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An ambiguity in the derivation of the equation of motion of a charged point particle is exhibited. Using

momentum conservation in the form I T""dS„=0, one deduces the Lorentz-Dirac equation by integrating over

one surface, and a diferent equation, with variable rest mass, by integrating over another. In the second case,
the variability of the rest mass exactly compensates the Larmor radiation, and the Schott term is absent. In
both cases, infinite mass renormalizations, of identical form, are required. These renormalizations are both

covariant, but since they are the only mathematically insecure parts of the derivations they are obviously

responsible for the ambiguity. A distribution theory of the problem is set up to resolve the question. This

theory, at its present stage of development, has its own types of arbitrariness, but making very natural choices,
a perfectly definite and everywhere finite formulation results, out of which the Lorentz-Dirac equation

emerges uniquely. And in this form, as an expression of p„T""= 0, the theory clarifies the energy-momentum

exchanges in the problem.

INTRODUCTION

The purpose of this paper is to consider anew
the classical, that is, special-relativistic but non-
quantum-mechanical, equation of motion of a
charged point particle in an external electromag-
netic field. The original motivation was to under-
stand precisely how energy-momentum conserva-
tion is realized in the Lorentz-Dirac equation

where a" =—v", and the dot means differentiation
with respect to the proper time 7. The physical
interpretation of the Schott term, -', e'a", has al-
ways been puzzling, and because this term is
responsible for the non-Newtonian features of
Eq. (1), the microscopic noncausality, preaccel-
eration, and runaway solutions, its elucidation
and, indeed, the confirmation of its existence are
important.

The Schott-term puzzle, the difficulties associ-
ated with it, and a certain intangibility in the prob-
lem, have stimulated repeated discus-
sions, "'"'"'"'" which continue to the present
day, "'of this classical system. Although these
discussions have been theoretically motivated,
recent astrophysical research has begun to lend
experimental significance to them. ' This paper
is in the first tradition and tries to unite an ac-
ceptable (meaningful) physical basis with an ac-
ceptable (divergence-free) mathematical formal-
ism.

An understanding of the classical charged-par-
ticle problem has ramifications in quantum me-
chanics as well. Traces of the Schott term, and

the term proportional to the Larmor radiation

rate (3e'a'), are conspicuous by their absence in
quantum mechanics. Indeed, no single-particle
relativistic theory exists. It is to be hoped that a
clarification of the classical theory will point the
way to a quantum-mechanical formulation that
can answer these questions.

Dirac's discussion' of Eq. (1), when it is looked
at with an eye to understanding the physical mean-
ing of the input assumptions, has two problematic
features. He integrated the electromagnetic ener-
gy tensor, 0, over a narrow tube surrounding the
particle's world line; his electrodynamics follows
from equating this integral to a specific function
of particle variables —the choice is apparently
arbitrary. Also he subtracted an infinite coeffi-
cient in the integral from an undetermined con-
stant to produce the rest mass of the particle
(the first covariant mass renormalization). This
scheme of argument was an open-ended one, which
allowed full freedom to creative intuition at its
critical stage.

After the event one ean see the pattern. Dirac's
discussion can be reformulated as an instance of
the very general expression of momentum conser-
vation given by

In the present case T=K+8, the total encl gy ten-
sor written as the sum of the separate tensors
for the particle and electromagnetic field, and dS
is the differential element for the three-surface
enclosing a volume of space-time. Such a formu-
lation is given by de Groot and Sutiorp. hand the
necessary simple modificati(~n:~f Dirac argv. ment
will be outlined below. The mas. ' .enormalization
is still required as befor=-.
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When the problem is formulated as in Eq. (2),
the form of the retarded solutions to Maxwell's
equations very strongly suggests applying (2) to
a different surface: a tube surrounding the world
line, but whose ends are light cones rather than
spacelike planes. If this is done, the integral can
be calculated exactly, instead of approximately,
and much more easily. The equation of motion
which emerges, however, is different; not (1),
but (see also Refs. 6 and 7)

The need for mass renormalization in the appli-
cation of momentum conservation as expressed in
Eq. (2) reminds us forcefully of the singularities
in T which prevent pure mathematics from pro-
viding protection against inconsistencies. It is
especially distressing that it is not sufficient to
renormalize covariantly, since this itself ean be
done in different ways. The most promising
means of getting a mathematically consistent
scheme is to use distribution theory. " In p'ace
of (2) we shall use—(mv") = eF",„',v„——e'a' v",

dT
(3)

after a mass renormalization of identical form to
that needed in the previous treatments. Contract-
ing (3) with v„, we find that it is equivalent to

m = eI,„,v,
d~ pv

d7
(4)

and

dm=-'e
dT

(5)

0
dp~0~ g 2 ~ CCp(0)

( ) (6)

contains a simple statement of energy-momentum
balance between the elements of the problem we
think we know something about: mass, Larmor
radiation, and Coulomb force. In particular, the
first equation equates the energy loss in Larmor
radiation to the decrease in rest mass, the exter-
nal field doing no work in the instantaneous rest
frame. But if this view is correct, there are no

energy-momentum changes to take account of, in
the "near, " as opposed to the asymptotic, electro-
magnetic field of the particle.

Before attempting to resolve the contradiction
between Eqs. (1) and (3), we note that the latter
gives a comprehensible description of force and

energy within classical electrodynamics. The
Schott term is absent, and hence so are the diffi-
cult features associated with it. The variability
of mass is negligible experimentally for particles
of classical size, ' and for fixed mass elementary
particles, one would argue that classical theory
was inappropriate anyway, and that only in quan-
tum mechanics could radiation be consistent with

unchanging mass. The need for quantum mechan-
ics in a description of the hydrogen atom, precise-
ly because the radiation cannot be neglected, sug-
gests that the boundary between the classical and

quantum-mechanical theories is in the region
where radiation assumes importance. Finally, Eq.
(3), expressed in the instantaneous rest system
of the particle [identified by the subscript (0)]

to which (2), at least in the differentiable case, is
equivalent by Gauss's theorem. The left-hand side
of (7) is defined, as a distribution, by

in terms of a definition of T. The problem then
becomes one of defining T, especially its most
singular terms, varying as p

' and p
'

(p is the
distance, in the rest frame, of the particle from
the field point). Adopting what appears to be the
most natural definition (but without being able to
claim mathematical uniqueness), the whole prob-
lem and its solution become well defined, and, for
this choice of 7, the ambiguity in the equation of
motion is settled in favor of (1), the Lorentz-
Dirac equation. No mass renormalization of any
sort, and certainly not an infinite one, is needed
when the problem is formulated in distribution
theory terms.

This is not the first time that distribution theory
has been applied to the problem of electrodynam-
ics. Some time ago Taylor" sketched such a
theory for the electromagnetic energy tensor 6,
and showed how Eq. (1) might be derived. His
technique was a formal use of Hadamard's method
for extracting the finite parts of divergent inte-
grals. Here, precise definitions of the distribu-
tions corresponding to functions with singularities

p
' and p

' are based on analogy with the one-di-
mensional case, for which a quite different char-
acterization reproduces the Hadamard formulas.
To the extent that the two theories may be com-
pared, they agree; this itself is interesting be-
cause the regularization of divergent integrals is
arbitrary up to a distribution with support on the
points of singularity. What is still needed, how-

ever, is a convincing physical or mathematical
principle to cut through this arbitrariness and

justify (or not) the choices made here and in Ref.
10.

EQUATIONS OF MOTION

The notational conventions we use are x' Cartes-
ian spatial coordinates in some inertial frame,
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xo the time, with c= 1, &„=s/»", a spatially fa-
vored special-relativistic metric with g'~ = 5'~,
g~= —1, the scalar product of vectors a'b = a"&&

= a'b'- a b . In most equations, generality, covar-
iance, and clarity are all served best by omitting
the scripts on vectors (t(, a, u, ft, z, dS, B, s, p, z,j)
and tensors (F,8, T, IC, A, g, uu, vt(, etc. ). The sym-
bols may then be read as abstract vectors and
linear operators (symmetric except for F), or as
column (or row) vectors and matrices in a par-
ticular coordinate system. Besides the examples
above, E v, ~'T, etc. , are vectors with com-
ponents I'""v„, ~,T~, etc. Only when a particular
frame, e.g. the rest frame, is used are the scripts
necessary. Tensors of the form (n, P) and [u, P],
using anticommutator and commutator brackets,
have components &"P"+P"n" and n"P"- P"e", re-
spectively.

The four-vector world line of the point particle
is denoted by z(r), a function of the proper time

calculate the divergences

8 8,„,=0, (12)

(13)

If we could calculate 8 ' e „, there would be no

problem; its formal expression contains the fac-
tor 5(x)/r', which inhibits all but the boldest.

To interpret e, one uses a timelike unit vector
~ and a spacelike unit vector s, orthogonal to t.
Then - e ' t is the four-momentum density, an6
+e s is the four-momentum flux through a 2-
surface with normal s, both these quantities being
four-vectors but referring to measurements in a
frame with time axis ~. The signs are consistent
with energy-momentum conservation expressed
by (2).

Dirac' integrated J8 dS over the walls (with
spacelike normal), but not the ends, of the tube

dz = dz ' cd = —d~

and so the velocity v=-~ satisfies

v'= —1,

which, by differentiation, gives the relations

a'v=0,
a'+a' v=0

for the acceleration, and a. In the instantaneous
rest frame, v&+=1, a&+=0, and a&'0&=a'.

The various discussions that will be given be-
low, of the equation of motion problem, have in
common the Maxwell-Poynting formulation of
electromagnetism, with Dirac's point particle
source

e((x(=e J d 'u( '((((x- ( '((.

We use the solution

P-P +jP (10)

of Maxwell's equations, which represents a free
external field and the retarded field created by
the source, to calculate the electromagnetic ener-
gy tensor 8 = e,„,+e..+e„,:

8((P (F((aF(I I gllF ~8F )
4w

The notation (except for the sign of 8 which has
been changed to make e '&0) and the development
of the specific forms of I' „,and e„, needed later,
we take as read from Rohrlich's book. "

From Maxwell's equations and (11), one can

FIG. 1. Two space-time volumes enclosing the portion
of the particle's world line between T& and &2. (a) the
narrow tube with Qat ends used by Dirac, (b) finite tube
whose ends are light cones.



12 RESOLUTION OF AN AMBIGUITY IN THE DERIVATION OF. . . 15'r9

[see Fig. 1(a)]

(14)

surrounding the portion of the particle's world line
between &, and ~2. This integral represents the
net outflow of electromagnetic momentum from
the tube and so should equal the difference in mo-
mentum contained within it at the two ends. Dirac
did not explicitly use this interpretation, but only
the fact that the integral must equal the difference
in values of some particle state function at the
two ends. Thus he had, for some vector B,

6 dS= lim
1

T2 g2g
= lim d&

0 2r
1 7l

~ ~
~

T2 g2
8 dS= dt —eF, v- ,'e'(a -a'v)-+ext 26'

1

d~B,
T1

(15)

T2
8'dS=lim r drdQ(- v 8)

ends g «0
T1

(16)

where r is the radial distance in the three-plane
(» —z) v = 0, » = z +r y, y' = 1, and A represents
the angles defining y in that plane. But because
of Gauss's theorem, and the fact that ~ 6 = 0 off
the world line, the integral (15) plus the extra bit
(16) for finite t) is equal to an integral of the form
(15) over a tube of radius g instead of &.

One can see this result happening by writing out
the most singular terms in 8 v [adapting Dirac's
unnumbered equations between his Eq. (60) and
his Eq. (61) to the new notation],

8 ' Q'y
~

at, ng the integrals (16)

in which terms vanishing with & have been omitted.
Dirac chose B=kv, with a constant k, on the
grounds of simplicity. Then to get rid of the di-
vergent &

' term, and to ensure that the equation
had the right small velocity form, he set k = e'/2e
—m, and so produced

mv'=eF, „, v+-', e'(a- a'v).

What happens if we try to complete the integral
over the surface enclosing Dirac's tube by includ-
ing the contribution from the ends& The answer
is that there is no effective change; the form of
the integral remains the same with ~ replaced by
t) (say), which also must tend to zero. To see
this, we must add to his result

Adding this to the middle form of (15) just changes
& top.

We now see how Dirac's argument can be put in
the form (2), or

(17)

in which the integrals are over the closed tube,
and K is Minkowski's energy tensor for a particle,
but with a "bare" rest mass m, :

K = movvp&o~ = mov j. (18)

T2 T2
=m v = d7m0a,

1 1

so the whole of Eq. (17) is
22

d& m +—a —eF v ——,,e (a —a'v) =0.~ 2 2

20 ext

1

(19)

Identifying the rest mass m=m, +e'/2t), we get
(1), the consistency of the presumption that the
rest mass is constant being assured by contract-
ing with v.

Quite apart from its involving an infinite quanti-
ty, the mass renormalization process is disturb-
ing because it effects an interchange between the
two terms in (17) which otherwise are quite sepa-
rate and individually interpretable. The philoso-
phy that (17) embodies, imperfectly using renor-
malization but faithfully using distribution theory,
is a view of the world consisting of interacting
subsystems, each locally carrying additive and
kinematic four-momentum which can be exchan~ d
between subsystems in such a way that the integral
condition (2), or the divergence condition (7) is
satisfied. That the momentum is kinematic is
important because it allows us to take over from
the free case the expressions for the individual
energy tensors, K in (18), 8 in (11). This formu-
lation began (Pauli" has written its early history)
with the work of Minkowski and Abraham, where
the ideas were conclusions in special cases, and

Here p&+ is the proper number density for the par-
ticle; in the coordinate system of Eq. (16) it is a
6 function at the origin. It therefore contributes
to fK dS only at the ends of the tube:

T2
K dS= r'drdQ(- v K)

0 T
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[x z(r)] =O,

—[x —z(T)] ' v(7') =E (a constant, big e},
(20)

whose ends are the future light cones with vertices
at z(w, ) and z(r, } To this. end, we define in (21),
(26), and (27) the variables whose use simplifies
this calculation and those in the next section.
After various useful relations are established, the
differential elements dS for the integral are com-
puted in (35). The crucial part of the integral is
completed in (39), and the variable rest mass
equation (3) is the immediate result.

In order to benefit from the close relationship
between the surface (20) and the solutions E„,,
we introduce light-cone related, intrinsic vari-
ables. The notation follows Bohrlich. " From any
field point x, we "drop a backward light cone" onto
the world line, locating a unique point z(r), such
that

helped along by Einstein's popularization of ~ ' T
=0 (he, of course, totally opposed the other ideas
in it}; it has reached acceptance as a fundamental
principle, "or even dogma. " What has prevented
complete realization of this has been the dominance
of Hamiltonian ideas. In Hamiltonian theory, the
subsystems get mixed up, and prominence is given
to less physical quantities such as interaction
energy and canonical momentum.

The calculations involved in integrating e over
the tube (14) are complicated because the tube does
not "fit" the solution I'„,. We can express I „,
very simply on a light cone with vertex z(r) be-
cause all the points on it have the same retarded
source point. But to write I' „, on a three-plane
orthogonal to v(~) is difficult and must be done
approximately, because all source points earlier
than ~ are involved, and they have to be related,
using Taylor series, with variables at &. Dirac's
initial use of advanced fields, which he added and
subtracted, was as a technical aid in these com-
putations.

We shall now work out the consequences of
JdS T=0 'by evaluating the integrals in (17) over
the invariantly defined tube [see Fig. 1(b)]

At each 7, one can transform R to the rest frame,
thus converting (23) to

d7 dR(p (24)

This allows us to write

()(x- z(r'))= 6(r —r')5(R(0)),

and so, for the current, Eq. (9), we have the al-
ternative expression

e j(x) =ev(r)6(R(»). (25)

The quantity

p=——v'R (26)

is the projection of R on v, and in terms of it we
define

Ru=———v, R=p(u+v)
p

which satisfies

u =1y Q '5=0, p=u 'R. (28)

The interpretation of p and u is understood best
in the rest system, where

p = R('o) =
I lt(,) I

u(0) =0, Iu(Q) I
1

(R(',), R(») = p(1, u(,)).

(29)

Therefore, p is both the temporal and the spatial
displacement of x from z(r) in the rest frame at
&, and u(p) is a unit vector defining the direction
x(,) —z(» in the same system. If angles Q«) define
u(», we can rewrite the integral formula (24), as

d &f = 87 pdpd~f, (30)

in which the subscript is omitted from dO to em-
phasize its invariant character. It is unnecessary
for our purposes to be more specific about the
definition of (p) All that will be needed are the
formulas

x=z(~)+R,

and R is a future, lightlike vector:

(21}
dQuu = —,(g+ vv),

1 1
(31)

R'=o R'=I HI. (22)

d'x f(x) = dv f(z(~)+R}.
(- v R)dR

(23)

The variables 7 and R, three of whose components
are independent, can be used in place of x. The
Jacobian for the transformation can be easily cal-
culated and one then has the integral formula f)7. = —Z/p,

f)P = u + a ' QR.

(32)

(33)

Using the new variables, the volume enclosed by

which are the general frame expression of obvious
rest frame equations.

By differentiating the defining relations (21},
(22), and (26} we find the useful gradients
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l(p
-=B(r, —7)B(r'—r, )B(E —p). (34)

%e can now easily calculate the differential ele-
ments dS for the surface enclosing this volume.
Using (30), (32), (33}and (34) we get

the tube (20) is seen to consist of the points

T cT -T
1 2)

P(p(E
whose characteristic function (equal to one inside,
zero outside) is

that follows from it. Setting

6„,=6, +8»+8,«(different orders of
singularity),

e2 1
6s =—(e g+ vv —uu)

4m P

e' R 1e»=—a —ua u, ——,,4~

8», =—(2 —[a u]')e', RR 1

(38)

dS'T= d x/8 T

d4xeg T

T2
pdpd08 E —p)R T

T2
+ dr E'dQ(u+ a uR) T, (35)

T
1

P=E

so dS= —pdpdQR on the light cone, " and dS
= E'drdQ(u+ a'uR) on the surface" "p= 'E

Everything is ready for the calculation of (17),
whose terms we regroup as

The brackets [, ] and(, ) in these equations are
commutators and anticommutators with no factor
one-half. If v and a are evaluated at r, (37} and

(38}give the values of F„, and 6„, at the points
x=x(r, p, u); that is, they are "already" retarded.

The computation of dS'e„, is simplified by
noticing that 0»&'R = e„R= 0. Using the various
scalar products (22), (26), and (28) one finds

t e' R
dS ~ e«, = pdpdQO E- p —

4
4m 2p

e' —u —a'uR a-ua'u
47[ 2p' p'

12
d1E2d~~~

~

~ ~

~

I
~

~
p

I

1

0= T'dS

s'ses (s e.„+e.„I tss e,.,
Using current conservation, and (25), (26), (32},
with (18),

d R
() 'K =—(mev} —— ~ j

dT p

[a' —(a.u)') R [
p p [p=e

Doing the angular integrations with the help of
(31),

dS ~ e„,= — + dT +-', e'cPV

d=—(mev) 6(R(e));

e a
dT +—eav

25
1

(39)

and since Eqs. (12) and (13) may be written

S ' 8,„=—eF,„,' v6(R(e)), 8 ' 8,„., = 0,

the stage

0= dT —eI'„„,'v + dS ed(m, v)

T - dT
1

(36}

in which the limit, 6-0, arising from the integra-
tions over the light cones, is understood.

Combining (36} and (39) we have

e vdS. T = dT —m v+ —eE v+-'e'a'v
0 2g

1

=0.

e e RF„,=—[v, u]+—a —ua'u, —
p p- p—

(37)

is immediately reached after integrating the 6

functions with (24).
Ne take over from Rohrlich's book the expres-

sion

The mass renormalization m=me+e'/2() is identi-
cal to that used for (19), and we get, as the differ-
ential form of the integral conservation law over
the surface (20),

for the retarded field, and the calculation of 6„,
—(mv) = eF,„, ~ v- —,'e'a'v, (3)
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which differs from the Lorentz-Dirac equation
(1) in the absence of the Schott term.

Although Eq. (3) provides a not unreasonable
electrodynamics, as was outlined in the Introduc-
tion, it is to the inconsistency between it and Eq.
(1) that we turn. The contradiction between the
equations of motion, both supposedly consequences
of J& dS=0, arises from the mass renormaliza-
tion. This is highlighted by considering the inte-
gral f& dS between the ends of the tubes (14),
and (20) with E = e, at r = r, (say}. One can check
that the "wall" for this volume, consisting of the
points x=z(v)+eu+tv, t:O-e, contributes ',e'a, -
whereas the ends, from (16) and (39), contribute
—,'e'v(6 ' —)7 '); the finite Schott term is lost be-
tween the canceling infinities. In the next section,
distribution theory is used in order to prevent
such ambiguous expressions from arising.

DISTRIBUTION THEORY

From (43), (8), and (24),

(8 ((, p)= —J dvpv ~ iip

(44)

after integrating by parts and using (t)(s ~) = 0.
If the source of the external field is outside the

support of Q, then 6,„, will certainly be a locally
integrable function, and so the straightforward
definition

(45)

can be used. Integrating by parts we find that

(() ' e..( 4') = 0 (46)
Distribution theory does not, at least in the

first instance, provide expressions for integrals,
such as (2), of generalized functions. Although
the linear functionals (T, (t)) of the theory can be
regarded as extending the definition of the inte-
gral

g x TQ =- T, (t}), (40)

the test functions P cannot have sharp boundaries,
but must be infinitely differentiable, and vanish
outside a finite region (these conditions can be
weakened later}. So in trying to resolve the am-
biguities that renormalization has left, we work
toward a realization of (7}

8'T=O,

or, more explicitly,

(en( &) = d'z 8(P - }e)(P) (47)

where the limit & -0 is understood. Then, using
the fact" that 8 +,t, =0 for pCO, and evaluating
the angular integrals with (31),

(i e p) Jp"„„(=)(p.p)8 .pp. . „,

because 8 6,„,=0 as a function.
The two pieces 8,„and 8»& have the same slight-

ly increased degree of difficulty. They are both
singular on the world line p=O, but since the sin-
gularities are no worse than p ', they are integra-
ble, and a definition like (45} can still be used.
Indeed, taking e„, (e,„is similar) we can write,
because the integral is covergent,

() (ff+ e,„,+e.,„+e, + e»+ e,») = 0.

Equation (7) means

(41) 2

dr dQ —(a' —[a u]') (u + v) (t)
4m Pap

and so the whole problem reduces to finding clear
distribution definitions of the terms in 7'.

In place of (18), we are now able, as it turns
out, to use what we would have preferred to use
before, Minkowski's expression for the particle's
energy tensor with the experimental rest mass

dy2g2+v(f) g y))

Therefore,

S 'e))( = 3e a v~(R(»))

and similarly

(48)

K= mvvp«& =pj.
We have, using j = v6(R(0)},

()(, p ) = J pr p (v') v (xi p (*(r ) i,

which is equivalent to the formal integral

(42}

(43)

e,.„=—eE,„, v5(R( )). (49)

The real difficulty in this treatment is the prob-
lem of defining 61 and 8» They have singulari-
ties, p

' and p ', that are not integrable. From
now on we shall take them together, as a sum,
6„». This is suggested not only by the difficulties
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they present, but because"

8 8„„=0, p~o. (50)

Since 8„11is well defined for p0, we need a dis-
tribution definition which reduces to

(e„„,e)= f a'*e... e (51)

when Q = 0 in a neighborhood of p = 0; that is, we
need a regularization of the integral for general

About the problems that regularization poses,
Gel'fand and Shilov' remark that only partial an-
swers exist. However, they give enough clues in
discussing simple problems to make one particu-
lar regularization in our case seem highly attrac-
tive.

The regularization of (51}, whose consequences
will be followed up, is what appears to be the
simplest in the natural 7', p, u coordinate system.
It is based on analogy with more clear cut cases.
The remarks that follow, up to Eq. (61), are
meant only to motivate the analogy. As it has
been defined so far, the regularization problem
has no unique solution because to any regulariza-
tion satisfying (51), one can add a distribution
concentrated on the world line to provide another.
But the presumption here is that a mathematical
characterization will eventually single out the so-
lutions chosen below.

Discussing functions of one variable, of the form
x 8(+x) —= x," (X complex) and x "

(n integral),
Gel'fand and Shilov find a particular regulariza-
tion which has such attractive properties (reia-
tions with derivatives, consistency under multi-
plication by differentiable functions) that they call
it canonical. In the two cases of most interest
to us this regularization may be written

P(x} —8(1 —lxl}Q(0}
x

y(x) y(O) —8(I -lxi)xy'(0)

(52)

These are also the pseudofunctions of Schwartz, '
and the finite parts of Hadamard. Despite their
rather odd looking forms, these definitions are
distinguished uniquely by satisfying

—lnlxl, @ =(x ', y}, —x ', y =(-x ', y).
dx ' ' ' dx

(54)

The effect of the subtraction terms in @(0) and
P'(0) is to make the integrals convergent near
x =0, but the subtractions need not be regarded
as having been made ad hoc for this purpose as
the relations (54) require them. If Q =0 near x=0,
the definitions (52) and (53) return to the form

fdx x "&p. The cutoff 8(1 ~x~) ensures that each
integral exists as x- +~; the fact that it is at
~x~ = 1 is because lnx= 0 there. The 8 factor is
not necessary and is not present in the similar
formulas for the analytic (as functions of X} x, ;

but as a consequence, these distributions have

poles at the negative integers. They cancel in the
combinations used to form x ".

For the case of several variables (we are inter-
ested primarily in three, to regularize functions
with singularities p

" on surfaces with r constant),
the canonical regularization is apparently impos-
sible. a result quoted by Gel'fand and Shilov.
Nonetheless. the regularizstions

,d A(r) -8(I -r)g(0)
r' (55)

,d y(r ) —y(0)-r8(I -r)7&'(0)
r'

(56)

QQ
y(r)

4m
(5'I)

48 1+11-&P

where, from (38),

g 2

A =—[(—',g+ vv —uu}+ p(a —ua ~ u, u +v)],
4m

(58)

(59)

we see that 4 is not continuous at p =0 because of
the lack of definition of the radial vector u at those
points. This is why it is necessary to introduce,
corresponding to (5'l),

dA
g(p, &) =—

4
A P. (60)

We now adopt, as the regularization of (51),

y(p) —y(0) —p8(1 —p)q'(0)
1+11~ 4' ~ 7 P P 4

p

(61)

which is based on (56), and in which the r depen-
dence of the integrand is suppressed. If we in-

based on (52) and (53), suggest themselves imme-
diately. These definitions, in a slightly different
form, are also given by Schwartz. For our in-
finitely differentiable P, of course &p(0) = P(0), @'(0)
=0, p"'(0) =0, etc., but the forms given above are
suggestive of the further slight generalization we

shall need. The regularizations of x ' and x 4

have been based on x " rather than x, as the range
of integration might suggest. The latter have poles
at the negative integers, although for even nega-
tive integers the residues vanish [@'(0)=0, etc.].

Setting
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(e„„,e)= J z'*ze-ze„„e

d7 gg+~vv 8 T (65)

which is a convenient expression for the regular-
ization of (51). This contains an explicit form, for
general Q, for the divergent part of a symbolic equa-
tion for a special class of Q given by Taylor. "

The calculation of ~ 6, g is now straightforward.
Using (50) and (33), with (65) and (8),

(S e&,u, 4) = dip'dpdA5(p-&)(u+a uR) 8„„$

2

+— d~(z'g +~mvv} ~ Sg(z(r}}. (66)

En the first integral, the scalar products are done
as usual and Q may be expanded as in (63); omit-
ting terms which vanish with e, this integral is

sert a 8(p-e) in the integral, as we may, since
it converges, we can deal more freely with the
separate pieces

(8 &+uz @)

-y 0 -pg 1-p P' 0
4

(62)

The limit e -0 is again understood.
To get the subtraction terms, we calculate the

first two terms in a series expansion of g(p).
Since 7 is fixed and we are therefore expanding
on the light cone, we can use

y(z) = y(z(~) +R)

= gz(r)}+R 84(z(~)}+-.'(R s)'gz(7))+ ~ ~ ~,

(63)

where, as before, R =p(u+v). Putting this ex-
pression for Q, and that for A given by (59), in
the definition (60}, we get

2

7 = 4„[(~g+-', vv) 4(z(~)}

+p(zg+-', vv)v 8+z(&)}+pe(a, v)gz(t})+ ],
(64)

with the help of the integral formulas (31).
The terms in (64) which are linear in p enter

(62) as pg'(0). The first of them, containing v.e@
as a factor, can be integrated by parts, and what
remains cancels the other. Thus (62) has, effec-
tively, only the g(0) subtraction, and it may be
written

in which g is evaluated at z(T) The angular inte-
grals are evaluated with (31)

dT
6

(8 +vv s)„p——,x2x 3 (g+vv}~ vpa
"8'y2 1 1

1 a+—a y —~v ~ ey+~v ~0p 6 p 2

and after integrations by parts, we get
2

dv ——--vv Q —e dr aQ(z(-r)}
e 2 ~

6 3

Equation (66) therefore reads

(z e„„,e}= '-, z' fzzdgz( e

=( --', e'a5(R«)), j}
or

8 „„=—',-e'a5(R«)).

Teitelboim" gives a similar divergence relation,
but with an additional infinite renormalization
term which, besides being purely formal, is a
reminder of its derivation —an integral over the
surface (14)—and the susceptibility of it to am-
biguity, by comparison with integral (39) over (20).

Bringing together (44), (46), (48), (49), and (6I),
the explicit form of S ~ T =0, Eq. (41), becomes

(P eF,„, v ---', e'a +'-, e'a'v)5(R«)) = 0, (68)

from which the Lorentz-Dirac equation is recov-
ered. Equation (68}, with the terms derived from
6 grouped together, expresses the equality of the
three-dimensional densities for the rate of gain
of particle momentum and the rate of loss of elec-
tromagnetic momentum. But having split the field
into F,„, and F„„we change our language and de-
scribe eE,„, v5(R«&), which arises from 8, as
a force density; the other terms,

S e„, ='-, e'(a'v -a)5(R()), (69)

which would be present even if the force were not
electromagnetic, are the density for the rate of
gain of electromagnetic momentum carried by the
retarded field created by the particle.

The first term in (69) supplies the Larmor ra-
diation at the invariant rate ~ e'a'v, and the second
governs changes, at the rate -3egj, of momentum,
which, because it does not reach the radiation
zone, may be described as bound. "

An integral which expresses the decomposition

dQ[ ue' dr—]-,[Q+e (u+ v) &/+-, & (u+ v)„(u +v), 8" s"Q]

+ —[a ——,ua ~ u —2va u][@+e (u +v) &@][
1



RESOLUTION OF AN AMBIGUITY IN THE DERIVATION OF. . . 1585

just mentioned is the distribution theory version
of J dS 8,.( over the surface (20), illustrated in
Fig. 1(b). It was in the calculation, (39), of this
integral using renormalization theory, that the
Schott term was lost. Here we shall see how that
term reappears, and of course there will be no
divergences. To set the integral up, we use

(9 e „„()=f drfe*(a'v -())gz(r))

(8 „„84))

in the (understood) e —0 limit. This condition may
be written

rdr(1+ra. y}r drdO(y)[8(p e-) —8(r -e)]8„„(t)=0,

(74)

using the four-dimensional differential" in terms
of 7', r, andy.

To check the condition (74), we must rewrite the
most singular parts of 6 „„in terms of the planar
variables v, r, andy. The geometry is in Fig. 2,
and the condition

-=Reg d'xe „, (70)
ry =x z(r)-

where "Reg" means the regularization of the inte-
gral; so far as e I» is concerned, Reg has no ef-
fect, but for 8 „», the limiting process (65) is
meant. The test functions Q are supposed to have
compact support and to be infinitely differentiable.
So we use a sequence of smoothed forms of the
characteristic function (34),

(t) = smooth[8(r r}8(r-- r, )8(E -p)], (71)

and look at the limit of (70) as the smoothing is
reduced. This provides the distribution theory ex-
pression of the integral:

= z(r —t) +p(u+v(r t )) ——z(r)

leads, usingy ~ v(T)=0, y'=1, u v(r —t}=0, to

t=p -p a'u+

r =p ~lp2g ~ u+ ~ ~ ~

p=r+ r 9'u+' ' '

=r+'r2a y+

u=y -~ra yy -ra yv+~ra+

v(7' —t) = v ra+ ~-

(75)

in which v, a are the vectors at &. Substituting in
(38), and keeping only the r ' and r ' terms,

T2
dr~e'(a v -a).

T1

(72)

e' —,'g+vv -yy —,'(a, y) +a y(-g+yy —2vv)e I'II 4n' r + r3

+ ~, (76}

before seeing exactly how (72) is realized, it
will be convenient to have available a slightly dif-
ferent form of the regularization (65), namely,

(8„„,()=Reg fd'*8„„(

wherein again, v=v(r}, a=a(r), the simultaneous
values.

Putting (76) in the left-hand side of (74), which
may now be written

e-&2a. y /2+ . ~ ~

d x8r
d~ dQ r'dr (1+ra y)8 „(((t),

2

dr(g'g+' ,vv)(t)(z(r-)), (73)

one finds that the integral vanishes as e —0, and

in which the region excluded from the first integral
is the interior of the tube (14), and, as before, r
is the radial distance in the plane [x —z(r)] v(r) = 0;
that is,

x=z(r}+ry, y'= I, y v(r}=0,

for points on the simultaneity plane at 7'. To show
that the two regularizations are the same, we must
show that

([u

d x 8 -f —8 r —E) I+II~
FIG. 2. The connection between planar variables and

light-cone variables, Eq. (75) .
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so the alternative regularization is verified.
To return to the dissection of (72). There is no

difficulty in taking the required limit in (72), ex-
cept where e „, is singular, at the vertices of the
light cones T = T, and T = T2. For the part of the integral
over p = E, one gets, by the same method used for
(3S}, that is, with -B@=5(p —E)(u+a uR),

e 0lim Reg d'x6„, ~ (-BP) = dr +-', e'a'v
l'P=E) T )

(77)

which, in the radiation zone limit F-~, gives the
integral over the Larmor radiation rate, the con-
tribution of 8», . Nor is there any difficulty with
the 6», parts of the light-cone integrals. Because
these parts are convergent, and 6 «) (-BP) = 0
since Br = —R/p, there is no contribution.

But because Br = -R ) p = —(u + v) is undefined at
p =0, where 6„„is singular and not integrable in
the ordinary sense, the 9, » part of the integral
over the light cones in (72) must be evaluated with
care. instead of trying to approach the light cone
r =r, (and similarly for 7 = r, ) directly as the
smoothing is removed, we approach the light cone
truncated (see Fig. 3) by the plane [x —x(r, +5)j
v(r, +5) =0, and then take the limit as 5-0. The

characteristic function for the volume bounded by
the truncated light cone has a well-defined gradi-
ent, v(7, + 5)5(v(7, + 5) ~ )Ix —z(r, + 5)]), where the
world line crosses the boundary, and the proces-
ses of removal of smoothing and of regularization
may be interchanged.

The points on the truncating plane may be writ-
ten

x)j =O
2

2

w(t+ 6)=Q

FIG. 3. Before the double limit [regularization (& 0)
and then removal of smoothing (6 —0)J is taken in Eqs.
(78) and (80).

x=z(r, +5)+ry, y'=1, y v(r, +5) =0.

Where the plane cuts the light cone & =w„

p =6+6'a u+

pr —Q+ Q poy+ ~ ~ ~

2

with identical expressions at the earlier end
(r =7,). The remaining terms of (72) may now be
written as a sum of integrals over the portion of
the light cone with p ~ 5 + 5'g g + ~ ~ ~, and the re-
gion of the truncating plane with r ~ 6+—2'5 a y+ ~ ~:

d))[ ) p dp))„, ) ))/p) Re); J-d))(r)
Q ~p $+$ g u+- ~ ~

6+1 262a )+ '
T2

(1+ra y)r'dr6„„( —v(7 +5))

(78)

The first integral in (78) gives

e'v(7) e'v(r) e'a(r)
2E 25 6 (79)

with the omission of terms which vanish with 5. To calculate the second integral in (78), we use the form
of regularization given in (73):

j~)))y)
+(20' f/2+ 2 T2

r'dr 6„„~( —v(r + 5)){1+ra y) ——( gs+ ', vv{r +5)) ~ (-—v(r +5))

e'v(r + 5) '& e'v(7) e'a(r)
25 , 26 2

~ (80}
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The integration has been done using (76), and again
terms vanishing with 6 have been omitted, as have
those vanishing with e.

Combining (V9) and (80), and letting 6-0, we
have

lim Reg d'xe „,
(light cones)

applies, and the near field must be dealt with sep-
arately. There is certainly no need to introduce
an acceleration energy concept, intrinsic to the
particle, if by that is meant an energy without 31-
ternative physical explanation.

Since a(p) a', the equations of motion in the in-
stantaneous rest system, replacing (6), are

2 e2/
vapo~"' =0 P"' =eE +-'e'a

(o) +3 (o)~ (82}

T2 2

dv —
2

--', e'a . 81
~l

The whole contribution here comes from e i

The term involving E vanishes in the limit E- ~,
leaving an integral over the Schott term. But for
finite E, the E-dependent terms cancel in the sum
of (V7) and (81), which constitutes a verification
of (72}. The integral of B „,over the light cone,
a sum of p dpdAB„, ~ (-R/p) is a sum of the mo-
mentum p'dpdAB„, ~ (-v), less the radial flux
p'dOdp8„t n, a process which removes the con-
tribution of all free radiation.

Although the decomposition, in (7V) and (81}, of
an integral form of the divergence relation (69)
for 8 e„, involves a light-cone integration whose
physical interpretation is unfamiliar, the diver-
gence relation itself already shows that any con-
fusion about the term radiation reaction can only
be semantic. If we use it, as perhaps we should,
for the reaction due to the whole of the particle's
retarded field, then its density is the whole of the
right hand side of (69), -,'e'(a'v -a}6(R&»). If we

use it in a narrower sense, referring only to ra-
diation that reaches infinity, just the Larmor part

where, here, the interpretation of the second term
on the right-hand side of the second equation is
the negative of the rate of change of the particle's
retarded field momentum, to which only the near
field contributes in the rest system. The first
equation embodies unchanging rest mass, and in
the rest system, no net change of energy in the
retarded field, the near and asymptotic changes
canceling.

If electrodynamics is formulated using distribu-
tions, there is no need for a Coulomb self-energy
concept; there are no divergent integrals to which
the term could be applied, and the idea is not
needed in the physical interpretation; there is no
need to account for an infinite difference, as be-
tween charged and uncharged particles, in "bare"
masses.
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