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We consider the quantization of supersymmetric gauge theories in a rather general class of gauges. A
generating functional is constructed that is supersymmetric, for which we formulate the Ward-Takahashi
identities of the local gauge invariance. The existence of a supermultiplet of ghost fields is established. We
present several examples to demonstrate the consistency of our approach.

I. INTRODUCTION

Supersymmetric field theories were first pro-
posed by Wess and Zumino.! The supersymmetry
consists of a set of infinitesimal transformations
that transform bosons into fermions and vice ver-
sa. Such theories, which generally have a small
number of free parameters, turn out to exhibit
several interesting features. One of them is that
the quantum corrections are much less divergent
than could have been expected on general grounds,?*?
or are even completely absent in certain cases.*
Another one is the emergence of a massless Gold-
stone fermion when the supersymmetry is spon-
taneously broken.®

In a supersymmetric theory we have representa-
tions that contain both Bose and Fermi fields,
which are called supermultiplets. The behavior
of the fields under supersymmetry transformations
involves space-time derivatives of the fields,
which is related to the fact that Bose and Fermi
fields usually have different dimensions. This is
also apparent from the algebra of the supersym-
metry generators. This algebra, which was first
considered from a rather different point of view
by Akulov and Volkov,® involves both commutators
and anticommutators, and is closed if we include
the energy-momentum operators. Also connected
to the presence of derivatives in the transforma-
tion properties of the fields is the fact that this
algebra is not preserved in the presence of an ex-
ternal or spontaneous symmetry breaking.’

More recently, Wess and Zumino,® and later
Salam and Strathdee,®!° and Ferrara and Zumino'
have considered the construction of supersymme-
tric theories that are locally gauge invariant. Ob-
viously, the presence of derivatives in the super-
symmetry transformations makes it nontrivial to
implement a local gauge symmetry. In order for
the gauge symmetry to be compatible with the
supersymmetry it turns out that one has to extend
the conventional gauge group into a gauge group
that involves both commuting and anticommuting
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parameters, which transform into each other
under supersymmetry transformations. Obvious-
ly, such supersymmetric gauge theories have a
much more complicated structure than the con-
ventional gauge theories, and the restrictions
that are imposed by both supersymmetry and
gauge invariance make it far from trivial to find
physical applications for these ideas. Neverthe-
less, Fayet'? has recently succeeded in construct-
ing a semirealistic model of this type that de-
scribes weak and electromagnetic interactions of
leptons.

In this paper we want to address ourselves to
the quantization of those theories. In principle,
the quantization program is identical to the one
that was carried through for the conventional
gauge theories,'® but there are a number of tech-
nical complications because of the presence of
the commuting and anticommuting quantities.
There have been some preliminary calculations
in the Abelian model of Wess and Zumino® in a
special gauge in which the theory is renormaliz-
able by power counting.!* However, before the re-
normalization can be established the quantization
must be studied in a wider class of gauge condi-
tions. In order for this program to make sense
one must show the gauge independence of the S
matrix, something that can be done by exploiting
the Ward-Takahashi identities. In these theories
the formulation for a wider variety of gauges is
even more urgent, because the special gauges
that are renormalizable by power counting break
the supersymmetry.

We will discuss the quantization for a rather
general class of gauges, with special attention to
supersymmetric gauge conditions. This will be
done in the context of the path-integral method,
as it was formulated by Faddeev and Popov,'® and
by 't Hooft.!®* The Ward-Takahashi identities of
the local gauge invariance will be formulated in a
supersymmetric gauge, and we will work out some
examples. We establish the existence of Faddeev-
Popov ghost fields, which will occur in anticom-

1628



12 QUANTIZATION OF SUPERSYMMETRIC GAUGE THEORIES 1629

muting supermultiplets, i.e., there are anticom-
muting spinless and commuting spinor ghost
fields. However, we should point out that this
program can presently not be carried through
with the same rigor as in the conventional gauge
theories, because a regularization procedure for
most of these gauges is lacking.!” Our results
are mostly formulated for the Abelian gauge mod-
el, but the generalization to the non-Abelian case
is usually obvious.

In Sec. II we will briefly review the formalism
of superfields and the construction of supersym-
metric gauge theories. In Sec. III the quantiza-
tion procedure is described. Supersymmetric
gauge conditions are discussed in Sec. IV where
we construct a supersymmetric generating func-
tional for the Green’s functions. We will also
work out an explicit example of a supersymmetric
gauge condition. Section V deals with the general-
ized Ward-Takahashi identities of the local gauge
invariance. In Sec. VI we demonstrate the gauge
independence of S-matrix elements in the one-loop
approximation in an explicit example, where we
make use of the previously introduced supersym-
metric gauge condition. Finally, our conclusions
are given in Sec. VII. Some useful formulas are
collected in an Appendix.

IL. PRELIMINARIES
A. Superfields

We will first briefly discuss the technique of
superfields and at the same time establish our
notation. The notion of a superfield was first in-
troduced by Salam and Strathdee!®:!® and was sub-
sequently also developed by Ferrara, Wess, and

—

Zumino.'® A superfield is a function of both the
four-vector of space and time, x,, and a constant
four-component, anticommuting Majorana spinor
6,. Each superfield can be decomposed in the fol-

lowing way®°;
®(x, 0)=A(x) +69(x) + 3 60F(x) + 3 0iy,6G (x)

30y ,56B,(x) +(66) 8x (x) + 3( 66)*D(x) .
(1)

The degree of each component is defined by the

number of independent 6, to which it is proportion-

al in the superfield expansion (1). The components

of a general superfield will generally be referred

tobyA,y,..., D.

In the eight-dimensional space spanned by x,
and 6, we define two operations:

+

9
Ga= 3*0(,‘-(79)0“

) (@)
Da= aﬁé;+(10)a,

where 8/88 is defined as the left derivative with
respect to 6. G, is the generator of the infinitesi-
mal supersymmetry transformations, and D, is
the so-called covariant derivative. One can easily
verify that

{Ga9 (_;B}=2(a)d8 ’
{DcuEB}=‘2(d)aB, (3)
{Gax‘DB}:o .

Notice that both G and D satisfy the Majorana con-
straint.
We now define a real vector field by

V(x, 8) =A(x) +8%(x) + 3 86 F(x) + 3 8iys0G (x) + 3 01y ,¥56B ,(x)

+(86) G x(x) +3 F(x)]+1(66)*[D(x) + 382A(x)],

)

where V'(x, 6)=V(x, 6), and V transforms as a scalar under Lorentz transformations: V(x’, 8’)=V(x, 6).
This implies that A, F, G, and D are real spinless fields, whereas ¢ and y are Majorana fields. Because
the covariant derivatives D commute with G, we can also impose a supersymmetric constraint on a gener-

al superfield:
(1 ;Ys)aBDBsi(x, 6)=0.

This leads to the definition of chiral scalar superfields:

S,(x,0)=exp(F 3 09y,0)[3 H,(x) + 0¥, (x) +3 6(1 £ y,) 6 M, (x)]
=3 H,(x)+ 0%, (x) +1 (1 £ v5) 6 M, (x)F § Oy, ¥560, H,(x) +3(66) 89 ¥, (x) + & (66)* 8%H, (x) . (5)

Such fields have three components: two complex
fields H and M, and one chiral Dirac spinor V.
One can require in addition that both chiral com-
ponents are related by complex conjugation, SI

r

=S_, which implies that ¥ is a Majorana spinor
and HI =H_, M!=M_. Unless stated otherwise,
this constraint is to be understood.

It is obvious that a product of superfields is
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again a superfield. One can also show that the
product of right- or left-handed chiral super-
fields is again a right- or left-handed superfield,
respectively. Finally we notice that the compo-
nent with highest degree (D) of a superfield, or
the F and G components of a chiral superfield,
transform under a supersymmetry transformation
by a total space-time derivative. This is a useful
observation if one wants to construct Lagrangians
that lead to a supersymmetric action. One can
construct the components of a superfield by tak-
ing the appropriate derivatives with respect to 6,
or by an integral over components of 6. Integrals
over anticommuting numbers 6, are defined by*!

fde,, =0; f@ad95= Sap - (6)
We have collected some useful formulas for deal-
ing with superfields in an Appendix.

B. Construction of supersymmetric gauge models

For future purposes we review the construction
of supersymmetric gauge theories, with the em-
phasis on the Abelian model of Wess and Zumino.?
Following Salam and Strathdee,®!° and Ferrara
and Zumino'! we introduce a real vector field
V(x, 6) which transforms under a local transfor-
mation in the following way:

£V (x.0) s i8N _(%,6) £V (x,6) -8 7y(x,6)

(M

A (x, 6) is a chiral left-handed superfield, with
components 5(x), A,(x), and w(x), and A_=A]. ¥
the underlying group structure is SUWN) both V
and A, are to be considered as NXN Hermitian
matrices. From the quantity exp(gV) we can con-
struct the analog of a gauge field:

1 —~
Vulx, 6) = @[Vu(l +75)Jap Dale ™ *+0 Dyt 1),

(8a)
which transforms under the local gauge group
according to

V“"e"""-V‘,e""”‘+ +igTleth-8 e~ (8b)

From V u("’ 9) we can then construct a supersym-
metric and gauge-invariant Lagrangian:

£(x) o fd"GTr{VuVu+VE vit. (9

For an Abelian gauge group this construction is
much simpler. Equation (7) corresponds to
Vix, )= V(x, 6) = i[A,(x, 0) = A _(x, 0)]. (10a)

For the various components of V(x, 6) this implies
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6A=-3i(6-67), 6B,=309,(6+5"),
Y=~ iygA, 6x =0,
6F=-3ilw-w'), oD=0. (10b)
8G=-3(w+w"),
The Abelian gauge field can be chosen as
V%, 6)==% iDy (1 +¥5) DV(x, 6).
The corresponding invariant Lagrangian accord-
ing to Eq. (9) is then given by
Ly=-410@,B, -8B,V -3xX9x+3:D*. (11)

Subsequently we consider two chiral superfields
S* and S? with (S}2)T =S12. The components of Si:2
are denoted by H, ,, ¥, ,, and M, ,. Under the
gauge group the fields S*+? transform according to

Si(x, 6) = e M+x:O84(x, 9),
(12a)

S%(x, 6) =~ e~ A= O82(y g,

For the various components this implies the follow-
ing transformation properties:

&H, (x) = 3 igd(x)H,(x),

0% (x) = % ig {[6(%) + 6T (0) ]| W, (x) +[6(x) = 5T (x)] 74 ¥, (x)
+A(x)[H,(x) +H ! (x)] (12b)
+y Mx)[H, (%) -H [ (x)]},

M, (x) = 7 ig[6(x) My (x) + X(2)(L + )%, (x) + w(x) H,(x)] .

For S? the transformation properties can be ob-
tained by replacing 1-2 and g~ -g in Eq. (12b).

As follows from Eqgs. (12) the F component of
S152% and S S? is both supersymmetric and gauge
invariant. This gives rise to the following invari-
ant mass term for S! and S?:

Ln=smH M, +H,M,+H M +HI M} -2T ¥,).
(13)

The supersymmetric and gauge-invariant interac-
tion between the chiral superfields and the vector
field, which at the same time provides a kinetic
term for the chiral fields, is given by the follow-
ing expression:

g [ avelsicr, 0)%x, 0)er=0
+8%(x, ) S2 (x, H)e~V*:9] (14a)

A somewhat tedious but straightforward calcula-
tion leads to a more explicit result for £,:
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L= H-210,HF - 3T, 9%, +3|MP)

+1ge4{|H, lz(D+82A)+Hfo(F—iG)+H1M1*(F+iG)-\Tl[M+M*+ﬂ(H+HT)]zp + ¥y M=-M+J(H-HN]y
- (Hy+H) ¥, (x +99) + (H, -H ) ¥, y5(x +#y) + iB,(H,5 ,H +¥,7,7s¥,)}
+5g 2 H{IH,P[(8, A - 2X y - ¥y + (F2+G* - B2)| - 3 (H M, + HLM]) §y
+3(H M, ~H, M) Jysy - (H,+ H)) T, (F = iy,G = i By, + 7AW
~(H =HD ¥, (y F+iG +i B+y, JAW + 5( Py ,vs9)(H, 5 H +F 1,7, F,)}
+ 558 *E = IH P U(F - ivsG - i By, )y +4 (H, +H) [ (99) + (P iys¥)ivs
= (P iy ys) iy vl ¥ —3(Hy —H VAL (T)ys + (T iysd) + (8 iy yvsd) iy, o}

+387 g ' AH P = (Dvsd) = (P iy ,vs9F]
+(1=2;6~-g).

Hence, we have constructed the invariant La-
grangian for a supersymmetric gauge field theory:

Lin=Ly+E&n+&L,. (15)

£y, £m, and £ are given in Egs. (11), (13), and
(14), respectively. Regarding the uniqueness of
this Lagrangian we wish to point out that £, + £,
is the most general parity-conserving Lagrangian
that is quadratic in the chiral superfields S* and
S2. Concerning the vector superfield V there is
no such requirement, since £, contains already
all powers of V. Consequently, there is no funda-
mental reason to confine ourselves to quadratic
terms in £,. One such reason could be that only
the Lagrangian given in Eq. (15) is renormalizable,
something which still remains to be proven at this
moment.

Finally, let us make some comments about the
parity assignments. The vector field V(x, 8) has
an intrinsic negative parity, so that its vector
component B, is a vector field. Under parity, the
gauge transformation exp[iA,(x, 6)] changes into
exp[iA_(x, 6)], and consistency requires that
S'(x, 6) and S%*(x, 6) are connected by a parity trans-
formation.

III. QUANTIZATION

As was shown explicitly in the previous section,
supersymmetric gauge theories are invariant un-
der local gauge transformations that contain both
commuting (spinless) and anticommuting (Majorana
spinor) parameters. We will now formulate the
quantization in those theories, following the pro-
cedure that was proposed by Faddeev and Popov'®
and by 't Hooft'® for theories with the convention-
al gauge invariance.'®* For simplicity we will main-
ly consider the Abelian model, but the generaliza-
tion to non-Abelian models is usually straightfor-
ward.

The starting point is the Feynman?®? vacuum-to-

(14b)

—

vacuum amplitude expressed as a functional inte-
gral:

(out|in)ec f[dV][dSl][dszjexp{iS[V, st s2)}.
(16)

S[v,S',8%]= [d*x £,,(x) is the invariant action,
and the measure [dV][dS*][dS?] of the functional
integration runs over all independent components
of the superfields V, S', and S? at various space-
time points. For instance, [dV] is given by

(avl= I [dA(x) IT av. (x) dF(x) dG ()

x

x I;I dA,,(x) I;I dxg(x) dD(x)] .

The action is invariant under the transformations
that were described in Eqs. (10) and (12):

V(x; 9)-. V(xy 9) - i[A+(x7 9) - A..(x’ 6)] ’
Silx, 6) ~expligA.(x, 6)]Si(x, 6),
Si(x, 6) = exp[ - igA(x, 6)|Si(x, 6) .

In other words, the action is constant over an
orbit of this complicated gauge group. Because of
this the integral (16) will be proportional to an in-
finite factor, and as usual we will extract this
factor before considering the quantization. In or-
der to do this we impose a gauge condition, and
because the gauge group parameters have the
structure of a chiral superfield, such a condition
can be written in the form

c+[V’ Slrszl =0 ’
c_[v,s',s?]=0.

am

C, and C_ are functionals of the superfields V, S,
and S? which are written as chiral superfields.



1632 B. DE WIT 12

However, we do not wish to imply that C trans-
forms as a chiral superfield under supersymme-
try transformations. If that is the case the gauge
conditions will preserve the supersymmetry.
Gauge conditions of this type will be studied in
more detail in the next sections. In this section
we arrange the various components of C in a
superfield form purely for notational reasons.

In that formulation we have CI =C_. The function-
als C, have to be chosen such that the gauge con-
ditions can be obtained by a suitable gauge trans-
formation. Such permissible gauges are called
nonsingulay for reasons that will be explained be-
low.

Imposing the constraint equations (17) in the
functional integral will obviously eliminate the
infinite factor, but this must be done in such a
way that the gauge invariance of this integral is
maintained. As is well known,'® that can be
achieved in the following way:

(outlinyec [ [av][ds']lds?] 6(C,[V, S, 5%)
xs(C_[V, s, s?])
xag[v, s, ?lexp{is[v,s',8*]}.  (18)

The two 6 functions are to be understood as 6 func-
tions over all the independent components of C,:
one Majorana spinor and four real spinless com-
ponents. The factor A [V, S*, S?] is to be defined
such that the functional integral does not depend

on the choice of the gauge conditions C, =0. Such
a factor is given by the Jacobian of the transforma-
tion that changes C into the canonical parameters
Q of the gauge group. Hence A, depends on the
quantities 6C/6§, which are also given by the
change of the various components of C under an
infinitesimal gauge transformation, which we will
denote formally by 6C/5A. In the conventional
gauge theories, where the functionals C and the
parameters of the gauge group are basically com-
muting quantities, the Jacobian is given by the
determinant, and we have

oC
A, =det <—6X> .

However, in supersymmetric models both the
gauge condition and the gauge transformations con-
tain commuting as well as anticommuting parame-
ters.

Let us therefore first generally define the
Jacobian for transformations that contain both
commuting and anticommuting parameters.?* Con-
sider a set of commuting and anticommuting quan-

tities x,, ..., x, and 6,, ..., 6, respectively. On
the basis of the anticommuting objects 6, we can
define a Grassmann algebra with & generators.
Every element of the algebra which depends on
x; and 6, can be decomposed as follows:

P(x, 0)=p©(x) + z p&P(x)6, +z:ﬂ p)(x)6, 64

RPN +p(')(x)6192 ceef,.

The upper index of the various components is re-
ferred to as the degree.

Over the Grassmann algebra one can define in-
tegrals, as is prescribed by Eq. (6), and we are
interested in the integral

I= fdxl seedx,db,++d6 P(x,0).

The x integration goes over the interval —eo <x <,
and P(x, 8) is supposed to go to zero as |x |~

fast enough so that the integral converges. Ac-
cording to the integration rules over anticommut-
ing parameters, only the element of highest de-
gree will survive the integration, so that the
answer is

I= fdxl ceedu,p®(x).

Let us now consider the corresponding Jacobian
for a transformation of the parameters (x;, 6,)
into (x{, 62):

%y =x4(xf, 9&),

0= 6y (x], 68) .

Of course, this transformation should be such that
x’ and 8’ are still, respectively, commuting and
anticommuting quantities, and the transformation
may contain additional anticommuting ¢ numbers.
For such transformations the Jacobian can be ex-
pressed by**

J(x(x’, 6), 6(x’, 6"))

det (gx—j_)
= % . (19)

96, 8, [ d9x \"' ox
det| =2 - —2( — =4
ER-CIE

The derivatives 86/86’ and 8x/8x’ are commuting,
whereas 89/8x’ and 8x/96’ are anticommuting quan-
tities. 8x/96’ is defined to be the right derivative.
For the remaining partial derivatives right and
left derivatives are simply equivalent. With this
Jacobian the following identity holds:
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J'dxl.. +dx,db,++d6,P(x, 0)

=1de{---dx,’,d9;---d9{

xd(x(x’, 8'), 0(x’, 6")) P(x(x’, 6'), 6(x’, 6')) .

Hence in a supersymmetric gauge theory the so-
called Faddeev-Popov factor A; is much more
complicated than a single determinant, but it is
proportional to the Jacobian J(x(x’, 8’), 6(x’, 6”))
where x and 6 represent, respectively, the com-
muting and anticommuting independent components
of C,, and x’ and 6’ represent, respectively, the
commuting and anticommuting parameters of the
infinitesimal gauge transformation, 6, 67, w, w™,
and A. It is obvious that permissible gauge con-
ditions are those for which the Jacobian factor is
finite. For this reason these gauges are called
nonsingular, i.e., the inverse transformation

(x', 8')=~ (x, 8) must exist.

Before formulating the gauge conditions that
are manifestly supersymmetric, we consider the
special gauge given by Wess and Zumino.? The
importance of this gauge stems from the fact that
the theory becomes renormalizable by power
counting. The gauge conditions are given by

A=F=G=y=0. (20)

In addition there is a gauge condition for the vec-
tor field B,, which can be chosen in the standard
way. However, in this gauge (20) the Faddeev-
Popov term A, is necessarily a field-independent
factor, because the change of A, F, G, and y
under an infinitesimal gauge transformation does
not involve the fields anymore. In the non-Abelian
models based on SU(N) one can consider a gauge
condition similar to (20), which also makes the
theory renormalizable by power counting.'* In
that case the changes of these components under
an infinitesimal gauge transformation do depend
on the fields. However, one can show that, except
for the vector fields, these fields are the same
fields that were required to vanish by the gauge
condition, so that A, reduces to the Faddeev-Pop-
ov factor of the conventional gauge theories.

It is obvious that these special gauge conditions
(20) will break the manifest supersymmetry of the
functional integral. Supersymmetric gauge con-
ditions are, however, very important for the fol-
lowing reason. Provided that the generalized
Ward-Takahashi (or Slavnov-Taylor) identities of
the local gauge invariance can be proved with the
same rigor as for the conventional gauge theories,
something which requires the existence of a suit-
able regularization scheme, then the S matrix can

be shown to be independent of the choice of the
gauge condition. In that case the supersymmetry
of the S matrix will be preserved, provided that
there is a manifestly supersymmetric quantization
procedure. A proof of the renormalizability could
then hopefully be carried through in a more suit-
able gauge which does not need to be supersymme-
tric. For instance, in the non-Abelian models
based on SU(N) with only vector superfields there
is a special, nonsupersymmetric gauge in which
the Lagrangian reduces to the Lagrangian for
SU(N) gauge fields coupled to Majorana spinors

in the regular representation.'®!'! Since the latter
case is a conventional gauge theory its renormal-
izability is well established. Hence if the Ward-
Takahashi identities can be proved rigorously,

and if there is a supersymmetric quantization pro-
cedure, which we will discuss in the next section,
non-Abelian gauge models for only vector fields
are supersymmetrically renormalizable.

IV. CONSTRUCTION OF A SUPERSYMMETRIC
GENERATING FUNCTIONAL

As was previously explained, it is important to
study a manifestly supersymmetric quantization
for gauge theories. For this reason we will con-
sider the construction of a supersymmetric gen-
erating functional for the Green’s functions in this
section. It is clear that for the gauge condition
(17) to be supersymmetric the functionals C,
should transform as chiral superfields under
supersymmetry transformations. To construct
such superfields one can make use of the opera-
tors D(1 +vy,)D which, if applied to a general super-
field, lead to left- and right-handed chiral super-
fields. Using this observation and the fact that S’
and $? are already chiral superfields one can
easily construct supersymmetric gauge conditions
that lead to a nonsingular gauge. An example of
such a gauge will be given at the end of this sec-
tion.

Let us now write the functionals C, as a linear
combination of a field-dependent part C, and a
field-independent part c,:

C,~C,+c,.

Because the functional integral (18) was indepen-
dent of the choice of the gauge, it must also be
independent of ¢,. Following ’t Hooft'® we can

then integrate the functional integral over the in-
dependent components of c, (x, 8) and c_(x, 6) with
an arbitrary weight function. In order to maintain
the supersymmetry we choose the following invari-
ant weight function:
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exp (ifd"x%[m(x, 6)c_(x, 6)]n> ,

where p is an arbitrary parameter, and the sub-

script D denotes the D component of the super-
field expression. Integrating the functional inte-
gral over c, and c¢_ removes the 6 functions, and
we find

(outlin)ocj[dV][dS‘][dSz]AC[V,S‘,SZ]exp[i fd‘*x (,eim(x)+ %[c+(x, 6)C _(x, e)]Dﬂ .

The next step is to describe A by loops that are generated by a set of unphysical fields, the so-called
Faddeev-Popov ghost fields. In order to achieve this, we notice that the Jacobian given in Eq. (19) is pro-

portional to the following expression:

9,
J(x(x’, 0"), 6(x’, 6")) < fda‘ db,daj dbl, exp <ia,f a—;f a; +
i

The parameters a; and a} are anticommuting,
whereas the parameters b, and b/ are commuting.
We have to arrange these parameters such that
this expression becomes manifestly supersymme-
trical and Lorentz invariant. This can be achieved
by assigning the ghost fields a;, a{, b,, and b} in-
to chiral superfields which are anticommuting. In
other words, the spinless and spinor components
of these superfields are to be quantized according
to Fermi-Dirac and to Bose-Einstein statistics,
respectively. The presence of the commuting
spinor Faddeev-Popov ghost fields is character-
istic for supersymmetric gauge theories. Because
the components a,, b, and a}, b, are independent,
the ghost fields have an orientation, in the manner
of the ghost fields in the conventional gauge theor-
ies.2* Hence, we introduce chiral anticommuting
superfields:

®,(x, 0)=expF 67 v;6)[z ¢, (x)+68,(x)
+30(12y,)08,(x)]. (22)

The spinor components of anticommuting fields
are not defined in the standard way (5) in order

to maintain the relation <I>I =& _. The spinor com-
ponents have also different parity assignments.
Hence we will introduce two such Faddeev-Popov
superfields ¢, and &) with components ¢, ¢, §

and ¢’, ¢/, &/, respectively. In addition, we have
quantities formally denoted by 6C,/8A, and 6C_/

J

Ax;
zb(; 86' —%Lbg+1iaj 55,—b o 3yt

1

Y E%a,) . (21)

I

6A,, which are defined by the change of the super-
fields C, and C_ under an infinitesimal gauge
transformation with parameters A,. These quan-
tities may contain covariant derivatives as well

as ordinary space-time derivatives. Because the
supersymmetry and the gauge symmetry are com-
patible, the expressions

6C, & , 5Cs

A, T+ BA_*-
and

5C_ . oC._

oA, T+T A, 2-

are, respectively, left- and right-handed chiral
superfields. The simplest way to find a super-
symmetric expansion that is proportional to the
Faddeev-Popov factor A, as it was represented
in Eq. (21) is to construct the F components of

6C oC,
! + !
& oA, e, + @ A _
and
oC _ oC
’ 4 -
38 _GA <I>_+(I>_6A+ $,

Hence we have arrived at the following expres-
sion for the generating functional W[J] for the
Green’s functions:

wlJ]= J[dV][dS l[ds?][d®][d®’ ]exp%zSeff[V S1,8%,8,®']+ zjd“ [Jo(x) V(x) +J5(x) S*(x) +T5(x) S*(x) % (23a)

where Ser= f d*x L.(x), and £ is the effective Lagrangian given by

., 6C oC,
L= £, +1p(C.CYp +i (<p; o g, var 200

.5 _g K=o, ) . (23b)
F

"5A '6A
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The subscripts D and F denote, respectively, the
D and F components of a superfield expression.
Usually the superfield C has an intrinsic negative
parity. For this reason the last two terms in Eq.
(23b) have a minus sign, so that parity will be
manifestly conserved. The source terms in the
generating functional (23) are a formal expression
for the products of all independent components of
the superfields V, S', and S* with a corresponding
source term. We can write this in a supersymme-
tric form by arranging the sources in superfields,
as we will do in the next section.

Rather than continue this formal discussion we
will present an example. Let us consider the fol-
lowing gauge condition in the Abelian gauge model:

C.(x,0)=5D(1 =) DV(x, 6) =V2 p'[Si(x, 8) - S%(x, 6)],

(24)
C_(x,0)=C(x, 6)T .

Under an infinitesimal gauge transformation C,
transform according to

C,~C,+ % D( —y,) DA_ -V ip'g(SL+S3)A, ,

i

c_.~C_- i

D(1+v,)DA,+V2 ip'g(SL+S2)A_,
where A, were defined in Sec. II. Because of the
field-independent terms in this result, one can
easily verify that the gauge condition (24) is non-
singular, at least in perturbation theory. The

— |
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Faddeev-Popov Lagrangian according to Eq. (23)
is given by the F component of the following ex-
pression (remember that 6C/5A was defined as a
right derivative):

-3il®: D1 -v,)Dé_+&.D(1+y,)D&,]
+V2 p'g[®USL+S2)®, +d (SL+S2)®_]. (252)

We can write this in a more explicit form ex-
pressed in the independent components of the vari-
ous fields:

Lrp=—50,0'0,0"-50,0'70,0-T'Fr+38'ET+3ETE

+1p'g[d' oM +¢"TOTMT + (¢ E+ £ 9+ 2T ¢, )H

+(¢:f£1'+ E'T¢*+ZEL§_)HT
-2(¢'¥ £, - T, L

-V, 9+EL Y _oM)]. (25b)

Here we made the following redefinitions:

H=%‘/-2—(H1 "'Hz)) H'='12'\/-2—(H1 "Hz),
Y=3V2 (¥,+¥,), ¥'=3V2 (¥, -¥,), (26)
M=3V2 M, + M,), M'=3V2 (M, -M,).

The gauge-fixing terms in the Lagrangian,
$p(C,C_)p, give only contributions that are quad-
ratic in the various fields. Taking these terms in-
to account and using Eqgs. (11), (13), and (14), we
now find the following lowest-order Lagrangian

£o== 518, HP - 3T 9 W + 5| MP+ 5m(HM+H™M" = T%) - 5(1+p)X ¥ x =309 #3%y —px8™ ~ 2(L +pp") &' F ¥’
~pp' T (Fx +8%9) +3m¥' ¥’ — 53, B,)* +5(1 +p)(8, B,f — 3ipp’ 8, B,(M' =M'") +3(1 +pp")(IM'F -5, H'F)
- 3p[(®, FP +(®,GF]-3pp'[0, Fo(H' +H'")+id,G8(H'-H'")]
+3(1+p)D? +5p(82A)2 +pDa2A + 5pp’ (D +32A)YM' + M' M) = sm(H'M' +H'"™M'") . 2mn

The lowest-order propagators in this gauge, which we will use in the subsequent sections, follow immed-
iately from Eqs. (25) and (27). We will write the propagators in a matrix form. A straightforward calcula-

tion leads to the following result:

1 -m

1
D(Hg, Mg; q) = Zon? |: } , D(H;,M;q)

-m -q°

-1

SWa)=

’

~id

"’Nl —-

1 1 m
“Feer|m o-q |

q2
1 (Lepid _ip”
2

Sk ¥, ¥%59)= | od* (4 +im)

0 p'd
L E(d+im)

d+im

q*(d +im) ’
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Pi(b _wm)_qqu (i+ pp” ) -p'iqy  -p'miqu  —p”miqy |
@\ ¢ ) pg’ \¢" ¢+m®] @ +m® ¢ +m®)  ¢*(g* +m®)
p'iq, -¢ -m -p'm
D(B,, M}, B}, G; )= @ m Tt Gt gt :
p'miq, -m 1 p’
q2(q2+m2) q2 +m2 q2 +m2 q2+m2
plzmiq —p'm pl 1 pr2
L (G +m?) @ +m® E+m? o " @ im? ]
-1 %} 0 0 0 1
____}_ 1+P_ pl2 _p; plm _przm
T pgt  @A(@*+m®)  @F+m® @@ +m?) (@ +mP)
' - _pl —612 m -p'm
D(D,A,Mpz,Hp, F;q)= 0 m 7 +m? E+m? E+m® ’ (28)
0 plm m 1 _pl
q2 (g% +m?) q® +m? q% +m? q% +m?
0 _plzm _plm _pl __1_—+ pIZ
L qZ(qZ +m2) q2 +m2 q2+m2 pqz q2+"’12 ‘J
1 1
D(¢pgr;a)=D(¢r;9) = ' D(tg;9)=D(&1;9)=-1, S(g;9)= 7

The subscripts R and I denote the real and imagin-
ary parts of the various fields.

Because these propagators (28) were constructed
in a supersymmetric gauge there are relations
among them which originate from the Ward iden-
tities of the supersymmetry. These can be worked
out in the standard way,® using the supersymmetry
transformations of the fields that are listed in the
Appendix.

We have presented this particular gauge condition
(24) because it is nontrivial in the sense that the
Faddeev-Popov ghost fields are interacting. In
non-Abelian gauge models the ghost fields are al-
most always interacting because of the gauge trans-
formations. For practical purposes the general-
ized Landau gauge is very convenient. This gauge
corresponds to the gauge condition D(1+v,)DV (x, 6)
=0, and the propagators in this gauge can be ob-
tained from those in Eq. (28) by taking the limits
p—= and p’=0. As one can see, the propagators
simplify considerably in this limit, and the fields
F and G are even eliminated.?s

V. GENERALIZED WARD-TAKAHASHI IDENTITIES

In this section we will derive the generalized
Ward-Takahashi identities of the local gauge sym-
metry in a supersymmetric way. For the conven-

tional gauge theories such identities, which are
also called Slavnov-Taylor identities, have been
proven in various ways. In the framework of the
path-integral formalism there have been several
more or less general proofs by Fradkin and Tyu-
tin,?® Slavnov,?” Taylor,?® and Lee and Zinn-Justin.?®
In addition there is a rigorous combinatorial proof
by ’t Hooft and Veltman.?° The Slavnov-Taylor
identities contain the full symmetry contents of

the gauge symmetry, and are the essential ingredi-
ent in the proof of the gauge independence and the
unitarity of the S matrix.

For supersymmetric gauge theories we will for-
mulate the generalized Ward-Takahashi identities
for the supersymmetric generating functional that
was constructed in the previous section. For nota-
tional reasons we will write the source terms in
the generating functional in a supersymmetric
form. Hence we have the following superfields
Jy(x, 8), Ji(x, 8), and J%(x, 6) and we write

Jd“x(JvV)D + fd4x(J§+Sl++J§_S‘_
+J5,55+J5_S%)r .
We now consider a special field-dependent infini-

tesimal gauge transformation that is determined
by the parameters A,(x, 8), which are subject to
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the condition

e oC oC
= 2 Ry
A, oA, A*+6A_A‘ R
where A, is independent of the fields. We will as-
sume that under this special gauge transformation
the integration measure [dV][dS!][dS?]a [V, S, S?]

(29)

is invariant. For the conventional gauge theories
this result has generally been proven by Lee and
Zinn-Justin,?® and we do not expect complications
from the anticommuting character of some of the
quantities that are involved. Performing this
special gauge transformation on the integrand of
the generating functional, we find

J

J-[dV][dsl][dSQ]Ac[V: S', 8% exp { i fd4x,[£inv+%p(c+c dp+UyV)p+ee]x’) }
x j d*x{3p[C.(x, ) A_(x, 0) +C_(x, 0) A,(x, 6)],
+[JIvlx, )(iA _(x, 8) = iA(x, O)]p +[J5,(x, 0)igA (x, O)S}(x, O)++ - ],}=0, (30)

where we used the invariance of the integration measure. The dots in this equation represent the contribut-
tions of the additional source terms. This result must be valid for all possible values of K*(x, ).

The next step is to write this equation in a form that no longer implicitly depends on A (x, 6). Before do-
ing that we prove a useful identity. Consider the expression

j [av][ast][as®][a®][a®’] F[V,S", S?] (x, e)fd“y[‘bi(y, )ALy, 6)- 2.3, 0)A_(3, 0)]¢
X exp (iseff+ iJ'd“x'(JvV)p +ee ) ,» (31)

where F is an arbitrary functional of the fields V, S!, and S?. Using Eq. (29) this is equal to

1 2 ’ 1 Q2 4 16C+_ Iéc-> ( 16c+_ /_6&_ ]
I[dV][dS llas®][a®][d@’) F[V, S, 2@ (x, 9)fd y[(% sA, ~2-5A, ) A \®ign m %l 5as JA- r
X exp (iSeﬁ+i J.d“x’(JVV)Dw . ) .

The quantities ®(5C,/6A,) - ®.(6C_/0A,) are, of course, related to the derivatives of the functional ex-
pression exp(iS .¢) with respect to the components of &,. Making use of this we find that after integration
by parts (which is also valid for integrals over anticommuting parameters), Eq. (31) is simply given by

J’ [av][ds'][as*][a®][a®’] F[V,S', S*] A (x, 6) exp <iseff +1 J’d“x’(JVV)D e ) )

If we now use this in order to replace the implicit A, dependence in Eq. (30) we find the generalized Ward-
Takahashi identity for the generating functional:

J’[dV][dS‘][dS"’][dQ][dé’]exp (isefﬁ» i f dix'JyV)p+ ¢ )
X jd“x { 1plC.x, O)A_(x, 8) +C _(x, 6) A,(x, 0)]p

+ J‘d‘;y[[JV(xy 9)(i@_(x, 9) - id’.@(x, 9))_]1) +[J§+(x, 9)zg<1>+(,x, G)Si‘(x, 9) E ]F]

x[®1y, 0)AL(5, 8) - 2%y, O) A_(», 9)]1:} =0. (32)
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This identity is supposed to be valid for all values of A,. One easily recognizes that the basic structure of
Eq. (32) is completely analogous to that of the generalized Ward-Takahashi identities for conventional
gauge theories. There is, however, one important difference concerning the proof of these identities. In
the conventional theories one has a very powerful regularization procedure for Feynman integrals, the
dimensional regularization, and it is this aspect that makes the proof of the generalized Ward-Takahashi
identities rigorous. For supersymmetric gauge theories such a powerful method is lacking,'” and the
identity (32) should be looked upon as a formal result.

As an illustration let us calculate the Ward-Takahashi identities for the propagators in lowest order,
with a gauge condition that was defined in Eq. (24). The identities for the propagators are found by taking
the derivative with respect to the sources and subsequently taking them equal to zero. In lowest order the
pertinent part of Eq. (32) is represented by

J aviiastasas]las | expiis, )

X _[d“xd“y{[[J,,(x, OV(x, )]+ (I3, (x,0)S, (x,0) + - - - ]£]

x5p[C(y,0)A_(v,0)+C_(y, A (y,0)],
+[Jy ()@ (x, 6) = & (x, O], [2 Ly, O)A (v, 6) - &y, A (y,6)].}=0.

Let us first consider the expression $p(C A iod 0
:hC_Y\)D and (.<I>:1.X*— ®'A),. The various terms in Sou 0,850 | —pg? V= [=ida=) |
ese expressions that are proportional to the same
independent component of 7&*, carefully taking into op'id 0
account the commuting or anticommuting character
of the various fields, are given, respectively, by

- piq, iq,47
p¥F +3pp'@*(H'+H')  and -3(¢'-¢") ’ 0
1 ' ' ’ ’ ’ , D(B,,,M;,H;,G;q) PP = ’
pd%G +3ipp'®H'-H') and -3i(¢'+£™), 0 0
pD+pd°A+3pp'(M'+M™) and -3(¢'- ¢, 0 0
pd, B, -%ipp'M'-M") and -3i(¢’'+¢"), q
-pxB+po*P— pp'T'8 and T’ 0 0
If we denote the corresponding elements of the D(B,,M;,H;,G;q) 0 -0 ,
first and second column by X! and Y*, respective- : op'q? 0

ly, (i=1,...,5), we find the following identities )
for the two-point Green’s functions: —Pq 'I_J

(AEX () = 3((9 - NWIYH(y)) =0,

— P - ™0
WX (9)) = €Y (9)) =0, o -
<F(x)xf(y)>-§<(&— 5')(x)Y.‘(y)>=0, (332) p0, A ML H i) | o | = | 0 | )
GEX (N +5{(E+ENWY () =0, 0 0
B,()X ()= 2(3,(¢+ NIV (y))=0. 0 0

v J g

For all the remaining components of V, S!, or §?

we find o W (o)
(Px)X'(y)=0, (33b) 0 0
where P denotes the particular component. Using D(D,A, M"v H;, F;q) 0 = lo
the explicit form of the propagators of the Fad- ‘s
deev-Popov ghost fields, as given in Eq. (28), we -pbpq 0
can express the identities (33) that are nontrivial -pq° -1
in a matrix form: - J - J
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One can easily show that these identities are in-
deed valid for the propagators (28) that we cal-
culated in Sec. IV.

VI. AN EXAMPLE OF A CLOSED-LOOP CALCULATION

From the Ward-Takahashi identities that were
discussed in the previous section the gauge inde-
pendence of the S matrix can be derived along the
same lines as for the conventional gauge theo-
ries.?**® To demonstrate how in practice the can-
cellations among gauge-dependent parts occur, we
will present the calculation of the propagator for
the field ¥ as defined in Eq. (26) in the one-loop
approximation. We will perform this calculation
in the gauge that was defined in Eq. (24). Because
the Faddeev-Popov ghost fields are interacting in
this gauge, this offers us an opportunity to dem-
onstrate the role that is played by the spinor ghost
fields ¢ in actual calculations.

Let us first recall the pertinent part of the in-
teraction Lagrangian (14), which we have divided
into three terms:

18 [APTBY - (P, vs0) Ty ,vsV)], (34a)
- 3 glATBY + T(H - iv H ) (x + By) + TA(H p +iv,H Y
+W(Mp, - iy, Mp)y+iB Ty v, ¥'], (34b)
30'g(=id TE — Ty £ +iT ¥, +Tvs¥dg) .  (34c)

These three terms give rise to the self-energy
diagrams (a), (b), and (c), respectively, that are
depicted in Fig. 1.

Using the lowest-order propagators that were

1. 2 1 . 2 .
g g = im) (39 = g7 41 + (B4 im) (57 = )]

2

_1l,2 p
R emD) g +m

+iB(4p*+ 3% — 4mPp® + 2mPqP)—id (2p%q° + 2m2 P + p*
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(a) \__/

(b) w_

(c)

FIG. 1. Self-energy diagrams for the field ¥. The
solid lines correspond to fermions and the dashed lines
to bosons. The oriented dashed and solid-dashed lines
denote, respectively, the spinless and spinor ghost
fields.

listed in Eqs. (28) we can easily calculate the con-
tributions of the various diagrams. The first part
of the interaction Lagrangian (34a) whose second
term gives no contribution gives rise to the follow-
ing expression:

i J oo ).

The momentum of the external fermion is denoted
by %,.

We distinguish three different contributions from
the second part (34b). The first contribution in-
volves at least one A¥¥' vertex, the second one at
least one B, ¥¥' vertex, whereas the third one
originates only from vertices that contain H' or
M' fields. These three different contributions are
given, respectively, by

(35)

2)[,;’,; (3p4 - q4 +k2q2 + 5k2p2 +p2q2)

- k2p2)] ’ (36)

e (——(zé+m>+ *‘”‘% ~ )~ 4m - 21p)
tigt +f,::)(qz+m [m(g* - p* - g°k2 +p*k? + 3p?q?) +ikq?(p* = 2m?) +id (p* - p** +2m*k* + 2p%¢%)], (36)
%g"’m[—(ilé+m)p2+p(14+m)p2+(1+p)(i4+m)(q2-kz)]
8 - G+ g -] (36

The momenta of the internal fermion and boson

lines are denoted by p, and ¢q ,, respectively, and

an integration [d*pd%q 5% p +q - k) is understood.
Using the same definitions, we finally find the

r

following contribution from the interactions with
the ghost fields (34c):

2lzzﬁ
gppz

(37)
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where p, and g, are the momenta of the internal
spinor and spinless ghost-field lines.

We will now establish the gauge independence of
the mass of the field ¥ in the one-loop approxi-
mation. The mass follows from Egs. (35)-(37) by
going to the mass shell: ¥ =im and k?=-m?, If
we use symmetric integration, the p- and p’-de-
pendent contributions of Eq. (36") will simply van-
ish on the mass shell. The same is true for the
p-dependent terms in Eq. (36). Finally, the p-de-
pendent part of Eq. (36) cancels exactly the p-de-
pendent contribution from Eq. (35), after symme-
trical integration and on the mass shell. The can-
cellation of the p’-dependent contributions is
somewhat more complicated. The p’-dependent
terms of Eqs. (36) and (36') are given by

p'?
p2q2(p2 +”,l2)(q2 +m2)
xlm@mp? +5q* = p*)= iK(2p*+ )~ 2id (b°g* - )],
where we allowed ourselves to change the integra-
tion variables p —g¢q, and took k%=-m?. Using the
same arguments once more, ¢ can be replaced by
$($+4)=%im, so that we find on the mass shell

1,2
28

’2

p
PP (p+m?)(q® +m

z8°m zy(p* +3m*p* +p%q* + ')
12 12
+ L 2IIL p .
28 24"
This then cancels the p’-dependent parts of Egs.
(35) and (37), respectively, on the mass shell.
Hence we find that the mass of the field ¥ is
gauge independent, and given by

-1
—Egzlu f(

q°(q® +m?)

ig? 1
My=m <1 - %(26;)“ qu"qz(qz - 2kq> ’

which is logarithmically divergent. The infinite
part is in agreement with a result previously
found by Wess and Zumino® in a different gauge.
Of course, we should mention that the results of
this section were sometimes obtained by manipu-
lating linearly divergent integrals. However,
under the assumption that this calculation can be
made rigorous by using a regularization scheme,
the gauge independence of a physical quantity has
been demonstrated.

VII. CONCLUSIONS

We have formulated the quantization procedure
for supersymmetric gauge theories, and we have
found that one needs spinor ghost fields in addition
to the usual spinless Faddeev-Popov ghost fields.
All these ghost fields can be assigned to scalar
chiral superfields that are anticommuting, i.e., the
spinless components anticommute, whereas the

spinors commute. We have discussed supersym-
metric gauge conditions in some detail, and we
have shown how they lead to a supersymmetric
generating functional for the Green’s functions.
The Slavnov-Taylor identities for this generating
functional have been formulated and to demonstrate
the consistency of our approach we have presented
several explicit examples.

Our discussion was mainly in the context of the
Abelian gauge model, but the generalization to the
non-Abelian models is obvious.

Clearly, the formulation of the quantization
procedure is only a first step to the more intricate
question of the possible renormalizability of the
supersymmetric gauge theories. As we have point-
ed out earlier, one important ingredient in the
study of renormalizability is the existence of a
regularization procedure, preferably in a class of
gauges that contains both supersymmetric gauges
and the physical gauge.

It would also be of interest to give an independent
formulation of the quantization of these theories in
the context of the canonical formalism.

Note added in proof: There have been several
recent publications® dealing with supersymmetric
gauge theories quantized in a manifestly super-
symmetric way. Some of them claim to have
proven the renormalizability in such gauges.

ACKNOWLEDGMENT

We are grateful for valuable discussions with
Dr. Y. Dothan, Dr. D. Z. Freedman, and Dr. B.
Zumino.

APPENDIX

In this appendix we will list some formulas that
are useful in dealing with superfields.

For anticommuting Majorana spinors 6  one can
derive the following identities:

0,0,=3[(86)85, + (Bv50)(¥5) 5
+(Biy 7500 (Y ,¥5) ga) »
00050,=3(00)[0508, = (¥5)sa(56), (A1)
= (@7 ,75)8a(i7 ,¥50) ],
0,050 ,0,=75(06)*[65005, = (¥5)ga(¥s)op
= (17 ,75) (1Y u¥5)op) -

Subsequently we list how the generators of the
supersymmetry transformations G, act on the
components of a vector field and a commuting or
anticommuting scalar chiral field, which were de-
fined in Eqgs. (4), (5), and {22), respectively. We
consider the effect of an infinitesimal transforma-
tion given by €G, where ¢ is an anticommuting
constant Majorana spinor:



12 QUANTIZATION OF SUPERSYMMETRIC GAUGE THEORIES 1641

Real Vector Field V
bA =€y,
6= (BA +iBys+F +iysG)e ,
oF =&(x+8Y),
6G =i€y,(x + BU) (42)
0B, =i€vy(y,x+0 ),
6x=De-3i(8 ,B, - 8,B )Y ,7,Ys€ ,
6D=¢€hy;

Chival Field S
SH=€(1+y,)¥,
oW =33[(H+H") - v,(H- H")]e

+3[(M+MY) +y,(M - MY)]e,

OM=€B(1+v,)¥:

(A3)

Anticommuting chival field ®
6¢=&(1+75)¢,

6¢==38[(¢— o) —vs(p+dN]e
(Ad)
—2l(E- N +y(E+EN]e,

SE=TB(L+v,)C.

Here H and M and ¢ and £ correspond to compon-
ents of the left-handed fields, S, and &,, respec-
tively, and we have S'=S_, &'=4¢_.

Finally, we give the superfield expressions of
the quantities 3Dy ,(1+v;)DV(x, 6),
- 3D(1£y,)DV(x, ), and — 3$D(1 +y,)DS (x,0) :

iDy (1 +y)DV(x, 0) =i(B,, +id ,A)+ B[y ,vsx ~ (1 +74)8 0]

— 20(1 +v,)69 (F +iG) - 30iv,v,0(6,,D+19 ,8,A+98 B, +€,,,,0,B,)

_ 1-
- (99)3<8“x— -é*/svuﬁx+—y*“

8u5¢> - 5(06)*[20, D +0,8%°A+i(9°B, - 28,3,B,)],  (A5)

2
- 3D(1 £¥5)DV(x, 6) = exp(+398y,6)[(F +iG) + B(1 Fv,)(x + BY) +30(1 Fv,)6(D + A Fi9 B )], (A6)
— $D(1+v5)DS (x, 6) = exp(308y50)[M + B(1 — v5)8¥ +38(1 - v,)09°H] . (AT)
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