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The relation between semiclassical phase shift and time delay, familiar from quantum mechanics, is extended

to quantum field theory. This provides a semiclassical description for the scattering of quantized nonlinear
waves. After a study of Levhison's theorem, our methods are applied to the sine-Gordon theory and the
nature of the forces arising here is discussed. Finally, a covariant perturbative expansion for the one-particle
sector is derived.

I. INTRODUCTION

It is now recognized that solitary wave solutions
to nonlinear field equations' indicate that in the
corresponding quantum theory there exist new
states, which resemble heavy elementary parti-
cles. The two techniques used so far to exhibit
the quantum nature of these states are a field-
theoretic WKB method' and a systematic coupling-
constant expansion. ''4 However, little is known
at present about the quantum scattering of these
heavy particles, which we call baryons.

In this paper we show that a consistent semi-
classical description, based on the well-known
relation between phase shift and time delay in
potential theory, can be given for baryon scatter-
ing in field theory. Vfhen the time delay in a
collision is known, as is the case for the sine-
Gordon theory, ' the phase shift can be found very
simply. When the time delay is not known, but
scattering solutions of the classical theory are
available, the phase shift is obtained by solving
a first-order differential equation.

As a specific example, the sine-Gordon theory
is considered by both methods. Agreement is
found, thus erasing any doubt about the equality
of the conventional field theoretic time -delay and
the particle time delay. A semiclassical version
of Levinson's theorem is derived; it is satisfied
in the sine-Gordon theory. However, the full
theorem, derived here also since for one-dimen-
sional problems it differs from the familiar re-
sult, is violated. The phase shifts are nonvan-
ishing at infinite energy, possibly as a consequence
of short-distance singularities in the forces.

The scattering is observed to be essentially
relativistic, hence difficult to describe by the
existing perturbation theory' which begins with
a static, nonrelativistic approximation. We de-
scribe an alternative perturbation theory, which is
relativistically covariant.

ll. CLASSICAL AND SEMICLASSICAL SCATTERING
IN ONE SPACE DIMENSION

A. Classical time delay

Let us consider the classical theory of a particle
with energy E, moving in one space dimension in
a time-independent, parity-even potential, van-
ishing at large distances. If at time t, the particle
is at xp, then it will arrive at its final position
xz at time t& given by the formula

t —t = dx

,, v(x, E) ' (2.1a)

where v(x, E} is the local velocity. From Hamil-
ton's equation x = sf'(p, x}/sp, we have 1/v(x, E)
=sp(x, E)/sE, and (2.1a) is equivalently

ty —to= — dxp(x, E) .8 f
Xp

(2.1b)

If we use the further relation pdq =(L+H)dt, we
can write (2.1b} as

ti —to = —[&+E(ti —io)),
8 (2.1c)

where I is the action I = f,'~dt L,(x, x).
guments of the Lagrangian, x(t, E) and «(i, E),
satisfy the equations of motion, with boundary
conditions x(t„E)=x„«(t~, E) =xz. The differen-
tiation in (2.1c) is performed at fixed x&, hence
t& is taken to be a function of E and x&.

The significance of (2.1c) is that it has been
derived without any explicit specification of the
dynamics which govern the motion. Moreover,
even when L is a field Lagrangian, L
=f dx g(P, P', P), the time of flight is still correct-
ly given by (2.1c). Since our subsequent discus-
sion will use that formula for field theory, we
demonstrate explicitly its validity in that context:
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tf
dt dx ll+ E(tI —to)

=i. ~+ dt dx —+E—+(t —t ) .8t 'f Bg Btf
t= tf BE BEtp

(2.2a)

The Lagrangian density depends on E through f
which satisfies the Euler-Lagrange equations
with boundary conditions (j)(x, t&) = (p&(x) and Q(x, to)
= (p, (x). This implies

where for classically unbounded motion u(x) is

(2.5b)

Sf
25(E) = lim dx[ P(x, E)-P(E)] .

p

(2.6)

Thus only transmission occurs in this approxima-
tion. The transmission amplitude, necessarily a
pure phase by unitarity, is T(E) = exp[ 2i 5(E)],
and the VfKB formula for the phase shift accord-
ing to (2.5b) is

Hence the right-hand side of (2.2a) becomes

Comparing this with the time delay, we arrive at
the familiar relation

Bty BZ Bp
(t —t )+(I, = +E) i+ dx —.—f p t=tf 8E B~ BE

B)t (E) = —25(E).
d

dE
(2.7)

It is also true that

=tf - tP, (2.2b)

which is the desired result.
We also know from (2.1b) that for a free theory

8
t~ t, =

E [p(E-}(x)(-xo)].
Thus the total time delay in unbounded motion is

8
&I (E)=lim —[I +E(t~ ,f) P(E)(x-~ -x, )-] (2.3)

The limit is taken with t, and x, tending to -,
and tf and xf tending to +, with tf and xf pro-
perly related by the dynamics.

2. Semiclassical phase shift

8$ f 8 8tf 8

BE BE f ' 'f&E 8E

Because the initial and final configurations are
held constant during the differentiation with re-
spect to E, only -(p, , (Bt&/BE) survives on the

right-hand side. Therefore, one is left with

tf
dt dx g+ E(t~ —t())

tp

8tf= (ty —to) + E — dx —.@ + I )= )'f 8Ef

Vfe propose that the physically sensible result
(2.7) is also valid in the semiclassical limit of
quantum field theory. Integrating (2.7}gives

(2.9)

I z +ET = nm. (2.10a)

Here I ~ is the action for a periodic solution, in-
tegrated over a semiperiod T. This is familiar
in potential theory; in field theory it represents
a simplification (valid for weak coupling) af the
%KB condition obtained by Dashen et al.' The
total number of bound states n~ corresponds to
the maximum value of n in (2.10a), which occurs
for E just below E,„. At threshold the semiperiod
extends over all time, since the particle ceases to
be bound; hence we find

where the threshold energy E,„ is defined by
P(E,„)=0. Alternatively from (2.3) it follows that

25(E) = lim[ I +E(f, I)-P(S)-( ,x-x,)]. (2.9)

The constant of integration in (2.9}is adjusted by
analogy with potential theory. Also (2.9) has been
obtained by Callan and Gross by a superstationary
phase approximation to a functional integral. 4 The
constant of integration is (2.8) can be evaluated as
follows. The semiclassical quantization condition
is

Let us next recall the %KB description of poten-
tial scattering in quantum mechanics. The
Schr5dinger equation for a Hamiltonian II(P, x),

lim(ir+ET)s x =nsv
fh

Comparing this with (2.9), we get

(2.10b)

1
II —. —,x g(x)=E&(x),i Bx' (2.4}

25(E,„)= sex (2.11)

is solved in the VfKB approximation by

y(x)= exp[i u(x)], (2.5a)
This provides our principal result, an equation
for the semiclassical phase shift:
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()(E) = m w + f—', dE ' «I ). (2.12) 2w — — =2 —5(P),dn dn d

dp dP dP
(2.16c)

When an explicit expression for t) t I) is not
available, but solutions of the classical theory are
known so that I in (2.9) can be evaluated, that
formula permits an alternate calculation of 5{E).
[This situation may arise if it is not obvious how

to extract &t (E) from field-theoretic solutions. ]
In order to use (2.9), we must exhibit the relation-
ship between x& and tz, which asymptotically is

xq =v(E)[tt-at(E}-tJ +x„

aE dxI-x = —(tI-t )-—25(E)
dP ' dP

where Hamilton' s equation and (2.7) have been
used. Hence (2.9) becomes

2wd, n„„„,=2 J
d5(p)

Scatter dp

=-4[5N. ) —5(-)].
Here hn„„„,is the increase in the number of
scattering states, after switching on the inter-
actions; since this also equals the negative of the
number of bound states, (2.15) is proven. (The
validity of (2.15) may be checked in the general
class of ref lectionless Hamiitonians PW

—[L(L+1}/cosh'x]. L is an integer, the phase
shift is

—P tan ' —+ —e(p),
Lm

n 2

and the number of bound states is L.')

5(E)-p—5(E)
d

dP

= gIim I +E(tf -to}-p—(tg to) . -(2.13)

For the field theory with L =fdx [ ~ $'-3(P "-U((P)],
I = g&dt fdx p E(tz t,-), an-d (2.13) can be sim-
plified further:

5(E) —P—5(E) = dt dx y' P-d ~ dE
dP p dp

(2.14}

C. Levinson's theorem

Equation (2.11) is the semiclassical Levinson's
theorem in one dimension. It should be compared
with the exact result

D. Classical and semiclassical hard-sphere scattering

In the above, we have only considered unbounded

motion. However, particularly in the case of
collisions between identical particles, there also
exists the possibility of an almost perfectly elas-
tic hard-sphere repulsion, which would send the
particles back in the directions they came. Since
this circumstance is important in the forthcoming
discussion on the sine-Gordon equation, we now

show that our theory describes it without mod-
ification.

Consider the motion of a classical particle with

the following boundary conditions: At t-- ~, the

particle enters from x=+~, then it travels to-
wards x= 0 where it is totally reflected by a per-
fect barrier so that it returns to x=+~ at t-+~.
The time delay due to the presence of forces in

the region x&0 is

2[5(E~) —5( )]=new. (2.15} «Ã) =
2z f «(H~&) P(&)), -

2nw =PL+25(P) .

Thus

(2.16a)

2w —= L+2 —5(P) .d
dp dP

(2.16b)

Subtracting the analogous expression for the non-

interacting situation leaves

The factor 2 does not occur in three dimensions.
We shall give a crude derivation of (2.15}based
on a simple state-counting argument' for reflec-
tionless potentials. For a particle of momentum

p (positive or negative) moving in a ref lectionless
potential enclosed in a large "box" of length L,
periodic boundary conditions require

lim —[I+E(tz —t,)
8

x ~+ ~ t ~+ ~ ~E
f

gp~+ 00 tp~~oe P(E)(x, + x,) ]— (2.17).
This is exactly the same result as (2.3},with the
replacement x,- —x, . [If there is a distance of
closest approach x, then p(x, E) vanishes for
x& x&0.]

In the quantum-mechanical treatment of this
problem the wave function )t)(x) must vanish at
the origin, and its large asymptote defines the
phase shift,

g(x) ~ sin(px+5}.
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The WEB approximation to the wave function

(2.18)

gives the phase shift

this channel of a bound solution„obtained from
(3.2a) by taking u to be purely imaginary
(u=ia, a real):

4m, 1 sinmyat
tan '

a coshmyx

6(E) = dx[P(x, E) —P(x)]. (2.19} 1

1+a

(3.4a)

III. THE SINE-GORDON THEORY

In the sine-Gordon theory, described by the
Lagrangian

m'—8 48 4+ —cos —4 —12 m
(3.1)

the baryons exhibit the soliton property. The
theory possesses soliton-antisoliton and soliton-
soliton scattering solutions. ' In the center-of-
mass frame these are

1 sinhmyuf
4m " u coshmyx '

u sinhmyx""4 &- coshmy t'
where

(3.2a}

(3.2b)

The asymptotic velocity of each soliton is u.
Expressed in terms of the soliton mass, M =8m'/
A. , the total energy of each solution is E =2'
and the relative momentum is 2M'.

Examination of the asymptotic form of Q —as
t-+ ~ leads to the conclusion that there is only
transmission with time delay'.

Comparing with (2.17) we see that (2.7) is re-
gained.

Levinson's theorem continues to hold in the
form (2.15). This can be seen as follows. For
x &0, the number of bound states (ns), » is
(1/v)[5(E~) —5(~)], a formula expressing the
similarity between scattering in a half-line and
in three dimensions. But there is an equal number
of bound states for &&0. Hence the total number
of bound states is given by (2.15).

The extension to field theory follows the same
pattern as above, with the change that the initial
and final separations of the particles have the
same sign. In particular, we see that formulas
(2.12) or (2.14) may again be used.

The energy is 2My. Quantization of this solution
according to (2.10a) gives the energy spectrum

E„=2M sin n,m (3.4b)

with n ~8vm'/A. , which is the maximum number
of bound states. For weak coupling this agrees
with the result of Dashen et al. '

The asymptote of P„as t-~~ lends itself to
two interpretations. One may conclude that again
there is total transmission with time delay (3.3).
Alternatively, since the particles are identical,
one may interpret the solution (3.2b) as describ-
ing total reflection, with time delay, in the sense
of (2.17), again (3.3).' However, the fact that
h, t& 0 rules out the former, since this would in-
dicate mainly attractive forces in a channel with
no bound states. On the other hand, the latter de-
scription, based on hard-sphere repulsion, can
be reconciled with the time advance, both if the
forces are totally repulsive or if they are pa, r-
tially attractive.

If the forces are strongly repulsive and are such
that part of the interaction region is excluded from
the particles, then one might expect a time advance
due to the shorter distance each particle travels.
Alternatively, if there is no such excluded region,
but there are short-range attractive forces besides
the hard-sphere repulsion, then again a time ad-
vance would be expected. In this case, of course,
the absence of bound states has to be explained,
and this can be done if it is recognized that the
hard-sphere repulsion at the origin awakes the
one-dimensional problem analogous to the three-
dimensional one. The soliton-soliton solution
(3.2b) must, and does, vanish at the origin, and

it may be difficult for the field to reach its limit-
ing vaiue of 2v sy'4 A within the attractive region.
This picture of backward scattering fits nicely
with our knowledge that the baryons are probably
fermions~' ', and gives a natural place to the
exclusion principle in our semiclassical context.

From {2.12}we learn that the phase shifts are

af(M) = 1nu .2

muy
(3.3)

4v' m' 16»' in@5„-(u}= + Ch 1,s
A. 1-x (3.5a)

Since ~t &0, it is actually a time advance which
indicates attractive forces in the soliton-anti-
soliton channel, consistent with the existence in

(3.5b)



SEMICLASSICAL SCATTERING OF QUANTIZED NONLINEAR. . .

It perhaps is not obvious that the Particle time de-
lay is correctly given by the field the-oretic time
delay (3.3).' In order to establish this, as weil as
the correctness of the integration constants in

(3.5}, we evaluate the phase shift from the alter-
nate formula (3.14), which becomes with the pre-
sent kinematics

5(u) —u(1 —u')5'( u)

The calculation islengthy and the details are pre-
sented in an appendix. The result is

(")—u(1 —u ) 5 (u)

A. 0 1-x~

5„(u)—u(l —u') 5,', (u)

16m' " I u'dh, -Ning . 3.7b
0

~ X

The solutions of these differential equations are
exactly (3.5}, except that an arbitrary multiple of

uy may be added, which is eliminated by requir-
ing the phase shifts to be finite at infinite energy,
u= l. Hence (3.3) and (3.5) are verified complete-
ly.

The semiclassical Levinson theorem is true, but
the complete theorem is not satisfied":

m ]ng
1-k'

short-distance singular forces, needed to produce
the exclusion principle dynamically. [ Let us ob-
serve, however, that a "super" Levinson theorem
which counts states in both channels is satisfied:

It is clearly important to know to what extent the
semiclassical phase shifts are a reliable guide to
the exact quantum phase shifts. Although it may
be reasonably conjectured that the field-theoretic
WKB method gives an exact description of the
bound-state spectrum in the sine-Gordon theory,
we see no reason for such a claim to be valid for
scattering. (In potential theory, even when WKB
calculations are exact for discrete states, they
remain approximate for the continuum. ) We have
not used the ful1. apparatus of the field-theoretic
WKB method, stability angles, etc.' ', but instead
a weak-coupling approximation to it has been sub-
stituted. Thus our results (3.5} are at best valid
for weak coupling. Even here, however, there is
doubt at threshold. For (3.5) to be trusted, it
must be O(X ') so that it dominates terms O(A.')
which arise as corrections to the weak-coupling
limit. Yet when the velocity is small, say u -&/tn',

X./(~/X) f, ~ dx~(lnx)/(1 —x') becomes of the same
order as the neglected terms.

Another point worthy of mention is that the phase
shifts are essentially relativistic. This is best
seen by reintroducing c, the velocity of light,
which was set to unity. The logarithmic integrals
in (3.5) then become 18(m'c/X) J",~'dx(in@)/(I-x'),
which does not tend to a finite limit as c ~. This
suggests that only a manifestly covariant approach
to quantum soliton scattering will be successful.

21rsm2 IV. COVARIANT PERTURBATION THEORY

&0, (3.8a)

v0 (3.8b)

The reason for this is that the phase shifts do not
vanish at infinite energy in either channel. In or-
dinary quantum mechanics, it is known from ex-
amples such as the inverse-square and &-function
potentials" that short-distance singular forces
can produce this effect on the phase shift. So if the
same mechanism works in field theory, t:hen an
explanation of (3.8) can be given by appeal to the

We have not succeeded in incorporating our
semiclassical scattering calculation into the known

coupling-constant expansion. ' ~ Part of the dif-
ficulty is that the expansion begins with a non-
relativistic static approximation, yet the scatter-
ing is essentially relativistic. We describe here
an alternate version of the perturbation theory
which maintains Lorentz covariance.

Recall that the perturbation theory begins with
the observation that, to lowest order, the baryon
matrix element of the quantum field 4 depends
only on a momentum difference': (p~ C (0)

~
p'}

=f(P- P'). This use of Galilean invariance for
the baryons, accurate for weak coupling, gives
a simple form for matrix elements of field pro-
ducts, and in conjunction with the operator equa-
tions of motion leads to the perturbation series;
but manifest Lorentz covariance is lost. To
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circumvent this shortcoming we make use of
Goldstone's observation that if the baryon states
are labeled by rapidity instead of momentum, then
Lorentz invariance implies that the field matrix
element is a function of the rapidity difference,
apart from known kinematical factors. "

2M
(PI4'(0}IP )-

[2E( )2E( e)],g.f( — ),
(4 1)

Q Q
p=M sinh —,E(p) =M cosh —.M' M'

Again matrix elements of products of fields are
simple:

&)'I @'(0)l)e&= I e &&I e,(())I)'"&&&'"I e (())I)"&

2M

[2E(P)2E(P')] '"

For large M this reduces to the static field equa-
tion &t&" (x) =U'(&t)); also one may contemplate
solving (4.4b) exactly.

The Galilean perturbation theory' can be derived
from an effective Hamiltonian by introducing a
collective coordinate X, conjugate to momentum,
by the transformation &1) (x, t) = Q(x —X(t))
+]t(x- X(t), t). Something similar can be done
here; we seek a coordinate conjugate to rapidity.
It is convenient to use light-cone variables and
quantization":

x'= —(x'~ x'),
42

i[4 (x, x'), 4 (y, y')]~ „„,=-,'e(x —y ).
Then if P' is conjugate to X, (1/v 2 )exp[(n/M)X ]
is conjugate to e. Hence one is led to

d f(a —n")j(a' —n')
2m

4 (x-, x') = y e"' "I* -x (*')])

2M

[2E(P)2E(P')]'"

@(x)= —e "" "f(n-n').2' (4.3)

To see how this scheme works, we derive
the equation for (t&(x}. From the equation of motion

04 = -U'(4)

it follows that

1

2M 1 —cosh n 4 0 n' = a U' 4}' a'
(4.4a)

x dxe" -""qP ~ . 4.2

We have saturated the intermediate-state sum with
a single baryon state; this is a dynamical weak-
coupling approximation which does no violence to
the relativistic kinematics. The Fourier trans-
form with respect to rapidity of the field form
factor f(a —a') has been introduced:

e '*'t"[x —X (x')], x'

This is exactly the transformation suggested by
Gervais and Sakita. 4 However, questions of opera-
tor ordering, which have been resolved by
Tomboulis for the Galilean transformation, 4 ap-
pear to be more problematical here.

As yet we have not learned how to apply the
above perturbation theory to the scattering prob-
lem. We conclude with the optimistic observation
that in terms of rapidity, the phase shifts are
especially simple:

16m' " in@ Qdx1, = dn'lntanh
20

where M =8m'/]I. and u = tanh(n/2M).

APPENDIX

We give here the lengthy details of the evalua-
tion of (3.5),

Upon performing the Fourier transform with re-
spect to a —0.', we obtain on the right-hand side
simply

2MU'((j) )

[2E(P)2E(P')]"'

—J= dg dX (II)I — (M p

1

(1 —u'}'"

(Al)

On the left-hand side one encounters integrals of
the form f (dn/2v)e ' '"' "&f(a) Assuming co.n-
vergence, this gives P( &+ix/M), hence (4.4a) be-
comes'2

i
M 2$(x) —&j) x+ ——Q x-— = U'((p) .

M M
(4.4b)

where (1) is the soliton-antisoliton or the soliton-
soliton solution (3.2). The x integration is ele-
mentary; a portion of the result cancels against
the second term in the bracket of (A1), the rest
leads to a convergent integral in t,. By changing
variables y = (1+u~ csch2myut) '~2 in the soliton-
antisoliton integral, and y= (1 —u'sech'myut) '"
in the soliton-soliton integral, we are left with
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'dJ„-= 8 —[1 —(1 —u*)y'] '"ln
o

1
+16(1-u') dy[1 —(1-u')y'] "', (A2a)

0

&dyJ„=—8 —[1—(1-u )y ]'/ ln

—16(1—u ) f dy[& —0 —"b*l "* (A»)
1

The integrals not involving the logarithm are
elementary, giving +16(1—u )'/' cos 'u in (A2a)
and -16(1-u')"'sin 'u in (A2b). The remaining
integrals are handled as follows. Vfe consider
them functions of a = (1 —u')'" ~ 1:

The integrals may be evaluated with the help of
x (1 2)l/2

dz
z + Q'

= a sin 'x+ (1 —x')"

+ (1 —a )'/ ln
a+ x —a(1 —x')'" —x(1 —a')'~
a+x —a(1 —x )' +x(1 —a )'

6)

to obtain the result

a2 1/2

P,—(a) = -16 sin 'a —16 ln(1 —a')'",

(Ava)
'd

J'„-(a) =8 —y(1 —a'y')'/2 ln
o

d +1(a)= 8 y(1-a ym) / lny
y y —1'

The a =0 values are readily obtained:

Z„-(0) =+ 2w',

J,,(0) = -2z' .

(A3a)

(A3b)

(A4a)

(A4b)

a2 1/2

P„(a) = 16cos 'a —16 ln(1 —a')'"

(AVb)

Finally integrating with respect to a and using the
boundary conditions (A4) gives

J„-(a)= -16(1—u')'" cos 'u —16u lnu

Next the expressions in (A3) are differentiated
with respect to a. After an integration by parts,
and a change of variable to z = ya, the formulas
read

J",;(a) = —— Cz[(1 —z')"' (1 a')'a]
o a —z a+z

(A5a)

P„(a) = ——(1 —a')'~ ln
1

1

dz[(1 zR)l/2 (1 am)1/2]a, z —a z+a
(A5b)

+16 dx, +4m',lnx

o x

Z„(a) =16(1-u')'/ sin 'u —16ulnu

+16 dx
lnx

0

From (A2) it now follows that

~„-=16 dx 2 -Ning +4@2
lnx

o 1 —x

Jss= 16 dx &
-@lou

which is equivalent to (3.7).

(A8a)

(A8b)

(A&a)

(A9b)

&his work is supported in part through funds provided
by ERDA uader Contract No. AT(11-1)-3069.

)Kennedy Memorial Scholar.
G. Whitham, Linear and Non-Linear Waves (%Riley,
New York, 1974); A. Scott, F. Chu, aad D. McLaughlin,
Proc. IEEE 61, 1443 (1973).

2R. Dashen, B.Hasslacher, and A. Neveu, Phys. Rev.
D 10, 4114 (1974); 10, 4130 (1974).
J.Goldstone and R. Jackiw, Phys. Rev. D11, 1486 (1975).

4J.-L. Gervais and B.Sakita, Phys. Rev. D ~11 2943
(1975); E.Tomboulis, Phys. Rev. D 12, 1678 (1975);
C. Callan aad D. Gross, Nucl. Phys. B93,29 (1975);
J.-L. Gervais, A. Jevicki, and B.Sakita, Phys. Rev.
D 12, 1038 (1975).

5The oae-dimensional theorem does not appear, to our
knowledge, in the standard literature, but it was given
by J. Schwiager in lectures on quantum mechanics at

Harvard.
~R. Dashen, B.Hasslacher, and A. Neveu, Phys. Rev.

D 11, 3424 (1975).
~J. K. Perring and T. H. R. Skyrme, Nucl. Phys. 31,

550 (1962).
S. Coleman, Phys. Rev. D 11, 2088 (1975).

SCallan and Gross privately expressed this concern to us.
Some aspects of the continuum states in the sine-
Gordon theory are discussed by Dashen, Hasslacher,
and Neveu (Ref. 6), Callan and Gross (Ref. 4), and by
L. Faddeev and V. Korepin (unpublished) . Their con-
siderations support our coaclusions.

~ D. Gross aad B.Kayser, Phys. Rev. 152, 1441 (1966).
~~J.Goldstone {unpublished) .

For a review, see R. Jackiw, in Springer Tracts in
Modern I'kysics, edited by G. Hohler (Springer,
New York, 1972), Vol. 62, p. 1.


