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Electromagnetic field of a current loop around a Kerr black hole
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The electromagnetic field due to a current loop placed around a Kerr black hole is investigated within the
framework of perturbation theory. The asympotic behavior of the field at large distances from the black hole
is studied. The process of charge accretion into the black hole due to the electric field generated by the loop is
discussed.

I. INTRODUCTION

Test fields superposed on black-hole backgrounds
can be analyzed with the help of perturbation tech-
niques of general relativity. Gn account of the
strong space-time curvatures involved, these
fields often exhibit unusual properties that may
not be encountered in flat space-times. Exploring
new effects thus produced by gravitation is ob-
viously of interest from a theoretical standpoint.
The ultimate aim of such investigations, however,
is to relate the results to astrophysically realiz-
abl. e s ituations.

Physical phenomena associated with rotating
black holes display, in general, more novel fea-
tures than those that accompany static ones. For
instance, a stationary charge near a Kerr black
hole gives rise to a magnetic field as well as the
electrostatic field. ' Analogous effects are to be
expected in the case of a current loop placed
around a black hole. This problem has been treat-
ed recently by Petterson' using the Schwarzschild
metric. The magnetic field of the loop is modified
as compared with that in flat space-time, but the
basic structure of the electromagnetic field is
unaltered. In the present paper we study the prob-
lem with the Kerr black hole as the background.
Now, in addition to the expected magnetic field,
an electric field is also generated owing to the
rotation of the black hole. This electric field in
turn leads naturally to the possibility of charge
accretion into the black hole. Kaid' has studied

charge accretion into a black hole placed in a
uniform magnetic field. Using the same principles
as in his procedure we determine the amount of
charge that can be attracted by the black hole as
a function of the current in the loop. These con-
siderations would be of astrophysical significance,
if toroidal currents exist in accreting disks sur-
rounding black holes. Such currents are expected
to be created by radiation pressure acting pre-
dominantly on electrons. ' The possible occurrence

of this phenomenon in a realistic accretion model.
calls for a detailed analysis of the relevant physi-
cal processes. We are investigating the above
aspects of the problem and hope to return to them
in the future.

In the next section we present the differential
equations governing the electromagnetic field of
the current loop placed around a Kerr black hole
and obtain the corresponding solutions. In See. III,
the asymptotic behavior of the field components
at large distances from the black hole is examined.
The magnetic dipole and the electric quadrupole
moments induced by the current loop are com-
puted. The final section is devoted to the process
of charge accretion into the black hole.

II. FIELD OF A CURRENT LOOP AROUND A KERR

BLACK HOLE

In the Boyer-Lindquist coordinates, the Kerr
metric is

e "yg2+g2&(dy ~dg ) + e2~d y2+ e2&d|I)2

where

e"=hZ/B, e~ =Bsi &n/Z, ~ =2amr/B,
(2)

e' =Z/6, e'" =Z,

and

Z =ra+a'cos'&, B=(r'+a')' —4a'sin &,

a =y' - 2m~+a'.

We use Kinnersley's tetrad the components of
which are

i " = ( (r' +)aa/, 1, 0, a/a ),

n" = —(r'+a', —a, O, a),

pm" = —~ (iasin&, 0, l, i /sin&),

12 1538



12 ELECTROMAGNETIC FIELD OF A CURRENT LOOP AROUND A. . . 1539

where p is one of the spin coefficients:

1
p-= I,m" m" =—r —ia cosg

The electromagnetic field is characterized by
the three complex quantities

and

50 =E~ I, PPl

,' F„,(—i"n'+m~" m' ),

P2 =E~, m "n',

8 'tI&f 1 8 8+
sin& + (cot'8 +1)4' = 4»Z,8r2 sing 8 g 8g

(7)

where J contains the source terms. In our case,
let J"(r, 8) be the current density for a current
loop located in the equatorial plane, 8 = »/2 placed
symmetrically around the black hole. %e choose
J" such that the locally nonrotating observer, '
whose frame of reference is represented by an
orthonormal tetrad

where I „, is the electromagnetic field tensor.
In the stationary axisymmetric case, Teukolsky's'

master perturbation equation for the quantity

4 = 0,/i&'

takes the form

8 8 8
e& = e —+(d, eg =e

8I, 8$ '
8(f) '

%riting

and

4 = Q R& (r),S, (&)
l= 1

J = Q J&(r),S, (&),
i=1

where, S', (8) are spin-weighted spherical har-
monics,

2i +1 '~ dP, (cos8)
4»i(l +1) d&

(10)

and substituting in Eq. (7), one obtains the radial
equation for each I, mode:

d'R, i (i +1) J,(r)
dr'

where

8 8
e- = e — e-=e "—

8r' ' 8g

measures the total current through an (r", 8) plane
as I. In Boyer-Lindquist coordinates, this leads
to the current density as

( j b2 2mb +a2z =I o, o, o, —„. . . , b( -b)b( o 8)~.
)

(9)

2l +1 "~ b' —2&nb+a2 'b i(b +a' —2 mb)& dP, (cos&)
4ni (l + 1) b'+a2+ 2 ma'/b 2M2 d &

+ — (b —2mb+a')P (0)b(r —b)
ai(l+1)
2l 26

i(a'+b') (. . . dP, (cos8)
(12}

with prime denoting the derivative with respect to r. To solve the inhomogeneous differential equation
(11}we use the following linearly independent solutions of the homogeneous part:

(2i +1)!,r —m
l 2l (i + 1)f i!(m2 a2)(&+l)n & (m2 a2)1&2

2' i!(l —1)!(m' —a2)»2, r —m

(2!)! l (m2 a 2)1&2 ( 14)

We note that as r-~, F, (r) - 1/r' and G, (r}-r"', and as r - m+ (m' —a )' ', G, (r) -0 and F, (r) - a finite
constant. The solution of Eq. (11) is then given by

-4»g, (r)
R (r) =F (r) J

'
G (r)dr /W, r&b
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B, (r)= G(r) ' E, (r)dr /W, r&b
—4vZ, (r)

(16}

where W, the Wronskian of G, (r) and F, (r), is —(2t+1). Integrating Eq. (15), one finally obtains, for
r&b,

b -2mb+a
y, (r, 8) = rf 5 ~ a'+Rnss /b ')

a+b, 2 . ~i r((1+2)/2)~ M2l(l +1) b '
Air 2 1((L +I)/2)

a 1 wl F((i+I)/2, dP, (cos&)+ —I(I+1)G,(b) ~ cos
2 (( 2)/2) p'E, (r)

H,'b p2+ r
L=1

Integrating Maxwell's equations, one obtains' Q, (r, 8), for r& b:

(17}

09

y(r, &) = gv 2 H,'(b) p' ~[rE, '(r)-E (~r)] P, (cos8) — F, '(r)[lP„,(cos&)+(l +1)P, ,(cos8)] . (16)
l= 1

l l k / 2~

For r b, one finds the analogous expressions for g, (r, 8) and Q, (r, &) with E, and G, interchanged. Elec-
tromagnetic field components can then be computed directly knowing Q, and Q, everywhere.

III. THE ASYMPTOTIC FIELD DISTRIBUTION

We will compute the electromagnetic fields at large radii (r» m, b) for the I =1 mode. We substitute
the following expressions:

1
G, (r) =r' —2mr +a', E,(r) ——,

and

b'+2ma' b+a'

in Q, and p, to get

E„~ = —2asin'&Re/, —2u 2 Im[(r —i acos&) Q, ]
(r'+ a') sin&

——rrf 2 2, (b2+a —2ma/b)
b —2mb+a sin~8

b + 2RXa 5+0 r' ( 19)

(20)

E„=—2 Re($, ) — Im[(r —ja cos 8}$2]
2M2a sin&

I (b'+ a2 —2m'/'bb' + 2ma'/b + a' ( 21)

E,e = 2a sin& lm(g, ) —2M2 Re[(r —i a cos&}P,]

(22}

The electromagnetic field components in the local Lorentz frame defined in Eq. (6) are then given by
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b' —2mb+a' ~ a 1 v/ I'((/+1)/2) rE, (r)
b'+a'+2ma'/b, b '

v rr 2 I'((l +2)/2) r'+a'

a a +b',
b

2 w/ I'((l+2)/2) E, (r)
/(l +1) b ' ' ~~ 2 1((/+1)/2) r +a

for r& b (30)

b' —2mb+a' + ~ a 1 wl I'((l +1)/2) rG, (r)

a a'+ b~ 2 ml I'((l +2)/2) G, (r) ~

/(/+1) b ' ' Mir 2 I'((l +1)/2) r'+a'-
for r&b. (31)

The K' and K' are some constants. The continuity of A, at r = b gives the condition

b' —2mb+a' '+ ~ 2 . wl I'((l +2)/2) a 1
b'+a'+2ma'/b ~ M 2 I'((/ +1)/2) l(l +1) b

since

b' —2mb+a' '~ a ~ 2 sin(w//2) I'((/+2)/2) (2l +1)
b +a +2ma /b b ~ V w I'((/+1)/2) l(l +1)

= 2n'I
6' —2mb +a' ' a

b'+a'+2ma'/b b
' (32)

2 . wl I'((/+2)/2) (2 l +1)~ v w 2 I((l +1)/2) l(l +1)

One way to prove the above equality is to convert the series into a difference of two convergent hyper-
geometric functions'.

(33}

2 . w& I'((l+2)/2) (2l +1) ~ 2 „[I'(n+ )J~(4n 3+)

, u v 2 1((l +1)/2) l(l +1) ~ Mw [F(n+1}J(2n+1)(2n+2)

2 „1(n +-,'), ~ 2 „ I'(n —,')~ v v I"(n+1) ' ~ Mir I'(n+2}

= 2E(1, —,', 1; —1) —pF(1, ~, 2; -1)

=2 ~ E 1, 0, 1; —~F 2, 1, 2; (see Ref. 7 for linear1 1 —v2, 1 —v2

transformations)

= 2 ~ ——,'(-2+2' 2 )
M2

Noting the behavior of F, (r) and G, (r) at the
horizon and at infinity, one finds that

The vector potential due to charge Q on the black
hole is given by Ao„= —Q/2m q„. Thus, the net
electrostatic injection energy is given by

=—e(A, J„,„.„„-A,J )

= e(K' —E')
b' —2 mb+a'

=e 2mI
b~ + a~ + 2m a /b b

(34)

Q
~ —2yygg+a~ 4 a Q I

b~+a'+2ma'/b b 2m
(35)

%e have derived the above expression only for
injection along the symmetry axis, but it is valid
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for any general injection of particl. es since, as
Carter' has shown, the electrostatic injection
energy is constant over the black hole. The final
value of accreted charge is determined by setting
e to zero. s Hence a rotating black hole with a

current loop around it will charge up to a value

mg y2 2~y+. g'
b b'+a'+2ma'/b=4@I (36)
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We would like to point out that we have not necessarily
calculated the complete minimum energy field con-
figuration, and that it could correspond to the current
loop carrying a charge opposite to that of the black
hole.


