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We study the factorization of gravitational Born amplitudes and the Reggeization of the graviton.

Factorization holds at J = 2, and the Mandelstam counting argument shows that the graviton must

Reggeize, at least to low orders in perturbation theory. The Mandelstam argument also explains the

one-loop renormalizability properties of pure gravitation and matter-gravity systems and is used to

discuss the higher-loop renormalizability of pure gravitation.

I. INTRODUCTION

In the past twelve years, since it was first posed
by Gell-Mann et al. ,

' the question whether or not
the elementary particles of Lagrangian field theo-
ries lie on Regge trajectories has been investiga-
ted by a number of authors. ' It is now believed
that the answer is affirmative for renormalizable
theories and for those particles which communi-
cate with (two-particle} channels that satisfy the
so-called Mandelstam counting criteria. " These
criteria are sufficient conditions which compare
the number of arbitrary parameters of, and the
number of kinematical constraints on, a unitary
analytic scattering amplitude which has an s-chan-
nel pole corresponding to the elementary particle.

Necessary conditions can also be formulated,
and of these the simplest is the factorization of
the Born approximation'. For processes involv-
ing particles with spin the coefficients of singular
terms (in J'} of the partial-wave helicity amplitudes
F» .» (s, J) form a matrix which factorizes.34i 12
(We refer the reader to Refs. 1 and 2 for explana-
tion of the nomenclature. ) If the Born approxima-
tion does not factorize, Reggeization will not take
place; if it does, Reggeization may take place.
We note that the factorization condition is equiva-
lent to the requirement that the rank of the matrix
be equal to the rank of the nonsense-nonsense sub-
matrix. '

Independent of the question of Reggeization the
factorization of the Born approximation is a curi-
ous property of some Lagrangian field theories.
It is believed on the basis of examples that have
been studied that factorization will not take place
in a theory which is not renormalizable' and that
in a renormalizable theory it may be related to the
absence of certain counterterms (see Sec. V of
Ref. 4). The necessity of renormalizability is
seen most strikingly in the examples of massive
Yang-Mills theories. " The requirement of fac-
torization of models involving massive Yang-Mills
mesons and scalars forces these models to be of

the spontaneously-broken-symmetry type' in the
same way as requiring tree unitarity does. ' One
might be tempted to conjecture that factorization
is a criterion for renormalizability, at least in
low (one-loop?) orders of perturbation theory

We consider in this paper the factorization prop-
erties of certain amplitudes involving gravitons.
We take as our Lagrangian the sum of the Einstein
Lagrangian and those minimally coupled matter
Lagrangians whose renormalizability properties
have been investigated recently by several au-
thors. " These authors have concluded that pure
gravitation is one-loop renormalizable whereas
gravitation coupled to matter fields is not. We
find that the Born amplitudes for graviton-graviton
scattering do factorize at J= 2, albeit in a rather
trivial way. With a scalar particle or a photon
present factorization holds as well at J= 2. This
is surprising since the theory is not renormali-
zable. However, we show that these results are
consistent with Mandelstam's counting criteria,
suitably generalized to amplitudes which exceed
the unitarity bounds. These criteria confirm
again the striking difference between pure gravity
and gravity-rnatter interactions found in Ref. 10:
Whereas at the one-loop level graviton-graviton
amplitudes should Reggeize at J=2 in pure Ein-
stein theory, they need not when matter is present.

We undertook this work in the hope of shedding
some light, from a different angle, on the question
of renormalizability of gravitation, but there are
additional reasons for looking at the problem.
From the work of Scherk and Schwarz" we know
that the Einstein theory can be obtained (at the
tree level) as the zero-slope limit of a certain
dual model. Their result suggests Reggeization
of the graviton, and it is desirable to check this.

In the next section we exhibit the factorization
properties of our amplitudes. In the following
section we go through the Mandelstam counting
procedure. In the concluding section we discuss
our results and speculate on possible implications.
The Appendix contains some formulas we have
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used.
Our conventions are as follows: p (q) stands for

the magnitude of the three-momentum of the scalar
(graviton) and z is the cosine of the scattering
angle in the s channel. Our metric is such that

P„P =p +P =p -P . The Lagrangian for the
coupled graviton-scalar system is

g =g ~~[—2z 2ft(g) —ze (t(S yg"" —z~2(P2]

where R is the scalar curvature and Q is the sca-
lar field. The metric g„„is decomposed as g„„
= q„„+)eh„„, where k„„is the graviton quantum
field and 8=32mG, G being Newton's constant.
We refer the reader to Refs. 10, 12, 13, 19, and
20 for an explanation of methods used in graviton
quantum processes, and to Ref. 13 in particular
for a simplified method for computing gravitation-
al Born amplitudes.

H. FACTORIZATION PROPERTIES

We consider first graviton-graviton scattering.
In the Born approximation it is given by s-, t-,
and u-channel graviton exchanges and contact
terms. For massless gravitons, the helicities
are +2 and the helicity amplitudes are known in the
literature, ""

S4 t4
E 4stu' ' "" 4stu '

(2)
u'

2~ 2;2, -2 4st & 2, 2;2, N 2, 2' 2, 2

These amplitudes are defined in terms of the S
matrix by

(x„x,!S-I!x„x,) = f(2z)'6'(p, -p, )

xl, i(2E,)x't', „,,„,. (3)
( nl

plitudes either are zero or contain no singular
terms for nonnegative J.

We obtain the partial-wave amplitudes in the
usual way

1

F~»„4.„~ „2(s,J)= & [c(((,(z)F„; ((4.,~ „,(s~z)
l

+ ci.(z)Fi„i„~„g(&z)]«
(6)

The relevant parts of the c functions we will need
are given in Appendix A Since the amplitudes in-
volve massless virtual particles we have defined
the partial-wave projections by inserting a small
mass into the denominator of the graviton propa-
gator. However, the coefficients of the terms
singular in the J plane are continuous and well
defined in the limit as this mass goes to zero, as
follows from the relation (for J=J'o)

1 & Pz-zo«(z)
dz

2 l ZO 2

=Qg g, .(z,)

=P„(z,) ln
0

+(J'- J',) '(terms regular as z, -sl).
(7)

(Since we do not change numerators of the propa-
gator, the mass discontinuities of Van Dam and
Veltman" are absent. }

We write down the matrix b of Eq. (5) at those
values of J where singularities may arise, i.e.,
at J=0, 2 [at 7=1 the amplitudes F'(J) are zero
because of Bose symmetry. ]:

J= 2.

(2, 2) (2, —2)

8
2, 2;2, 2 1 z2 t 2, 2;2, 2 8(1 z2)

22 2, 2 ~ 2 ~ Ny2, -2

(4)

At J'= 2 the state ! 2, 2) is sense whereas the
state !2,—2) is nonsense. In general the partial-
wave amplitudes are expected to contain singular
terms in the J plane at J=J,= an integer of the
form

Following Gell-Mann et a/. ' we construct parity-
conserving amplitudes. We find (2, 2) ( 0 0

(2, —2) ( 0 —12z2q

J= 0.

(2, 2) (2, —2)

(2, 2) 0 0

(2, —2) 0 —68z q2

(8)

F;,(J)= —b„(s)6~~ (sense- sense),

F„;(J)=F+ (J) = b,„(s)(J'-J,) +' (sense-nonsense},
(5)F' (J)= b„„(s)(J-J,)

' (nonsense-nonsense),

the factorization condition being 5„=b b '5„,.
We note that for this process the odd-parity am-

Since there are no Kronecker 6 terms (corre-
sponding, at J'= 2, to the s-channel graviton pole)
in the sense-sense amplitude, and since the sense-
nonsense amplitude vanishes, the matrices fac-
torize in a trivial way.

A similar effect occurs in massless Yang-Mills
theory at J=1. Whereas in the renormalizable
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massive case' the singularity matrix is 4x4 with
nonvanishing matrix elements, in the massless
case since only the states ~1, 1}and ~1, -I) are
physical the matrix is 2x2 and one finds (e.g. ,

setting m = 0 in Table I of Ref. 2) that again only
the nonsense-nonsense entry is nonzero. Although
factorization holds one would really like to see it
happen in a less trivial way for an amplitude in
which the vector meson appears as a J= 1 Kronec-
ker 5 term. This can be achieved by looking at
the coupled pion- Yang-Mills system. The helicity
matrix becomes 3x3, the sense-sense w-m am-
plitude receives a contribution from the s-channel
vector-meson pole, and factorization holds for this
less trivial system (see Table II of Ref. 2). We

note that factorization holds provided the pion is
coupled in the usual gauge-invariant renormaliz-
able zvay. If one takes for example the gauge-in-
variant unrenormalizable coupling F„„(D„vxD„~)
factorization fails.

We proceed in a similar fashion for gravitation
by considering a system of massive scalar parti-
cles fit}, minimally coupled to gravitation. We as-
sume first that there is no scalar self-interaction.
From Refs. 12 and 13 we have for scalar-graviton
scattering the helicity amplitudes

E..., = —x'(m' —su)'/[4t (s —m ') (u —m') ],
9)F..., = — ' xmt'/[4t(s —m')(u —m')] .

Using crossing symmetry (the helicity crossing
matrix is trivial since the graviton is massless

The QP elastic amplitude is easily calculated using
the Lagrangian of Eq. (1). We find

K
Fo 0 o o [(t 2m )(u 2m )+2m ]

+ two crossed terms.

The singularity matrix at J'= 2 for the even-
parity amplitudes is now

(0, 0) (2, 2) (2, -2)

(0, 0)
4e'p'
15s

g 8g2q2p2

~5s

(2, 2)

(2, -2) &s
—48 tc2q4

s

(12)

where s =4q' = 4(p'+m'). We recall that q (p) de-
notes the graviton (scalar) 2-momentum. The ma-
trix factorizes and we have thus found a Lagrangian
field theory, apparently unrenormalizable, "for
which factorization holds in a channel containing
an elementary particle (the graviton).

At J=O the singularity matrix is

and the massive particle Q has spin zero) we find
the annihilation amplitudes

E. .., = —z'm's'/[4s(t —m')(u —m')],
(10)

E. .., = —v'(m' —tu)'/[4s (t —m ') (u —m')] .

(0, 0) (2, 2) (2, —2}

K
(0, 0) —(~p'+ 20p'm'+ 5m') 0 —ix'(p' y q')

(2, 2}

(2, -2) -ix (p'+q') —68X2q2

Factorization does not hold. However, since in these channels there is no scalar pole, this matrix tells
us nothing about Reggeization of the scalar.

We have considered a number of generalizations. We have allowed for a Aft}' interaction, in which case
the scalar-graviton channel couples to the scalar-scalar channel. The ft}~i elastic amplitude receives an
additional contribution from the scalar pole

X2

0 0'0 0 2 + two crossed terms,0~0;0, 0 s m2 (14)

while the scalar-scalar to scalar-graviton amplitude is

aX (s —m')p'(1 —z')
2 (t —m )(u —m') (15)

Now the graviton-scalar amplitudes of Eq. (9) also become relevant. At 7=2 the processes in Eqs. (14)
and (15}are sense-sense, but the additional contributions do not give Kronecker 5's so that our previous
results at J=2 are unchanged. At J=0 the singularity matrix becomes
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(0, 0) (2, 2)

2A,
(0,0),+—(~,'p'+20p m'+ 5m ) 0

(0, 2)

—i sX(s —m') —

zlzz(p'+

q')

(0, 2)

(2, -2)

—i sX(s —m '}
2M p'

—i tc2(p'+ q2)

s'(s'+ m')
2(s —m2}

—68K q2

(16)

The nonsense-nonsense matrix has rank two, and it is easy to verify that factorization does not hold for
any value of the various parameters. We therefore do not agree with the conclusions of Ref. 19. However,
the approach in that paper is somewhat different from ours.

Another generalization we have considered uses the "improved" form of the scalar-graviton Lagran-
gian. """We have added to the Lagrangian of (1) a term

&'=g"'0'ft (d
The new term can in principle contribute to the scalar-scalar and scalar-graviton amplitudes, but the con-
tributions to the latter vanish" and the contributions to the former do not change our conclusions.

We have also considered the coupled graviton-photon-scalar system. " We present the singularity matrix
at J= 2 [we have omitted zero rows and columns corresponding to the states (2, 2) and (1,1)]

(0, 0)

4s' '
(0, 0)

(1,-1)

ve, ,
15

(2, -2)

j8K2P&q2

Ms

(1,-1) KP
M6
15

2
K2q 2

5

1/2
—Z2 Kq5

(18)

( )
—i8/p'q'

Ms
6 F2

-12 — K q5

48K'q4

s

Factorization still holds at J= 2. However, it
fails at J=O.

III. MANDEI. STAN COUNTING

In this section we check the sufficient conditions
for Reggeization, the so-called Mandelstam count-
ing conditions. "Mandelstam counting is usually
carried out on an amplitude which is analytic and
unitary. Leaving aside analyticity problems re-
lated to infrared behavior, we note that our am-
plitudes are not unitary since we plan to discuss
them in finite orders of perturbation theory. How-

ever, the following procedure seems consistent
with the Mandelstam approach. To compare the
physical and Regge amplitudes start with left-
hand and inelastic contributions computed to order
n in perturbation theory. (This will play the role
of the Mandelstam potential. ) Solve now the uni-
tarity and analyticity equations at a given value J,
for the physical amplitud E~(s) and at large 8 for
the Regge continuation E(s,J'). Continue the latter
to J=J„ then compare the two amplitudes up to
order n in the coupling constant.

We refer the reader to Ref. 4 for a detailed de-
scription of the counting procedure, which con-
sists of comparing, at a given J„ the number of
free parameters contained in and the number of
kinematical constraints satisfied by both the physi-
cal amplitude and the Regge continuation. The
amplitude Reggeizes at those values of Jwhere
the number of free parameters does not exceed
the number of constraints.

The free parameters are Castillejo-Dalitz-
Dyson (CDD) pole positions and residues, and

subtraction constants. The number of CDD poles
equals the number of nonsense states at the value
of J, under consideration. It must be at least as
large as the number of elementary particles of
spin Jo that appear in the s channel of the physical
amplitudes. In a (renormalizable) unitary theory
with bounded (or logarithmically increasing) par-
tial-wave amplitudes the number of subtraction
constants for the case we are considering (equal-
mass particles in the initial and final states) equals
the number of amplitudes. ' In an unrenormalizable
theory the number is presumably larger. We shall
assume that in perturbation theory each amplitude
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E,(s, J) requires 1+ v, subtractions (where v, may
increase indefinitely as the order of perturbation
theory increases) and that it is correct to thus
generalize the Mandelstam procedure. Dicus and
Teplitz' point out that this does not seem to be the
case in an unrenormalizable model of fermions
and axial-vector mesons. However, as discussed
in Sec. IVC in the second paper of Ref. 2, one
should regard their model as a mutilated version
of a renormalizable model where the particles
acquire a mass by means of a Higgs-Kibble mech-
anism. There is no reason to expect any general-
ization of Mandelstam counting to be consistent
with the results of an essentially arbitrary tam-
pering with the scattering amplitudes. In our case
whether or not the theory is renormalizable and
complete we know that a certain number of sub-
traction constants will be required purely on di-
mensional grounds, and our generalization of the
Mandelstam counting argument should be correct
(see also Ref. 4, Sec. VG).

In general the kinematical constraints are of
two types: generalized GGMW"6 (Goldberger,
Grisaru, MacDowell, and Wong) constraints at
s =0 and threshold constraints. The former are
constraints on the helicity amplitudes which lead
to constraints on the partial-wave. amplitudes. The
latter can be obtained either by examining the or-
bital angular momentum content of each partial-
wave amplitude, as done in Ref. 4, or by the fol-
lowing procedure: Each helicity amplitude satis-
fies a certain number of (pseudo-) threshold con-
straints which follow from general kinematical
considerations and the crossing relations. ""
Furthermore, the partial-wave projection of a
helicity amplitude which is assumed to satisfy
fixed-energy dispersion relations produces addi-
tional threshold factors

(19)

where X = max(
I &.- &. I I &, - &. I ) and q & (q&) is the

initial (final) momentum.
In our case, since we are dealing with massless

particles there is no distinction between the kine-
matical constraints at s = 0 and at threshold. How-

ever, from the work of Ader et al."we can read
off the constraints that amplitudes involving mass-
less particles satisfy at s = 0; we shall refer to
these as kinematical constraints. In addition we
shall assume that Eq. (19) still holds although as
mentioned earlier we can define partial-wave pro-
jections only by some modification of the graviton
propagator (or by suitable extraction of a Coulomb-

type phase —a procedure we have not attempted;
see also Refs. 19 and 20). We shall call the con-
sequences of Eq. (19) threshold constraints.

For graviton-graviton scattering we deal with

~J, 2, 2)+~J, —2, —2), J even, parity
odd

(22)

~
J, 2, -2) +

~
J, —2, 2), J dd, parity even.

odd

(23)

We conclude that if J~4, for even J there are
three even-parity amplitudes and one odd-parity
amplitude, while for odd J there is only one even-
parity amplitude. For J&4 only the states in (22)
are sense so that only J=O and J=2 amplitudes
exist.

From Ref. 18 we find that at s = 0 an amplitude
involving four massless particles whose t and u
kinematical singularities have been removed has
the behavior

(s f) (~s) lx+g I+Ix-ul+IE; (hg I

X3, X4', X~, X2

and assuming Eq. (19) holds we shall obtain an
additional factor -(s)~ "~ for the partial-wave am-
plitudes. In general we shall also find dynamical
poles at s = 0 which modify the actual behavior of
the amplitudes. We shall assume that their effect
can be separated from the purely kinematic effect
described by Eqs. (19) and (24). Therefore, from
(24)

(24)

~+ P- ~e4
2, 2;2, 2 2~2;2, 2

(25)
+ 6

F2~2 ~ 2~ 2 s

and the partial-wave amplitudes pick up additional
factors s~, s~ ', s~ 4, respectively. Hence at
even J~ 4 there are 4 amplitudes subject to 14
kinematical constry, ints and 4J- 8 threshold con-
straints, while for odd J&4 there is one amplitude
with 4 kinematical constraints and J- 4 threshold
constraints. There are no CDD poles. If each
partial-wave amplitude E, requires 1+ v, subtrac-

five amplitudes, F. ..„F.. . „F... „
E. .. „and E, , „the last two being related
by Bose symmetry. We have no general argument
to suggest that the two amplitudes which vanish in

Born approximation do so to all orders. We shall
discuss later on how to do Mandelstam counting if
helicity conservation is in fact a general property
of graviton (and massless scalar) processes and

proceed now to consider the case of helicity non-
conservation. Under particle interchange II and
the parity operation P we have

(20)

(21)

so that only the following states are allowed:
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+ 2
Fp () q 2 s

+ 4
Ep, p;2, -2 s

(26)

Hence, at even J~4 there are now a total of 20
kinematical constraints, 7J-12 threshold condi-
tions, no CDD pole, and 7+2, ,v,. subtractions in
seven amplitudes. We find that if Z, ,v,. ~ VJ'+ 1

the theory will Reggeize.
At J= 2 only four amplitudes are physical. There

is one CDD pole with three parameters, six kine-
matical constraints, eight threshold conditions,
and 4+2;, v,. subtractions. Hence if Z, ,v, ~7
the graviton should Reggeize. In the Born approx-
imation this is the case, but already at the one-
loop level since Z;,v;=8 there is a difference
from the case of pure gravity. At J=0 we have
three CDD parameters, six kinematical con-
straints, and no threshold conditions; hence
Z', ,v,. + 1~0 for Reggeization. This condition is
not satisfied even in the Born approximation.

To summarize, we have found the following:
For large J the physical and Regge amplitudes
are expected to agree if computed in perturbation
theory up to an order in K' roughly equal to J
(since nth order in v' requires n+ 1 subtractions

tions (v,. =0 for a renormalizable theory) we find
that at J~4 the theory Reggeizes at even J if
Z;=& v, ~ 4J+ 2 and at odd J' if v ~J- 1.

For J&4 only E,'. ..are physical. At J= 2
there is one CDD pole in the even-parity amplitude
snd none in the odd-parity amplitude (the graviton
has even parity, and the nonsense state

~
2, -2)

+ ~-2, 2) has even parity), hence two CDD free
parameters. We have four kinematical constraints
and four threshold constraints on the two ampli-
tudes. We find that the theory should Reggeize at
J=2 if v, + v, —4. Since an amplitude which is of
nth order in w' is proportional to s" we expect that
the physical and Regge amplitudes should agree at
J = 2 up to and including one loop (n = 2, v, = v, = 2)
but need not agree in higher order.

At J=0 the only change is in the number of
threshold conditions, which is now zero. The
theory will Reggeize if v, + v, ~0. Since even in
the Born approximation v, + v, =2 we do not expect
any Reggeization at J= 0. However, this conclu-
sion will be modified if we take into account heli-
city conservation.

We consider now the situation in the presence of
a scalar particle„For simplicity we ignore scalar
self-coupling and assume that the scalar is mass-
less as well, so that we can use Eq. (24). We now

have additional amplitudes E...„E...„and
F; ... , present at even J'. From Eq. (24) we find
the kinematical constraints

K'+ -s'
p, p;p, p

in each amplitude). At J= 2, the two amplitudes
should agree up to one loop for pure gravity, but
only in the Born approximation if scalars are in-
cluded. At J= 0 the two amplitudes are not expect-
ed to agree. Allowing the scalars to be massive
and self-interacting should not seriously affect
our conclusions, although the counting may be
modified somewhat.

Finally we consider the situation which obtains
if helicity conservation is a property of graviton-
graviton scattering beyond the Born approxima-
tion. We have in mind doing Mandelstam counting
in the case when E. . . , and E. .. , vanish in
higher order of perturbation theory. We note that
with massless scalars present the amplitude
E. .. ., (and hence, by crossing, E....,) also
vanishes in the Born approximation if the scalar-
graviton coupling is that of Eq. (1). Although there
are other couplings for which this is not the case,"
we shall discuss below the situation when Ep p

= 0 in higher order.
The vanishing of F. . . , gives E;...=E. ..„

so that the graviton will not make its presence
felt as a Kronecker 6 term (since it must be ab-
sent in the negative-parity amplitude). We can
now drop E, , » from our discussion. The van-
ishing of E. .. , means that there is no coupling
between sense and nonsense states for pure gravi-
ty. Furthermore, the amplitudes E, , » and

E. .. , are completely decoupled in the unitarity
equations and will be discussed separately.

The amplitude E. .. , is subject to J+4 con-
straints. There are no CDD poles; hence F. .. ,
Reggeizes if 1+v~ J+4. The amplitudes E. .. ,
are subject to J constraints and are physical for
J~ 4 only. As there are again no CDD poles, they
Reggeize when 1+ v ~J.

If massless scalars are present, we have addi-
tional amplitudes F..., and F. .. , at even J
coupled to F. .. , . The amplitudes E. .. , and

F. .. , remain uncoupled and counting is un-
changed for them. For J~4, the coupled system
F...„E... „and E. .. , is subject to 3J con-
straints. The system Reggeizes, therefore, if
vy + v2 + v3 ~ 3J—3 . At J= 2, the graviton can ap-
pear as a Kronecker 5 singularity in Ep p p p and

E... , provides the coupling to the necessary
nonsense state. At J= 2 there are two constraints
and two CDD parameters and the Reggeization con-
dition reads v~ -1. Nonetheless, as we have seen
in Sec. II, this system factorizes.

IV. DISCUSSION AND CONCLUSIONS

Let us first summarize our results. We have
found that the Born amplitudes for gravitons and

minimally coupled (massive) scalars and photons



REGGEIZATION AND THE QUE STION OF HIGHER- I OOP 1569

factorize at J=2. At J=O graviton-graviton am-
plitudes factorize trivially but factorization does
not hold when scalars are included. These results
are not affected by modifications of the original
model such as allowing for scalar self-coupling or
using the "improved" scalar- graviton theory.

These factorization results will be compared
below with the Mandelstam counting results that
we have examined in the previous section. The
counting, for a theory which may not have an S
matrix with the usual properties, is on rather
shaky grounds. Because of the long-range nature
of the forces, Coulomb-type phases have to be
removed before a partial-wave projection can be
carried out. We have not exhibited well-defined
partial-wave amplitudes, but have assumed that
they exist. Presumably, properly defined partial-
wave amplitudes will satisfy the threshold be-
havior assumed in Eq. (19), as is the case for
Coulomb scattering.

We have also assumed that the Mandelstam
counting procedure may be applied to amplitudes
which do not satisfy unitarity bounds, by simply
counting the number of additional subtraction con-
stants required in partial-wave dispersion rela-
tions. At fixed angle and to order n in ~' ampli-
tudes are expected to increase like s" on dimen-
sional grounds and therefore n+ 1 subtractions will
be required.

We conclude that the equality between physical
and Regge amplitudes at a given J will hold only
up to a certain order n in H. We have seen that
n= J for large J. We have also seen that we ob-
tain different results depending on whether we do
or do not include scalars and whether helicity is
conserved or not. We summarize the results of
Mandelstam counting in tables I and II, where we
show, for various J, to what order n of perturba-
tion theory (in «') the amplitudes are expected to
Reggeize. In the notation of the previous section
we have assumed that the number of subtractions
in a given amplitude E,. is 1+ v,. =1+n. We have
indicated separately the situation at J&4 and J=4,
where all amplitudes are physical, and at J&4,
where some of the amplitudes are unphysical.

We note that there are some significant differ-
ences between the cases of helicity conservation
and nonconservation. They come mainly from the
fact that in the first case F. ...„the amplitude
subject to the strongest kinematical constraints,
decouples from the others. In spite of these dif-
ferences there is one common result that we wish
to emphasize: At J=2 the physical and Regge am-
plitudes should agree up to and including one loop
for pure gravity (n= 2) but not when scalars are
included. For pure grani@ the Born approxima-
tion (which certainly conserves helicity) should

TABLE I ~ Reggeization conditions for pure gravitation.
The theory Reggeizes at t up to and including order n in
K2, i.e. , (n-1) loops.

Helicity
nonconservation

Helicity
conservation

J&4
even v,. «4J+2, n«Ji

F . „:f «J-1 n«J-12»-2: 2»-2'

J& 4
odd

J =4

v ==J-1, n «J-1

ivi «]8, n =4

F2 2, , : v J1, n J 1

~+
2» '~'

2» -2 v«3, n«3

J =-2 vf +v2«4, n «

J =0 vi+v2 2, n =0

TABLE II. Reggeization conditions for gravitons
coupled to massless scalars. The theory Reggeizes at
J up to and including order n in K, i.e. , (n-1) loops.
The amplitudes denoted by "others" are F 2

+ ++00'2 -2~ and 0000 ~

Helicity
nonconservation

Helicity
conservation

4 v; 7J+1, n «J
even

F2222. vJ 3 n J 3

others: v; 3J-3, n J-1
i=- t

J&4
Qdd

v&J —1, n «J —1 F2 2. 2 2. v .=J —]., n J —1
~ ~ ~

J=4
7

v,-«29, n «4
2» 2'2» 2' v«7, n «7

3

others: v; —9,

J =2 v,. «7, n «1i F2 2. 2 2-.

0 0'0 0'

v«5, n «5
v «-]., n =0

J=P vi «-1, n =0

Fo+ 0;0.0: v «-3, n =0

Reggeize (i.e. , factorize) at both J=0 and J'= v,
and indeed it does factorize. For gravity with
scalars the Born approximation should factorize
at J=2 if helicity is not conserved, but need not
if helicity is conserved. In fact it does factorize,
and we might try to understand this result as fol-
lows: As we have already mentioned, it may be
necessary to insert a small mass in the denomina-
tor of the graviton propagator in order to define
partial-wave projections and obtain sensible
threshold constraints. This mass will very likely
introduce a certain amount of helicity nonconserva-
tion (and, one hopes, nothing more serious) even
in the Born approximation, so that our helicity-
nonconservation results may hold before the mass
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is allowed to tend to zero. One might hope that
those helicity-nonconservation results which are
stronger than the helicity-conservation ones will
still hold in the zero-mass limit. If this rather
optimistic view is correct our factorization results
at J=2 will be explained.

As mentioned in the Introduction, one of the
main reasons we undertook this work was to shed
some light on the question of renormalizability of
gravitation since it is believed that there is a rela-
tion between renormalizability and Reggeiza-
tion. ' "' Although our understanding is still quite
minimal we offer the following possible interpre-
tations of our results:

(a} The factorization of the Born approximation,
perhaps a property of renormalizable theories,
suggests that there exists a theory of massless
spin-two particles and matter which has the same
tree structure as the Einstein theory but is re-
normalizable. As a (somewhat imperfect) analogy
we offer the case of spin-& massive Yang-Mills
scattering considered by Abers, Keller, and
Teplitz. " The theory of this system, in the ab-
sence of a Higgs mechanism, is unrenormalizable,
but the particular amplitudes factorize. It so hap-
pens that the renormalizable theory has the same
tree structure for the process they considered
since the Higgs scalar does not contribute in Born
approximation. '

In our case we know in fact that pure gravitation
is one-loop renormalizable. Gravitation with sca-
lars is not, but perhaps by introducing additional
particles, which do not contribute to scalar-gravi-
ton scattering in the Born approximation, one
could make it renormalizable. The main difficulty
and main difference from the example of Abers
et a/. is the fact that this theory has a dimensional
coupling constant so that if it is renormalizable it
is so in a manner different from what we are ac-
customed to. Conceivably a different curved-
space quantization scheme might be needed. Inso-
far as the Born approximation reflects the classi-
cal aspects of the theory, a very optimistic atti-
tude would be that our factorization results sug-
gest the existence of such a scheme in which mat-
ter- gravity might be renormalizable.

(b) Pure gravitation is one-loop renormalizable
and this is consistent with the (trivial) factoriza-
tion of the graviton- graviton amplitudes. Gravita-
tion with scalars is not renormalizable and the
factorization of Eq. (12) is an accident. After all,
whether or not the graviton Reggeizes should have
little to do with the presence of scalars. The
graviton Regge pole can be thought of as being ex-
tracted out of a sum of ladder diagrams with grav-
itons in the internal lines which should dominate

diagrams with internal scalars. In graviton-scalar
scattering the relevant term would come from the
coupling of external scalars to such ladders. All
that is required is that the coupling be right, and
it happens to be so.

In following up this possibility we conjectured
that the coupling happens to be right because it is
generally covariant. We then investigated the
somewhat similar, gauge invariant but unrenor-
malizable pion-Yang-Mills coupling F„„(D„wxD„Pr)
only to discover that it destroyed the factorization
properties of this system. We conclude that the
scalar-graviton coupling is "right" for reasons
other than general covariance.

(c} The view that we are inclined to espouse is
the following: Pure gravitation is one-loop re-
normalizable, gravitation with scalars is not,
and this can be understood on the basis of Man-
delstam counting.

Let us consider a diagram or set of diagrams of
a given order, describing a scattering process.
We assume that all subdiagrams have been made
finite. Infinite four-point counterterms may be
required to make the corresponding amplitude
finite, and they can be accompanied in general by
arbitrary finite parts. We note that the counter-
terms give only low angular momentum contribu-
tions and therefore can introduce arbitrary param-
eters in the low partial waves. By the same token
the amplitude at large J is finite and presumably
can be continued to complex J. With the usual as-
sumptions we can continue it now to low J and if
we have an argument to suggest that the continua-
tion must equal the physical amplitude we must
conclude that the counterterms cannot introduce
arbitrary parameters in the amplitudes. (Our
concern, of course, is not with counterterms
which only renormalize already present inter-
actions. )

Therefore, if Mandelstam counting indicates
that the Regge and physical amplitudes should
agree down to a given J we must conclude that the
only possible (four-point) counterterms have angu-
lar momentum content which is less than J. For
example, in graviton-graviton scattering we must
conclude that the only possible counterterms to
the one-loop amplitude can contribute only at J = 0.
On the other hand, on dimensional grounds they
must contain four derivatives of the gravitational
field. The reader may convince himself that the
only possible such terms which contribute only to
J=O and not to J=2 vanish on shell. Hence the
one- loop amplitude requires no renormalization.

On the other hand, in the presence of scalars
Nandelstam counting indicates that there may be
counterterms which contribute at J=2, e.g. ,
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«'[(k, &„)']' (or, covariantly, g~'R') since the two

amplitudes need not agree there. Thus the theory
need not be one-loop renormalizable.

Obviously our arguments lack rigor. We can at
best talk about four-point amplitudes in low orders
of perturbation theory. We also do not really
know if our Mandelstam counting procedure is
correct. There are other holes in our arguments
that the reader will have no difficulty finding.
Nonetheless, if we are correct we might specu-
late about what will happen for pure gravitation
beyond the one-loop approximation. We consider
first the case of helicity nonconservation.

We note that in order («'}" counterterms will con-
tain 2n derivatives of the graviton field, and will
contribute a contact term with 2n momentum fac-
tors to the (n —1)-loop amplitude. If we assume
that in this order each v,.=n, we have obtained the
result that the physical and Regge amplitudes must
agree at even J if J»n and at odd J if J»n+1. We
can now attempt to generalize the argument at J= 2

by asking if it is possible to reconcile 2n momen-
tum factors with the absence of contributions at J.

For n =3 the two-loop amplitude can have a
counterterm with 6 momentum factors and hence a
possible contribution at J=3. However, on shell
the physical amplitudes vanish at J= 3, so that un-
less the 6 momentum factors can be arranged to
give nonzero contributions only to J~ 2 the coun-
terterms must be absent and the two-loop ampli-
tude will be renormalizable on shell.

For n =4 the physical and Regge amplitudes must
agree at J= 4. If it is impossible for 8 momentum
factors to give vanishing contributions at J= 4, but
nonvanishing contributions for J~ 2, the three-
loop amplitude will be renormalizable on shell.

For n= 5 our argument would break down since
the condition is J»n+1 at odd J. The two ampli-
tudes need not agree at J= 5 and the 4-loop ampli-
tude need not be renormalizable. If the condition
were J»n at all Jwe might be able to continue the
argument and perhaps prove that pure gravitation
is in fact renormalizable in arbitrary (finite) or-
ders of perturbation theory.

However, we can already stop at the two-loop
level since in fact it may be possible to construct
a counterterm with 6 momentum factors which does
not contribute at J'= 3, for instance g'~'(R, „,B)'R'.
Indeed the amplitude E2 2. . 2 can receive a con-
tribution from such a counterterm having the
unique form (see Ref. 13; the methods explained
there readily give this result) «'(s'+t'+u').
Whether such a counterterm is actually present
is an open question.

The situation is very different if helicity con-
servation is true in higher orders of perturbation
theory. Not only must F». 2 ~ vanish, but, as
exhibited in Table I, the theory must Reggeize at
J= 2 up to and including four-loop diagrams. We
are then back to the case discussed above which
suggests that two-loop amplitudes should be re-
normalizable on shell.

Obviously it would be interesting, but extremely
difficult, to investigate the question of helicity
conservation and to check our conjectures by a
direct calculation of the n = 2, 3, . . . -loop ampli-
tudes.
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APPENDIX

The relevant parts of the c functions in the par-
tial-wave expansion Eq. (6) are given here. For
non-negative A. and p, , cJ„can be written as linear
combinations of Legendre functions PJ, , . . . ,
PJ,~ with constant coefficients, where X

= max(( x ~, ~ p~}. For sense-sense transitions, 8- A.

is non-negative. For sense-nonsense and non-
sense-nonsense transitions, J- X„ is negative and
these Legendre functions of negative degree gen-
erate poles in J in the partial-wave amplitudes;
therefore, we only keep the terms having Legendre
functions of negative degree.

The c's can be generated by using the recursion
relations (A13) and (A14) of Ref. 1 [note the mis-
print in Eq. (A13): (L+1 —2X) should be replaced
by (L I +2+}].«The relevant parts of the c's in
our calculations are as follows.

J=O'

c'„=P, ,

cd=su J(xP~, +—5'P~, ),
c0 672 P 8P

44 5 J2 5 J-4

J=2:

C00 P2,

c'„=—i ~ (J—2)'~'P~, ,

c4'4= —24PJ 4,

c22 —$Pp+ 7 P2 + as P4 s

C -' —2 4 (-) (g —2)
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