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We present a model of the bare Pomeron. By bare Pomeron we mean a mechanism which

accounts for constant total cross sections, zero real parts of scattering amplitudes, and limit-
ing fragmentation (or Feynman scaling). No attempt is made to estimate higher-order correc-
tions, which will presumably generate logarithmic growth, finite real parts, and violation of
Feynman scaling. The model can be most clearly formulated in terms of the bag of Chodos
et al. , although it is probably more general. It consists in the exchange of confined, colored
Yang-Mills gluons between confined quarks and appears to account qualitatively for the prop-
erties listed above, as well as Gottfried's model of multiplicities in hadron-nucleus colli-
sions. The model in its present form is unable to account for Pomeron factorization. The
nonrationalized coupling constant g /4m is approximately &.

I. INTRODUCTION

A most remarkable feature of total hadronic
cross sections is that over a very large energy
range (say, laboratory energy from 10 to 300
GeV) they are approximately constant. Physicists
have come to associate with this behavior of the
total cross section the following experimental
facts.

1. Elastic cross sections are also approximately
constant over the same energy range, and are con-
siderably smaller than the corresponding total
cross sections (for the PP system, by about a fac-
tor of 6). Indeed, in the first instance, the elastic
amplitudes appear as the diffraction due to multi-
particle production processes, and only secondar-
ily reflect the elastic processes themselves.

2. Real parts of forward scattering amplitudes
are small compared to imaginary parts, where
small means of the order of 10%%uo or less. Note
that the real part associated via dispersion rela-
tions with an exactly constant 0, is indeed zero
and only becomes nonvanishing by virtue of the
deviation of o, from constancy. However, it is
possible to have large real parts and constant
total cross sections because of the existence of
odd signature amplitudes, and any believable mod-
el must forbid these.

3. The diffraction peak is somewhat narrower
(in momentum transfer) than that associated with
exchange processes, and is roughly Gaussian in
4-t.

4. There may be approximate factorization of
diffraction amplitudes and total cross sections
(this is not too well founded experimentally; rath-
er, it appears to be a strong item of folklore
which is not contradicted by experiment).

5. Approximate factorization and Feynman scal-
ing (or limiting fragmentation)' hold in inclusive
processes. That is, in the region where c is a
fragment of b, (E,/o „)do,,/d'q, =E&,(t,„x,), in-
dependent of a, with t„ the invariant momentum
transfer from b to c, and x Feynman's scaling
variable, x= 1 —M'/s, with M the missing mass,
M' = —(p, +p, —q, )', and s the center-of-mass en-
ergy squared, s= —(p, +p, )'. Note our metric:
-P =Pp -p ~

2 2 ~2

The model to be described in Sec. II appears to
account qualitatively for all the above, as well as
the constant O„with the exception of factoriza-
tion, which mould appear to be accidental.

We take seriously the approximate constancy of
the total cross section and, in particular, ask for
a bare, or lowest-order Pomeron which leads in a
natural way to an exactly constant cross section,
but whose coupling is sufficiently weak so that the
logarithms brought in by higher-order effects will
not appreciably spoil the constancy over the 10-
300 GeV energy range. Thus, all questions con-
nected with rising cross sections and by implica-
tion logarithmic energy dependence will be viewed
as higher-order corrections and ignored in this
paper. Although one frequently hears the ques-
tion: "Why do the cross sections rise'?" it seems
obvious to this author that the first question
should be: "Why are they approximately cons-
tant?" That is the question for which an answer
will presently be conjectured.

The possibility that seems most attractive does
not work. This would be that in a confined quark
model such as the bag' there would be natural ab-
sorption which remained constant as s -~. This
does not seem to be the case, as can be seen by
the following argument. Imagine two bags ap-
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as W=Ws -~ at fixed momentum transfer, t.
In next order, the total cross section is con-

stant (but elastic)

doff P= (1.2)

corresponding to a forward. scattering amplitude,

proaching each other, with velocities + v, where
v -c. As the boundary of one bag enters the other
bag, it becomes a surface source for radiation of
quarks. This radiation can go forward or back-
ward. If forward, it is confined to a narrow in-
terval of length (c —v)t between the source and
the wave front, where t is the time the collision
lasts. As v-c, this interval goes to zero and
should give rise to no excitation. If the radiation
is backward, it is infrared-shifted to low frequen-
cy, and, correspondingly, its amplitude approaches
zero, since it is radiated by a rapidly receding
source. This qualitative argument is borne out
by perturbative calculations in three dimensions.
In one space dimension, there is an exact solu-
tion of the problem of scattering of bags with sca-
lar quarks given by Wu, McCoy, and Cheng, '
which may be trivially generalized to spinor
quarks. In both these cases one finds many solu-
tions, depending on when the bags choose to come
apart; however, in none of the solutions is there
a trace of excitation, whatever the velocity: The
bags separate in their ground state. This is a
much stronger result then would have been guessed
by the argument given above since it happens at
all energies. It clearly depends intimately on the
nonlinear and classical character of the bag equa-
tions, whereas the general argument given above
is probably more reliable, although qualitative.
It is therefore hard to avoid the conclusion that a
specific interaction is required to maintain a fi-
nite absorption at high energy.

We choose the specific interaction following a
simple observation of Gell-Mann, Qoldberger, and
this author, 4 to wit, that the exchange of an ele-
mentary vector meson leads in lowest nonvanish-
ing order to a constant elastic cross section. It
seems evident that it will therefore lead to a con-
stant absorption in a confined quark Inodel such as
the bag.

Consider first an Abelian gauge field correspond-
ing to a particle of mass p, coupled to a conserved
vector current with a (rationalized) coupling con-
stant g. To lowest order in g '/4v = u the elastic
scattering amplitude is real, and approaches

to order z',

Wu iWu

as W-.
We note that the real part of f is nonzero, and,

for weak coupling, larger than the imaginary part.
It is not related to the imaginary part by a disper-
sion relation, since the imaginary part has even
signature and the real part odd signature. The
idea of Ref. 4 was that the even signature part
might generate the Pomeron. In Regge language,
the second term in Eq. (1.3) represents a fixed
J plane pole at J =1 in the even signature ampli-
tude. Since the two intermediate vectors in the
nn channel have a nonsense state at J =1 [the
'(Z —2)z state], it was conjectured in Ref. 4 that
this situation might be analogous to the fixed pole
at J= —1 in the lowest-order Schrodinger equa-
tion, which in higher orders moves into the corn-
plex J plane as a Hegge pole. As shown by Cheng
and Wu, ' this is not what happens, at lea, st in the
leading logarithm approximation of conventional
field theory. Rather, a fixed branch point devel-
ops to the right of J=1; the branch point is then
brought back to J = 1 by unitarization. In the Cheng
and Ãu calculation, the Froissart bound is even-
tually saturated, and o, 0- (logs)' ~2o, for sufficient-
ly large s.

We ask first (rhetorically) whether the model
described above can be made realistic by includ-
ing strong interaction corrections to the bare
Pomeron, but not higher-order processes in the
Pomeron coupling, o, =g '/4n Arealist. ic theory
would assign a mass p. &1 GeV to the exchanged
vector. The lower limit on the mass is probably
conservative and rests on the apparent Regge char-
acter of the known vector mesons, which makes
them unsuitable as Pomeron generators. The
elastic scattering would be modified by E'(t),
where E(t) is the appropriate vector form factor
(we ignore spin complications here) The el.astic
cross section would thus be suppressed by a factor
of roughly M„'/p', where N~ is the dipole mass
in the form factor. The inelastic cross section
can be estimated from SLAC data, excluding, con-
sistent with our lowest-order Pomeron calcula-
tion, the Pomeron contribution to the structure
functions themselves. The result of all this effort
is total failure. The coupling constant e and mass
p. ean be adjusted to approximate two of the three
quantities Ref, o„and o „; the third is then off
by orders of magnitude. Furthermore, any choice
leads to enormous values of u —at least 25—and
of p, so that the lowest-order calculation is com-
pletely unbelievable. Finally, whatever values of
these quantities one is milling to accept, the in-
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elastic cross section is dominated by single and
double diffraction, which is in qualitative disagree-
ment with experiment.

All of these problems are removed by consider-
ing exchange of a colored Yang-Mills' gauge field
between color singlet states. A variety of models
of this kind have been suggested to achieve quark
confinement; the simplest and most straightfor-
ward of these is the bag model of Chodos et al. ,

'
to which we shall, for definiteness, confine our
discussion, although it is probable that any con-
fined quark model would have similar properties
at high energy.

II. QUALITATIVE DISCUSSION OF HIGH-ENERGY

SCATTERING IN THE BAG MODEL

In the bag model, quark quantum numbers are
forbidden and symmetric quark statistics guar-
anteed by introducing a confined colored gauge
field, whose boundary conditions on the bag sur-
face, together with Gauss's theorem, require the
vanishing of all eight color generators, so that
only color singlet states are allowed. The gauge
coupling constant is not determined by this re-
quirement. The gauge field may serve a second
purpose in splitting SU(6) multiplets. In the fol-
lowing a third function is proposed for this field:
to produce the constant hadronic cross section.

We describe the process qualitatively: Two
bags, o. and P, approach each other in their cen-
ter-of-mass system with a definite impact para-
meter, b, as shown in Fig. 1. We assume for
simplicity that n and P have the same mass and
radius. Since the colored gluon field is confined
to the interior of the bags, if b&2R the bags will
pass each other without interacting, classically;
in a future quantum theory, the boundaries will
presumably be blurred, and sharp edges will be
softened.

and (2.2)

When $,„-2~, where ~ is the smallest diquark
or gluon energy permitted by the transverse di-
mension,

(2.3)

the stretched bag may break by producing a pair
of minimum energy diquarks or gluons near the
center of the collision. The configuration will
now be as shown in Fig. 3, with each bag an over-
all color singlet.

If b &3R as the bags interpenetrate they may ex-
change a colored gluon. Cheng and Wu have shown
that at very high energy the gluon will carry only
transverse momentum. The color singlet con-
tents of the bags will have become octets, racing
away from each other with relative velocity 2v
-2c and small transverse momentum as in Fig. 2.
The bag stretches as shown in order to keep the
colored lines of force confined and avoid large
momentum transfer processes. Clearly, the in-
itial state cannot reemerge from the configuration
shown in Fig. 2 without enormous momentum
transfer. Therefore, the lowest-order real part
of the elastic scattering amplitude f (b) will vanish.

The actual decay of the configuration of Fig. 2

can occur via a cascade, as follows: The width z
is determined by minimizing 8, the sum of the
volume and field energies, where

6 =ALB+AL —;E2

(2.1)
8m

'

E is the effective "electric" field, [E ( =g/A, g is
the effective color charge, and A is the area m'
of the connecting tube. The minimum is

g - 1,(2 ~g)~~2

V
yeso~ ~ ~ + ~ ~ ~ m ~ ~ ~ I~

Color
octet

Color Octet

V

FIG. 1. Two bags approaching each other with impact
parameter b.

FIG. 2. Combined bag stretching after exchange of a
colored gluon.
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We may calculate the mass of each bag, roughly,
by neglecting the surface interaction and the vol-
ume and field energies (which are essentially in-
dependent of the initial collision energy) and count
only the energies and momenta of the quark and
gluons.

We let p', E' be the momentum and energy of
the rapidly moving quarks, in, say, bag a, and

q, e be the momentum and energy of the produced,
slowly moving diquark or gluon in bag z. We can,
if we wish, allow cu to include field energy. Then,
by energy conservation,

Color
Octet

Color Octet

FIG. 3. Two bags reseparating by creation of a pair of
colored octets.

and

M„'=(E'+u))' —(p'+g)'-2E'((u —v q)

-2E(&u —v j)
whereas

~ =v&s =2E.

Thus, the initial configuration of mass Mp=2E has
split into two configurations, each of mass

M, c,vMO,

where

q ~

If we work in hadronic mass units, c, is a number
of order unity.

Now each of the two bags reproduces a configura-
tion very like the initial one, and must split again.
Clearly,

M~ c2VM, ,

etc. This process will continue until M„ is had-
ronic in magnitude, or of order unity.

We easily calculate M„, since

LP 2~ s (2 4)

the corresponding time after collision is vp Lfp,

since v-c =1.
In the lab system the corresponding event hap-

pens at a time after collision

p

(1 „2)«2

and distance from the collision point

vcr'p
I, (1 v 2)«a~

where —vL is the velocity of the transformation
from the center-of-mass to the lab system,

P
V

L
m+EL

being - lnN/in2.
According to the above argument, the length I,

(in the center-of-mass system) to which the initial
system will grow before splitting is, according to
Egs. (2.2) and (2.3),

lnM, = inc, + 21QMp,

lnM2 =1nc + ~ lnM»

so that

and

1/2

(1 —v ')'~' 2m

1 1lnM„=inc„+ 2 inc„, + ~ ~ + 2„f, inc,f f f

+ —„ lnMp .

Thus,

2"f k lnMp,

where the constant k is a number of order unity.
Since 2"f is just the multiplicity of this event, we
find a multiplicity proportional to Ins. Qf course,
if N particles instead of two are shaken off at or
between each splitting, we will have a multiplicity
proportional to a small power of lns, the power

At 300 GeV, for example, 1/(1 —v~')«'-l2 so
that the combined state holds together for a long
time before breakup. This property may furnish
a natural explanation for the Gottfried model' of
particle production in nuclei.

Finally, we note that limiting fragmentation and
hence Feynman scaling follows naturally from the
model we have described, since the object which
is at rest in the lab frame may clearly choose to
fragment color singlets while it is waiting to de-
tach itself from the stretched bag of Fig. 2.
Since, as we shall see in the next section, the ex-
citation spectrum of each bag is energy-indepen-
dent as E-, and since the bag stretching de-
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pends on v (which approaches c), a limiting am-
plitude for the fragmentation may be expected.

III. FORMULA FOR THE ELASTIC AMPLITUDE

In order to proceed, we assume that the ex-
change of the colored gluon excites the quarks in
the two bags into cavity resonant states; these are
analogous to the doorway states of nuclear excita-
tion. Since the decay time given by Eq. (2.4) is
long in the weak-coupling limit, it is not unrea-
sonable to ignore the decay mechanism in calcula-
ting the cross section. A second„more doubtful
assumption is that we may replace the gluon ex-
change potential by the free gluon propagator,
with an effective mass p, replacing the appropriate
boundary conditions. The justification here is that
because of the vanishing of the color charge in the
incident states the final formula is relatively in-
sensitive to an infrared cutoff.

f ( &) = — db e'b '~[1 —S(b)],
27r

(3.1)

where 4 is the momentum transfer and P the in-
cident momentum.

We write for the fourth-order S matrix a con-
ventional formula,

With these caveats in mind, we write the S
matrix for the scattering of a bag n moving with
velocity v in the plus z direction by a bag P mov-
ing with velocity vs in the minus z direction, con-
sidering the bags as carrier cavities containing
an appropriate number of quarks in color singlet
states. Since we do not have an appropriate quan-
tum theory for these systems, we treat the car-
riers classically. They are separated by an im-
pact parameter b, but are undeflected by the colli-
sion. The S matrix will then be a function of b,
S =S(b), and the elastic scattering amplitude will
be given by

S(b) =1+—&o'l(i„(x)j.(y)), l o'»&(x —z) &~(y -w) & P l(j „(z —b)j.(w- b)), IP& dx dy dz dw, (3.2)

where the j's are color currents, with color indices suppressed, and ~~ is the propagation function

1
~(x)

(2 )4.
eik o ggI
y2 +~2 (3.3)

with p, the mass that simulates the confinement properties of the colored vector field. Since the interac-
tion turns out to be almost local, the error made in so doing is probably small. The integrations are four-
dimensional. Two- and three-dimensional integrations are indicated by arrows, thus: d b, d r.

We proceed by transforming the states n and P to rest. We have

4

S(b) —1 = —a&~a",„a~a~as~ dxdydz dw&~(x —y) 4~(z -w)

(3 4)x&c.l(i~(a" 'x) j.(a 'y)), la.&&P.I(i~(a' 'z) j,(a' 'w)), IP.&,

where we have temporarily replaced z —b and w —b by z and w, respectively, inside the P matrix element;
thus we allow the state P to carry the impact-parameter information. Also, a" denotes a Lorentz trans-
formation along the z axis with velocity —v„, ae one with velocity v&. A change of variable x-a"x,
y - a"y, z -a Sz, and w- a Bw changes. (3.4) to

4

S(b) —1=
2 a», a",„as~qaz~ dxdydzdw&z(a"x —asz) b~(a"y —asw)

x&n, l(j~(x) j„(y)},lo' && P l(j&(z)j P(w)) IP & . (3.5)

Equation (3.5) is manifestly Lorentz-invariant. It is, however, convenient to work in a frame in which
both v„and v8 are close to one —for example, the center-of-mass system. As each v-1, then, the com-
ponents a», a», a», and a» all go as 1/(1 —v')'i', and dominate at high energy. In this limit we have, ne-
glecting terms of order (1 —v')' ',

2g'
S(b) —1=,~, dxdydzdw4~(a"x —aaz) 4r(a"y —azw)

(1 —v„')(1 —v z'),
x&o'. I([j.(x)+j.(x)][j.(y)+j.(y)]),la'. &&Pal([j.(z)-jo(z)][j.(w) -j.(w)]), l P.&.

(3.6)
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We next write out the components of a x —asz explicitly. These are

8 X3 + Vaf XQ Z3 V BZQ XQ + Vo(X3 ZQ V BZ3
1 1» 2 »2(1 v 2)1/2 (1 v 2 )1/2» (1 v 2 )1/2 (1 2 )I/2 (3.7)

We transform from x, and zQ to new variables o and T which are respectively the third and fourth compo-
nents of Eq. (3.7):

X3 + VQXQ Z3 V BZQ XQ + Vf»fX3 ZQ V 8Z3

(1-v ')'" (1-v ')'" (1-v ')'" (1-v ')'"
The Jacobian of the transformation is

B(o, v) V~+ V g

B(x, z ) (1 —v ) /2(1 —v )
/a

We may also solve for x, and z, . We find

x, 1+v„v~ !1—v„' '/'
x, = — ' " ~ + ' " [o+vsT+(1 —v~')'/')z, ],

V~+VB V~+VB

( + ) ( )
[ (1 )/ ]Q v~+ v 8 v~+ v g

or, as v„, v&-1 at fixed o and 7, xQ x3 and z, z3.
The integral over o and 7 in &~ may now be carried out, and converges:

(3.8)

(3.9)

(3.10)

do dT Zip, (xg —z~» o» T) = (3.11)

where

dk~~.(xi) (2,). -,
kg +p,

and x~ is purely transverse.
We make an analogous change of variables in a y —aBMl, and also define

j,(x) =j,(x, x, = —x, ) +j,(x, x, = —x,),
j (z) =jo(z, zo=z, ) -j,(z, zo=z, ).

We finally substitute Eqs. (3.7)-(3.13) in Eq. (3.6) and find

(3.12)

(3.13)

4

S(b) —1= ——dxdydzdw&, (x~ —z ) 4 (y -w~)(e, [(j,(x)j,(y)),[a,)!p,[(j (z)j (w)), (p, ) . (3.14)

Equation (3.14) for S(b) —1 evidently leads to an imaginary scattering amplitude, constant total cross
section, and constant do, ~„„,/dt. The first statement follows from the observation that the j, 's commute,
as do the j 's, since x and y, like z and w, are separated by a spacelike interval. Thus, by completeness,
Eq. (3.14) can be rewritten, for non-spin-flip,

4 2

1-S(b) = —g dxdz4, (x -z )!n[j,(x)[o.,)(mlj (z)I p. )
n, m

(3.15)

showing the desired reality as well as the neces-
sary positivity.

Some discussion of the use of Eq. (3.10) is
called for, since the bag propagation function
may be singular on the tangent plane to the light
cone. One can study this question for the free-
particle case, and one finds that the S matrix giv-
en by Eq. (3.14) is correct, although the contribu-

tion of each Feynman diagram separately is not.
This comes about because each Feynman diagram
is singular, corresponding to the presence of logs
terms in the energy dependence of its contribution
to the scattering amplitude, whereas the sum of
the diagrams is nonsingular, corresponding to the
absence of logs terms in the final amplitude. Fur-
thermore, the substitution of Eq. (3.11) apparently
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picks out the nonsingular part of each diagram, so
that both diagrams give the same contribution.
Since the singular structure of the propagation
functions should be similar to that of free parti-
cles, we believe the use of (3.14) is legitimate.

Actual evaluation of the matrix elements in Eq.
(3.14) is extremely difficult, since, as will be
shown below, the vanishing of the color charges
on the states I a, ) and I P,) implies a sensitive can-
cellation between the one- and two-particle terms
in the Wick expansions, so that the best we can
hope for is an order-of-magnitude estimate. This
estimate will be most reliable for the total cross
section& and considerably less reliable for the
actual b dependence of the amplitude. There are
in addition zero-particle or empty bag terms,
whose interpretation appears to require a genuine
quantum theory for the state I o),), since these
terms are intimately connected with the quantum
theory of the quarkless state. In the absence of
such a theory, we shall content ourselves with
the following: We shall estimate the total cross
section and forward spin-flip amplitude implied
by (3.14), ignoring the zero-quark term. This
will determine a value of g 2, and give us some
idea of the spin-orbit coupling to be expected.
We shall then estimate the b dependence and the
corresponding elastic angular distribution inde-
pendently by a geometric argument, which we
consider more reliable in our present ignorant
state.

We now attempt an evaluation of the bag propa-
gation function

& =(o', I(j,(x)j,(y)), ln, &.

Sq(x, y)= '2 ' Q y„(x)g„'(y)

+ ~ g 4.(x) ((t:(y) &(&) (3.18)

Since the tangent plane is outside the light cone,
the first term in Eq. (3.18), which is causal, will
vanish on the tangent plane and we are left with
the second.

We point out here a convenient property for later
use:

((+a, ) Jd ysq(% j)((+a, ) („,( y)

0 (1+o. )(I)„(x). (3.19)

This result follows from the observation that

1
IfD(I)„(x) = —. n ~ &+pm e' ~"~ }t„(x)

=(u„(l+n, ) g„(x), (3.20)

where X„(x) is the time-independent stationary-
state wave function satisfying the equation

&aXn = +n Xn ~

Since the bag boundary condition

r n4=4

(3.21)

(3.22)

makes HD a Hermitian operator, the appropriate
orthonormality integral is

(3.1V).
The two forms of Eq. (3.1'I) may be unified by the

the introduction of & functions:

Since we are treating the bag as a fixed cavity,
we can evaluate G as dx „' x 1+a3 gg x =5„~ (3.23)

G~ =G„+G~ +G„
2 0

=g (x)(1++,)so(x, y)(1+o,)(c„(y)
+ crossed term+ (two-body terms)

+(ignored zero-body terms), (3.16)

where the (I)„'s are the quark wave functions and
where 8@ is the quark propagator in the bag:

So(x, y) = Q (C)„(x)g(y), x() &y()

=-g 4.(x) 0.'(y), x.&y. (3.17)

with na denoting positive- and negative-frequency
solutions of the Dirac equation in the bag. We re-
call that the functions of the three vectors x and y
are to be obtained by setting xp= —x, and yp $3
in the wave functions occurring in Eqs. (3.16) and

and hence the result Eq. (3.19). Clearly an ana-
logous result holds for the substitution zp=+z,
together with the projection 1 —a3. To proceed
further, we need to make a simplifying assump-
tion, which is motivated by the behavior of the
free-quark propagation function So (x). One

0
finds for the projection

S)+~(x) = (1+o.,) So (x)(1+n, )

2 1= —(1+n,) 6(xi) P —,
3

(3.24)

where P signifies that the principal value is to be
taken upon integration. One sees that Sf'l(x) as
given by Eq. (3.24) consistently satisfies the in-
tegral condition Eq. (3.19) when g„, is set equal
to a free-quark wave function. Qf course, it does
not satisfy Eq. (3.19) with (I) taken as a bound-
quark wave function, since the proper boundary
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conditions are not built into the function S' . We
attempt to cure this defect by a modification of
Eq. (3.24) which makes it compatible with Eq.
(3.19). We assume

(1+@,)So(x, y)(l + o, ) =5(x -y~) E(g„y,),
(3.25)

If the two-body terms in Eq. (3.16) were absent,
Eq. (3.27) would lead to a simple Chou-Yang' for-
mula, with an electromagnetic density function.
The presence of color produces a significant
change, however, since it requires that

where the only property of E that is determined is
dxG (x, y)= dyG (x, y)=0. (3.28)

G~"dy, =())+ (x)(1+o.,) g„,(x) 5(x, —y, ) . (3.27)

JtE(x„S,) dS,g„(x,y, ) = 2(1+o',) (()„(x)e(n) .
(3.26)

Since in Eq. (3.14) the longitudinal integrals are
completely decoupled, Eq. (3.26) is sufficient to
determine Sz for our purposes. The first two
terms in Eq. (3.16), on integration over dy„give

This last equation follows from the observation
that, since x and y are spacelike, the ordering
in Eq. (3.14) may be neglected. Furthermore,
the orthonormality relation Eq. (3.23) shows that
the space integral of j,+j, will involve only fj„
which is a color charge, and hence zero. Thus
the space integrals of Gt'j and G„' must cancel.
This makes it almost possible to write down the
complete answer by inspection. For the nonf lip
terms we find

Q 6/3 = ~ x 5 xj —y~ 0| x

dy, „' x „x „' y y

--', [y„' (x)o.,()„,(x) g, (y)o', q„(y)+q„' (y)o', y„,(y) y„',(x)c(,q„(x)j}, (3.29)

where no denotes the wave function whose spin is opposite to that of o, The factor —,
' holds by explicit cal-

culation for the nucleon.
We calculate the spin-flip part of G~'~ by noting that

'
(x) = —V ~ n x — " o 3)I (x) (3.30)

where (p~+ p„)/2 is the I =0 magnetic moment of the nucleon, (% the Pauli spin matrix vector normalized
to o, =1, n, the unit vector in the 3 direction, and JR(x) the nucleon magnetization density. The factor 6/e
arises from the isosinglet component of the nonstrange quark charges:

e e—'T3 + (3.31)

Equation (3.30) is sufficient to provide an explicit expression for the spin-flip contributions to G„. To a
sufficient approximation, we replace (g(, + p, „)/e by I/rn, with m the nucleon mass. We then have in all for
G„(x,y)

G„(%%)=p(%) il(% —p) —Ip(%) p(%) —,%, V K (%)ii V 8R(%)~

V SR(x) - V - Vx n, a5(x —y) ——3)I(x)x%%, ~ vp( y) ——3g (y) x%%, ~ (%p(x)

where p(x) = g'(x)g(x) is the baryon density, and where we have divided the spin-flip term by 3 relative to
the density, which is summed over quarks. G()(z, w) is given by an analogous expression, except that the
o terms are reversed in sign.

We note two interesting and somewhat surprising properties of Eq. (3.32) for the densities. First, al-
though the process we are discussing (Pomeron exchange) is charge-conjugation-even, the densities are
vector, so that we expect the Pomeron residue functions to be closely related to the baryon electromag-
netic form factors. Second, we have helicity flip, even though the exchanged vector field is helicity con-
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serving at high energy. This effect is due to the binding of the quarks, since it would be absent for free-
particle states at rest.

We must also take into account the internal color quantum numbers in order to determine n. We choose
to define the coupling constant g by

Zz =g (iy„A.&/A~, (3.33)

where

TrA] =2. (3.34)

With this convention, we must multiply the coupling constant g4 by the color-singlet part of each A.„',
i.e., (—',)' for each interaction, by 8, since there are eight exchanged vector mesons, and finally we must
sum over a11 the quarks in the two bags.

Our final formula for S(b) is
48(b)-1=-—8(—',)xz(-,')xzx fdxdydzdwG„(x, y)r! (8 —8 )dz(y —w )Gz(z, w), (3.35)

where we have reinserted the impact parameter in
Gg.

To sufficient accuracy, the cutoff p, is unnecessary
and we have

IV. NUMERICAL ESTIMATES

A. The forward amplitude and total cross section
0~ =128m "d . I.l-[p(q)]']'

4 (4.5)

From Eq. (3.1) we learn that

a~=2 db 1-ReS b (4.1)

We evaluate the integral by assuming

(4.6)

or, from (3.35),

or=32g dbdxdydzdwG„(x, y)GS(z, w)

and find

l dq' » 1 517 5
( -P) -

2 105 2 (4.7)

xg(x~ -z~) 6,(y~ —wd ) . (4.2) so thaty with c[ =g /4]Ty

For G„and GB we insert the spin-nonf lip terms of
(3.32); however, since our approximation to G,
has clearly left out contributions corresponding to
the double-flip terms, coming from G„we shall
drop the latter, and keep only that part of G, which
is necessary to make the integrals vanish,

and

640m'
o —= =40 mb

mD

The forward spin-flip amplitude is given from
Eq. (3.1) by the integral

G(x, y)dx= (x, y) dy=0.

Substitution into (4.2) yields

with

cr =128m'g' d q [&,(q )]'(1 —[p(q, )]'j,
(4.3)

fz, (0)=(J b Zdb[( —8(b)]„,,

and the double-flip amplitude by

(4.8)

(4.9)

p(q) = e'~' " dxp(x),

the charge form factor, and, from (3.11),

(2m)'(q'+ p, ')

(4.4)

where 4 is the momentum transfer. If we assume
that the magnetization density 5R(x) is equal to the
charge density p(x) (recall that the volume inte-
grals of both are normalized to unity) the calcu-
lation is particularly simple, since the momen-
tum integrals are identical to those of (4.3). We
find, for the entire forward amplitude,
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f(n =0)=i lmf(0) 1+io n, x — 1+iv& n, x-
m~ m

(4.10)

where m is the nucleon mass.
The characteristic effects of the predicted spin

flip in a single scattering experiment (polariza-
tion and right-left asymmetry, ) will be small, since
the real part of the amplitude is small. As an
example, we estimate the right-left asymmetry
produced by Coulomb interference, assuming
100% initial polarization, and n, -100 MeV, to be

80 '

The spin-flip effects will be larger in a double
scattering experiment, for which Eq. (4.10) pre-
dicts a 20/p rotation of the transverse polarization
of the incident beam at a momentum transfer of
100 MeV.

B. Factorization

Qur model contains no natural reason for factor-
ization, although one can easily imagine special
circumstances which will make it hold. For ex-
ample, if the pion and proton charge densities
are not too different, as the bag model would pre-
dict, one would find factorization for PP, nP, and

mn total cross sections, in the ratio 9:6:4, as
usual in quark models, by following the approx-
imation scheme described in the beginning of this
section. Factorization in diffractive resonance
production, as well as in inclusive processes,
would appear to require even more special circum-
stances.

C. Elastic angular distribution

To estimate the consequence of our model here,
we prefer to use a geometric argument, since we
believe the angular distribution to be considerably
more sensitive to errors in the C's and &&'s than
the total cross section, whereas the geometry of
the spherical collision seems a somewhat safe
starting point.

We refer to Eq. (3.15), and note that the vanish-
ing of the space integrals n j, x Q. dx im-
plies that one can find a kf (x) such that

(nlj, (x) lu)=s, (nl8p'(x) ln) . (4.11)

(4.12)

and

(4.13)

Indeed, this can be done, following the technique
leading to Eq. (3.23). An integration by parts then
shows that the effective field propagation functions
are 9, s& &, (x~ —z~), which are almost local
(their circular averages are exactly local). We
are thus led by Eq. (3.15) to considei a sum of
terms, each of which is the square of a certain
overlap function of the densities. This function is
given by an integral over the transverse overlap
area of the product of the longitudinal heights of
the two spheres at that point. That is, we assume

"x
X

.2 .6 .8
g

I

I.O t.2 l.4

(orbitrory units)

x Goussion {~ith some g g udu ond g J u du)

FIG. 4. Comparison of the predicted impact-parameter dependence, I {u), with a Gaussian.
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where

a &a'-& 2~&~2

I = —, dy dx(R' —y' —x')'"
0

x fg'-(y —5)' —x'] '~'.

(4.14)

Since the normalization is already established,
we may ignore it in the following. We introduce
the dimensionless variables u=b/8, y/8, and
x/A. The integral then becomes

2

( 2)
8 foI (u)udu

f 'I'(u)u du
0

= 0.4'
is also shown in the same figure.

The value of (5') given above, with 8-1/m„
as determined from the proton mass by Chodos
et al. , leads to a differential cross section

for p-p (or pp) scattering.

(y y&2)1/2

I (u) = dy' (1-y" —x")'i'
u/2

x[1 (yt u)~ x/2]1/2

(4.15)

This integral has been evaluated numerically
and is shown in Fig. 4; a Gaussian with the same
area

A =8' I' u udu
0

and mean-square radius
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