2(-I)'- ~D" =)2(-I)"
P&0 1

(D16)

&Sra larS

In terms of the Mandelstam coefficients Eq. (D16)
becomes

~(2 n3 -(1) (-1)~ . Ql Q,n+Q, P n+P

by integrating Eq. (D12) with cos)3&r/(2„. In the
formula we have defined

y(r ) +(r ) nro/a r

(D15}
grsS 1 ~3S

3

In comparing these formulas with similar ones
in Ref. 17 we stress that Eqs. (D13) and (D14)
involve different overlap coefficients. One can
generate similar formulas containing the A"s by
explicitly using the fact that the functions h" (p)
and h (p) are equal at the interaction point
P = T0+ WT Q 1.

Ne also require identities among the D"' ma-
trices defined in the text. Since these relations
are independent of arm overlap coefficients we
have"

which is the same as Eq. (5.48) in the text.
5 W" =-()),/)), )'/2[-1]172 follows in a similar
manner, using Eq. (D14).

To prove 8 ~ 5=0 we first integrate Eq. (D12)
for r=1 directly to obtain

—(1)
2 an W31

Q, Q,q+Q n
n&0

n ( / n2(W$1 Wsl) (D20)

Multiplying by (-I)'q'a, " and using Eq. (D18}
then gives

or

Q (- I}™D"(-I)"W'2 = qW~
n&0

(5) W„a =0 .

(D21)

But since

31 32&.0 W.0
)an

( )1/2 ( }1/2

(D18) immediately to obtain

1/2

Q [G,„—(-1}'D,„(-1)]W'„'= — — a (-I}'531,
n&0 2

(D19)

n(- I)" . (D18)
Q1Q2

Multiplying Eq. (D13) by q'a, 3) we can use Eq.

-Qs . sl
( )

25 W

we have the desired result.
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