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We present the details of previously published results on the stability of the Reissner-Nordstrom family of
black holes and discuss, in some detail, the reduction techniques which were used to simplify the perturbation

problem. We develop the Hamiltonian formalism for the perturbations of an arbitrary static solution of the
Einstein-Maxwell equations (with vanishing magnetic field) and show explicitly that the perturbed constraints

are the generators of the coordinate and electromagnetic gauge transformations of the canonical perturbation
variables. We show that the perturbed constraints have vanishing Poisson brackets with one another and use

this result as the basis for our reduction technique. The canonical transformations which accomplish the
reduction and the perturbation Hamiltonian are given explicitly for the Reissner-Nordstrom problem. We
include a stability result for the t,'odd- and even-parity) L = 1 perturbations which were not previously

considered.

I. INTRODUCTION

In this paper we present the details of previously
published results' on the stability (in linear ap-
proximation) of the Reissner-Nordstrtim family of
black holes. We also explain in some detail the
reduction techniques which were used in simplify-
ing the Reissner-Nordstr5m perturbation problem.
The reduction methods are emphasized because
they are equally applicable (in a practical way) to
a variety of other interesting gravitational pertur-
bation problems.

Our approach is most naturally expressed in
terms of a Hamiltonian formulation of the pertur-
bation problem. The reduction technique is essen-
tially an application of the classical method of re-
ducing a Hamiltonian system admitting a commut-
ing set of constants of the motion. For our prob-
lem the perturbed constraints are the relevant con-
stants of the motion and the (Abelian} symmetry
transformations they generate are just the coor-
dinate and electromagnetic gauge transformations
of the canonical perturbation functions. This re-
duction technique is described in more detail in
Sec. II. Section III presents the Hamiltonian for-
malism for the perturbations of an arbitrary static
solution of the Einstein-Maxwell equations (with
vanishing magnetic field}. In Sec. IV we discuss
the commutation properties of the perturbed con-
straint functions and explain their role as genera-
tors of the coordinate and electromagnetic gauge
transformations. In Sec. V we specialize to the
Reissner-Nordstr5m background, introduce the
Regge-Wheeler' expansion of the perturbations,
and give an explicit canonical transformation which
accomplishes the reduction. Sec. VI presents the
Hamiltonian for the perturbations expressed in
terms of the new canonical variables and recalls the
stability results given in Ref. 1. The I.=1 pertur-

bations, which were not previously considered, are
discussed in Sec. VII.

Other studies of the Reissner-Nordstr5m pertur-
bations have recently been made by Zerilli, ' by
Chitre, Price, and Sandberg' and by Johnston,
Ruffini, and Zerilli. A previous application of the
methods used here may be found in Ref. 6.

II. REDUCTION METHODS

The variational integral for the Einstein-Max-
well equations has been put into Hamiltonian form
by Arnowitt, Deser, and Misner (ADM). 7 From
their expression one may derive another variation-
al integral which determines the equations of per-
turbation of any particular exact solution. The
canonical variables for the linearized ADM equa-
tions are just the first-order perturbations of the
canonical variables for the original, exact varia-
tional problem. The method for deriving the per-
turbation Hamiltonian has been discussed in Ref.
6 and follows the same pattern developed and ap-
plied by Taub' to derive the perturbation I agran-
glan.

The constraint equations for the perturbation
problem are just the linearized versions of the ex-
act constraint equations. The linearized con-
straints are conserved in time when the dynamical
variables are propagated by the linearized evolu-
tion equations. Two important properties of the
linearized constraint functions are that

(i} they are the generators of the coordinate
and electromagnetic gauge transformations of the
canonical perturbation functions, and

(ii} they have vanishing Poisson brackets with

one another.
In Sec. IV we shall give an explicit proof of these
two statements for the restricted problem cf per-
turbing a static solution of the Einstein-Maxwell
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equations. A proof for the general case may be
derived in the same fashion but requires a more
lengthy computation. It should be clear, however,
that (i} is essentially the standard result that the
conserved quantities of a Hamiltonian system are
the generators of the symmetry transformations
(in this case gauge transformations) of that sys-
tem. Furthermore (ii) is a necessary consequence
of (i) since the constraints themselves must be
gauge-invariant.

Our reduction technique is now easy to explain.
We seek a transformation to new canonical vari-
ables in terms of which the perturbed constraint
functions become simply a commuting subset (for
example, a subset of the new momentum func-
tions}. This is possible in view of (ii) above. The
new variables canonically conjugate to the constraints
will, in view of (i) above, be gauge-dependent. The
remaining canonical pairs, however, will be
gauge-invariant since, by construction, they will
commute with the perturbed constraints. In terms
of the new canonical variables the perturbation
problem simplifies considerably. In particular,
the evolution equations for the gauge-invariant
functions necessarily decouple from all the gauge-
dependent functions in the problem (including not
only the gauge-dependent canonical variables but
also the perturbed lapse and shift functions).

The usefulness of this technique depends, of
course, on the tractability of performing the re-
quired canonical transformation. When the back-
ground space-time has considerable symmetry the
transformation problem may be greatly simplified
by expanding the perturbations in a suitable set of
tensor harmonics such as the Regge-Wheeler' har-
monics for spherically symmetric backgrounds or
the Bonanos or Regge-Hu' harmonics for spatially
homogeneous backgrounds. Regarding the general
problem, it has been possible to define a complete
set of gauge-invariant functions of the (purely
gravitational} perturbations of an arbitrary vacuum
space-time with compact Cauchy surfaces. " How-
ever, this construction is highly nonlocal as it re-
quires the solution of certain (well-posed) elliptic
systems of equations. This method is probably
extendable to the noncompact case provided suit-
able asymptotic conditions are imposed. The non-
locality of this approach, however, may render it
impractical as a tool for standard perturbation
problems. An open question is the extent to which
our reduction program is applicable (in a practi-
cal sense) to the perturbations of space-times of
moderate symmetry.

III. VARIATIONAL INTEGRAL FOR THE PERTURBATIONS

The ADM form of the variational integral for the
Einstein-Maxwell equations is given by

16mI= d x m'~g, .j,+A,S',
-NX N,-K' -A,S';),

in which

~~g 1/2(~i/v 1 v2) g 1/2R

+ 1g -1/2g (SiS/+/JIitgi}

~i 2&)j gib~ g lcm
lj Alm

(3.1)

(3.2)

(3.3)

while independent variation of the canonical pairs
(g,~, «i") and (S', A, ) gives the evolution equations
of the Einstein-Maxwell system.

A static solution with vanishing magnetic field
(tg'=0} has 1/'/=N, ='=0 and. obeys

g i 0 g 1 /2R + 1 g -1/2g g i/ j 0

6ii —1eUk[(Ng -1/2S ) (Ng -1/2S ) )

=0,
(3.4}

ii" = —Ng' '(R" --g"R)+g'"(N'"-g"N
+Ng -'"(-'g"g S'S' —-'S'S')

=0

The remaining static field equations, g,~, =8
=0, are satisfied as a consequence of the above.

To exclude naked singularities in the non-spher-
ically-symmetric case one should match a regular
exterior solution of the above equations to a reg-
ular interior solution representing, for example,
a charged elastic body. Since our main interest,
however, is in the Reissner-Nordstrdm (black
hole) solutions, we exclude consideration of the
interior problem. For any particular solution of
Eqs. (3.4) we let M designate the generic
t = constant spacelike hypersurface (with induced
metric g„) of the static space-time. In the Reiss-
ner-Nordstr5m case M is a t = constant spacelike
slice exterior to the event horizon. In the follow-
ing we consider perturbations of the space-time
(M x R, «g„„, F „},where «g „and E„„are an
asymptotically flat Lorentz metric and an electro-
magnetic field tensor obeying Eqs. (3.4). The local
perturbation equations must be supplemented with
asymptotic conditions (consistent with asymptotic

with S'= 2'ei/k-(Ak, -A/ k) and ii=g, /1/". Our nota-
tion is the same as ihat of Ref. 7 except that we
have absorbed a factor of 2 into the definitions
of both 8' and A„and we use e,» and e"2 (with e»2 = e»2

=1) to represent the totally antisymmetric tensor
densities. Independent variation of the lapse func-
tion N, shift vector field N„and scalar potential
A, gives the equations of constraint
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flatness) and boundary conditions (consistent with
regularity at the event horizon or at the boundary
of a charged source}.

To obtain a variational integral for the perturba-
tion equations we compute the second variation of
the exact variational integral (3.1). This method
for deriving a variational integral for perturbation
problems has been discussed in Refs. 6 and 8. If
we designate the perturbation functions (first var-

iations) by

N' —= 5N, N] ——5N]

8' -=eS',
(3 5)

and specialize the background (after taking the
variations) to a solution of E(l. (3.4), we obtain
the following variational integral for the perturba-
tions:

167t Ipept

where

d'x(p "h(, , +AIh" (

-N(g -'"(P''P - 'P')+ '-g-'"-g (h "~"+&"dl")+g-'"(h --'g h)g'h"
&f ~ &J

+ —'g -'/'(I)([I)/( hh, +zg h k()(+(g h2)

——g' '[(—h —~2h'/h(/)R —hh, /R(/+2h(~h~/R' +2h' h

ogle—2h' h~](~ + ~h" "h~))]+2h hapl&
—2h h~, '[~ —h' ~a

—2h" [()h/("+2k [(,h[/ —~ h "h[, —hh[( '+Ah, (
' ])

(3.8)

gl/2[h I(/ h I( h (Rl/ ( g(/R)] + &

g -(/2(h (
g h)g (8/+g-(/2g g (g J(

X"=-2p(/[/-g"e„8((s ', " =-,'e(/'(A, '/-AI, ), p=g„p", h=g"h, ,

(3.7)

and in which R,~
is the Ricci tensor of g„, a ver-

tical bar signifies covariant differentiation with
respect to g,&, and indices are raised and lowered
with this metric and its inverse g'~. The domain of
integration 0 may be any smooth domain in M &R
and independent variation (subject to the standard
conditions on BA) of h(/, p'/, A„h (, N, N;, and

A, produces the linearized ADM equations for the
perturbations of the given static background solu-
tion.

It will be useful to define the Poisson bracket
(, ) for pairs of functions of the canonical vari-
ables (h, /, p'/), (8(,AI). Let k„be an arbitrary,
symmetric tensor field and r'~ be an arbitrary,
symmetric tensor density defined over M. Also,
let k, be an arbitrary vector field and r' be an
arbitrary vector density defined over M. The fund.
amental Poisson brackets may be expressed as

IV. GAUGE TRANSFORMATIONS AND

THE PERTURBED CONSTRAINTS

In this section we derive the gauge transforma-
tions of the canonical perturbation functions for the
case of a static background obeying E(ls. (3.4). We
also show that the perturbed constraint functions
are the generators of these gauge transformations
and that the perturbed constraints have vanishing
Poisson brackets with one another.

The coordinate and electromagnetic gauge trans-
formations of the perturbations are generated by
a pair (~X, 4'), where 'X = 4X B/Bx is an arbitrary
vector field and 4 an arbitrary function defined on
the background space-time (M&&R, 'g„„,E,„). Let-
ting h„„=54g„„,F„„=OF,„, and A„=QA„represent
the metric, field tensor, and vector potential per-
turbations we write

h„(x'),

p(/(x())

d'v[) )',[I -)'„(*'),

d')[h r""[I=—r"(x')

h,„-h„„+5h„„,

A„-A„+6A„

(4 1)

Ig "(x'),fd'y[A'r ] =(((x'),

tA((x'},fd'y[h 'k ] =-k, (x'},

with all the other basic brackets vanishing.

{3.8} for the gauge transformations induced by some
fixed pair ('X, 4'}. A standard argument gives

Bh, =()84 'g), 8='X .8+'XB.

BA' =(41, A), +g ='X~E~ +(4+'X'A, )

(4.2)
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where 8, is the Lie derivative with respect to 'X
and a semicolon signifies covariant differentiation
with respect to 'g ~.

For the following it will be convenient to split 'X
into its contributions normal and tangential to the
t = constant hypersurfaces of the background.

Therefore, write

'X=C n+X'8/sx', (4.3)

~~pa~2 gk

=-,' e"'(A, /-A/, ) .
A short computation gives

(4.5}

6g"=(X'g') Xi g~

where we have made use of the background field
equations to reexpress certain terms. The gauge
transformations of p" are obtained similarly by
reexpressing p" in terms of the metric perturba-
tions h ~ and their derivatives and applying Eqs.
(4.2}. From the variational integral of the pre-
ceding section one obtains (by varying p'j)

(4.6)

in which C = —'n 'X =+X'X' is the projection of
X along the unit normal [(~n ) =( N, 0-, 0, 0)] and

X'S/Sx' =gi/X/S/Sx' (with X, ='X,) the tangential
contribution (intrinsic to the hypersurface). From
these definitions and Eqs. (4.2) above we obtain the
gauge transformations of h „.

(4.4)

the last equality holding only for a static back-
ground. The gauge transformations of 8' and '
follow from Eqs. (4.2) and from the definitions of
these quantities as perturbations of

g i —
( i )i /2FO i

G(a) = d'x(CR +X,3C"+)(g', ) . (4.11)

A direct computation of the Poisson brackets
{h,/, G(a)}, etc. , gives

{h,./, G(o)}=6k,.j, {P",G(a)}=6Pij,

{g",G(o)}=5g", {ig",G(a)}=6e",
(4.12)

where 5h, j, etc. , are given by Eqs. (4.4), (4.6),
and (4.9}provided we identify C and X' with the
corresponding functions used before. For the vec-
tor potential we obtain

{A,', G( )}=-Cg-'/'g„g +&, , (4.13)

which agrees with Eq. (4.10) if we identify X with
4+'X A (evaluated at the hypersurface a).

It follows from the above considerations that any
function of the canonical perturbation variables
(hj. .p'j, g', A, }which commutes with the genera-
tors

G(~x, ~i(a) = d'x[CX'+X,.X"

dition ' =0 to simplify the result.
For the perturbations of arbitrary vacuum space-

times the general gauge transformations of h„.,
p" were derived in Ref. 12. Those results could
readily be generalized to allow for electromagnet-
ic fields in the background and perturbed space-
times. For simplicity, however, we here consider
only the static backgrounds (with S' = 0).

We now show how the gauge transformations de-
rived above are generated by the perturbed con-
straint functions X', K", and 8', As before let
C and X' be normal and tangential projections of a
vector field 4X at a t = constant hypersurface o of
the background spacetime. Let y be a function on
0 and define, for given C, X', and y, the generator

I I
/i i/ i

= 2Ng / (P,.j —~gi/P)+Ni( +Nj(i (4.7) + (4 + 'X A )g ",.] (4.14)
or, equivalently

pi/
—(1/2N)g I/2(gikgj I gi j@kl)

& [h , iii(iNa(i+N, )a)]. (4.8)

Applying Eqs. (4.2) specialized to a static back-
ground [satisfying Eqs. (3.4)] we obtain, after a
short computation,

6P" =g' '(C'" —g"C~, ) g' '(R" —', gi—/R)C-
1g -i/&(g ig j ~ gijg gkg i)C (4 9)

where we have made use of Eqs. (3.4) to reexpress
certain terms. Finally for A,. we obtain from Eq.
(4.2)

5A, =-Cg '/'gijg /+ (4'+ 'X~AB}, , (4.10)

where use has been made of Eqs. (3.4) and the con-

(for arbitrary 'X and 4) is invariant under simul-
taneous coordinate and electromagnetic gauge
transformations. In particular the constraint func-
tions themselves are gauge-invariant. To show
this explicitly we compute the Poisson brackets of
K', K'', and g', with G&4„~&(a). The only brack-
ets which do not obviously vanish (for the static
background case) are, by direct computation,

I i, aX, d'xX,.X' =(X'K) -g-' ' /' g,.X'g=0

(4.15)

»nce 3C=(-g'"R+-'g-'"g g'g') =0 and g' . =0.
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The main results of this section, that the perturb-
ed constraints commute and are the generators of
the gauge transformations, may be generalized to
the perturbation problem for an arbitrary back-
ground solution of the Einstein-Maxwell equations.
The proof is a straightforward computation similar
to the one given here for the static background
case. In the general case, however, the genera-
tors G&4» v &(o) depend on the choice of hypersur-
face 0 through the time dependence of the back-
ground field variables g, &, w'~, 8',A, . Typically a
function of the canonical perturbation functions
would have to depend explicitly on the time in
order to commute with the generating functions
associated with each hypersurface. In particular
the perturbed constraints have precisely the re-
quired hypersurface dependence through their de-
pendence on the background field variables g„,
etc. In the stationary or static case (in stationary
coordinates) a time-independent function of the
perturbations commutes with the generators for
every t =constant surface if and only if it commutes
with those for a single surface. Thus for a sta-
tionary background a time-independent canonical
transformation is sufficient to accomplish the re-
duction described in Sec. II whereas, for the gen-
eral case, a time-dependent canonical transforma-
tion would be required. In a variety of practical
problems (e.g. , perturbations of homogeneous
cosmological models) one can perform explicitly
the desired time-dependent canonical transforma-
tion after expanding the perturbations in suitably
chosen tensor harmonics.

V. CANONICAL TRANSFORMATIONS FOR
REISSNER-NORDSTROM PERTURBATIONS

where

N'=e '"=1—(2m/r)+(e'/r').

The other background field variables are

8"=2e sin8, 8'=g =I'=g"=0.

(5.2)

(5.2)

We begin by expanding the perturbation functions
in Regge-Wheeler tensor harmonics labeled by the
spherical harmonic indices L and M. The odd-
parity perturbations (for L ~ 2) were treated in de-
tail in Ref. 13 so here we consider only the even-
parity case. Since perturbations corresponding to
distinct values of (L,M) are not coupled by the per-

We now specialize the background to a Reissner-
Nordstr5m exterior solution with charge 8 and
mass m ( ~e

~

~ m). In standard coordinates the
metric exterior to the event horizon at r =r,
=m+ (m' —e') is given by

ds' = N'dt'+ e'"dr'+ -r'(d8'+ sin'8dp ) (5.1) (A, )= (,+, ,lY „, , 0),I 9~go

(g")= f, m er. ," s ne. . , o),(f2 +fi.~) s&so
LQyL L +] Be

(5.4)
I

Ao = aol'~0,

where ao, a„a2, f„and f, are real valued func-
tions of r and t and in which we suppress the har-
monic label L on these functions to simplify the
notation. The parametrization has been chosen so
that

d'g(A,'g", ) = dx(ayfy )+a», )
N r+

(5.5)

modulo an inessential boundary term which we

turbation equations (a consequence of the spherical
symmetry of the background) we may treat each
set separately from the others. Furthermore, it
suffices, for each L, to set M=0 since the per-
turbations for arbitrary M may be obtained by a
rotation from those with M =0. In this section we
consider perturbations of order L «2 for which
both electromagnetic and gravitational radiation
can occur. The remaining perturbations are dis-
cussed in Sec. VII.

Our main approach is to begin with the Regge-
Wheeler parametrization for the metric perturba-
tions h, &, N, N, and the vector potential A„and to
introduce a Regge-Wheeler parameterization for
p'~ and 8' as well. This can easily be done so that
the parametrization is canonical. The idea is then
to find a canonical transformation from these var-
iables to a new set in terms of which the perturbed
constraints are simply a commuting subset (e.g. ,

a subset of the new momentum functions). This
can be accomplished explicitly for the present
problem by means of simple transformations. The
new canonical variables conjugate to the constraints
will be gauge-dependent while the remaining con-
jugate pairs will be gauge-invariant. This conclu-
sion follows from the general considerations of the
preceding section but may readily be checked ex-
plicitly for the present problem. Indeed, in prac-
tice it is often helpful to construct gauge-invariant
functions directly by studying the effect of arbitr-
ary gauge transformations on the Regge-Wheeler
expansion functions. Having obtained such quanti-
ties one completes the transformation by requiring
it to be canonical and afterwards discovers that
the perturbed constraints have been thereby simp-
lified. These two approaches are essentially the
"conjugates" of one another and are equally useful
in practice.

For each L ~2 we expand the (M =0) electro-
magnetic perturbations as
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(g", = f, -si nay 0. (5.6}

have discarded. This parametrization is thus
canonical and has been chosen so that the electro-
magnetic constraint function becomes

Of the canonical variables only a, (conjugate to

f,) is affected by electromagnetic gauge transfor-
mation s.

Vfe expand the metric perturbations of order
(L, O) as

e H2 Yl 0
2)(

0 0

h, a Y„/a8

sym r'(K+ Ga'/a 8') Y~o

r'(K sin'8+G sin 8cos 8a/a 8) Y~o

(5.7)

(¹)=(H,Y „h,al'„/a8, 0), N'=-(N/2)H, Y„,
and introduce a similar expansion for the covariant tensor g '"p,

~

(5.8)

e P„Y„2k P„&Y /88

r'(Pe+Pea /8 8') Yl0

r '(Pr sin' 8+ Pe sin 8 cos 8 8/8 8) Y~o

(5 9)

The parametrization is not yet canonical since

d' (P"h, e, )= J d { 'e P„d, , ~ hh(h 1)e P h, ,
N f +

+r 'e"[[2P —L(L+ 1)Po]K, + L(L+ 1)[—P„+(L(L+1) 1}Po]G,]f. (5.10}

Canonical form may be readily achieved by a simple reparametrization of the momentum functions.
Under coordinate gauge transformations induced by an arbitrary vector field 'X= C'n" 8/ax" +X'a/ax'

[cf. Eq. (4.3}]the spatial metric perturbations h„ transform according to Eq. (4.4). By taking for X, an
arbitrary vector harmonic of order (L, O),

(X,}= (C,(r, t}Y«, C, (r, t) a Y~,/a 8, 0), (5.11)

we induce the corresponding gauge transformations of the expansion functions (H„h„K,G}. The explicit
form of these transformations motivates the introduction of new functions ky kg k3 k, defined by the
(readily inverted) transformation

k, =K+re G, —(2/r)e h, ,

k, = -,'e' H, —[(r/2) e' "K] „+(r/2)X „e'"K,

k3 =G, k4=A, .
Under the gauge transformation induced by (5.11}k, and k, are invariant whereas k, and k, undergo

k, —k, + (2/r ') C, , k,- k, + C, + C, „—(2/r)C, .

By demanding the canonical form

(5.12)

(5.13)

r d «(p"h„, ) =r dr(p h, , +p k, , +p k, , +pe, ,)
kf +

(modulo an inessential boundary term} we obtain the new momenta p„.. . , p, defined through

P„=(1/2r')e p, , P„=[1/2L(L+1)]e~[p,—(2/r)e ' p, ],

[2Pr —L(L+1)Pe]=(1/r')e ~[p, +(r/2)e p, „+(r/2)X „e'"p2],

[-Pz+ [L(L+1)—1]Pe)=[1/r'L(L+ 1)]e ~[p, —(re '"p,) „],
which are readily invertible transformations.

In terms of the new canonical variables the perturbed constraints become

(5.14)

(5.15)
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X"= p4sine r~p,

3C '= [2/L(L+1)][(1/r')P, —(e/r')L(L+ 1)a, —(1/2r')(r'P, ) „]sin88Y~QS 8,

3C'=e (-(4re ' k, ),„—L(L+1)[2e ' k2+rX „k,+k, +(rk, ) „]+(2e/r')[f, +eL(L+ l)k, ]jsin8 Y2, .

(5.16)

The canonical transformation

k, =k, , P, =P, —eL(L+1)a, ,

F=f, +eL(L+1)k, , pr =a, ,

(5.17)

which, in addition to Eris. (5.20), may be easily
inverted,

If, in addition, we introduce the notation

with
fft3 43$ 7T3 p3y g4 04 7 774 p4

then

(5.24)

reduces the X" constraints to

(5.18)

X = —e~q, sine Y~p (5.21)

X,"' = p4sin(9 r«,
(5.19)

3C '= [2/r'L(L+1))[p, —,'(r'p—,) „]sin88YE/88,

which therefore involve only the two momentum
functions p4 and p3. Finally, the transformation
defined by

q, =4re '"k, +L(L+1)rk„E=E,
(5.20)

q, = [4r e '"k, + L(L + 1)r k, ] „
+L(L+1)[2e '"k, +(1+re. „)k,] —(2e/r')E

reduces X to

lql t 2q2, t 3q3, t

+ 114q4 t + rlr E,+ a2f2, )

(5.25)

(modulo a boundary term} and the new canonical
variables have reduced the constraints to the triv-
ial form

K"'= p, sine Y

3C = [2/r'L(L+ 1)][113—2 (r 2114) „]sin8 BY~3/&8,

and may be rendered canonical through the defin-
ition of new momenta. Demanding that

3C = e"q, sin8 Y-~„(t)',. =-f, sin8Y~, .
(5.26)

4t3

dr(ptk1 1+p2k2, t+pr, F,)
lt

dr(lr, q, t+ lr,q, , + lrr E 1)~ ~

Y 4k

(5.22)

(modulo a surface term) leads to transformations

p, =L(L+l)[r(rl, —112 „)+(1+re„)rr2],

p2=4re -'"(v, - v2 „}+2e-'"L(L+1)v, , (5»)

Pr = rlr —(2e/r')r12,

The canonical pairs (q„rl, } and (E, rlr) are invari-
ant under simultaneous coordinate and electromag-
netic gauge transformations. The constraint func-
tions m„n4, q„and f, are also gauge-invariant
but must of course vanish for any actual perturba, -
tion solution. The remaining canonical variables
q„q„ ll„and a, (which are conjugate to the con-
straint functions) are gauge-dependent. Additional
gauge-dependent functions are the perturbed lapse
function H„ the perturbed shift vector functions

H] and Ap and the perturbed scalar potential ap.

VI. THE PERTURBATION HAMILTONIAN

We now specialize the general variational integral (3.6) to the Reissner-Nordstr6m background and sub-
stitute the Regge-Wheeler expansions (5.4), (5.7), (5.8), and (5.9) for the perturbations of order (L, O).

Reexpressing the result in terms of the new canonical variables (q„rr, ), . . . , (q„ tr4), (E, rlr), and (f„a,)
defined in the preceding section we obtain

167(I&e&t = dt dr ma&a, t + ~y'+, t+ 4 2, t
4k

anal

(6.1)

in which the total Hamiltonian Hr = f„" dr3Cr is given by
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Hz, =+ —,
' dr Ne "L(L+1)(rz}'+, [(2/L(L+ 1))v, + rA2(, + 2 e2/ ]'Ne "L(L+ 1)

Ne+, I [(rvq)' —4rvqe '"L(L+ 1)[r(2(, —m, ,) + (I+ ra „)2(,]]+4 Ne

I Ne "[(L—1)(L+2) + (4e'/r')],
Ft

—~ Ne" r(q, )'[(rA) „/(rA)'j „—,[(L —1)(L+2) + (4e'/r')](q, /r)[q, + (2eF/r')]

+
A 1

[- (2m/r)+ (2e'/r')][q, + (2 eF/r')][q, + (2eF/r') q, ]

+L 1
(2eF/r )[q2+(2eF/r') —q, „]

+[2Ne /(r'A)](erF) „[(2re ' /L(L+1))[q, +(2eF/r')] —q, ]
—[4Ne "/(r'AL(L+1))](erF},q, „

)t

+(Ne /r')N'e&
& I (f, eF„)'+Ne ((( /r I —(e'/r'))q, +(2e/'r)e ' f )( —rq, , +(2/r)q, ]I

+ dr H, 2 q, +H, m4+h, 2 z' m, — 1 p' (6.2)
rt

in which

A = (L —1)(L+ 2) + (6m/r) —(4e'/r') . (6.3)

In deriving (6.2) from (3.6) we have discarded a number of boundary terms which do not affect the equations
of motion.

Variation of the lapse function Ho, the shift functions H, and h„and the scalar potential a, gives the ini-
tial value equations

q2
=

Tlq
=

7(2 ~f~ = 0 .

These are conserved in time as a consequence of the Hamilton equations:

q, = 2(Ne "v-4) „—(2/r)Ne ~(1+rX „)vq+ (2/r2)Ne "v, ,

w2 2
=--,'[rq2((m/r) —(e'/r'))+2ef, e "]„,

v, 2 =-[(q,/r)((m/r) —(e'/r'))+ (2e/r') f,e '"],
—0

(6 4)

(6.5)

Of particular interest are the Hamilton equations for the gauge-invariant functions q] 77] F 7l'g These
take a simpler form in terms of the new canonical variables

Q = (q, /A)(L —1)'/2(L+ 2)2/' H =F (2e/r)(q, /A), -
Pz = (L —1) '/'(L+ 2) -'/'[Am2+ (2e/r)v„], P„=mr. '

(6.6)

Q and H are the functions defined by Eqs. (8) and (9}of Ref. 1 and pz and P„are their conjugate moment&.

For the present purpose we may discard all terms of H~ containing the constraints since such terms do

not affect the Hamilton equations for Q, P, H, P~. The reduced Hamiltonian becomes

H~ =+& drNe "L L+1 P~ + P~ '

+z dy Pfg "LL+]. + 2+ Q
Ft

+ [1/L(L+1)][(H'+Q )V+ (3mH' —3mQ' —4e(L —1)'/ (L+ 2}'/'QH)S]'j,

in which

(6 7)
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V = [Ne "/(rA)'][(8e'/r ') —(6m/r)]'+ [8e'Ne "/(r 'A))

+, L(L+1)(L —1)(I,+2)+ (3m/r ')+ (4e'/r 'A)[2 —(6m/r) + (4e'/r')]
1

(6.8)

S = [L(L+1)/r 'A]+ (2Ne "/r 'A')[(L —1)(L+2) + (4e'/r')]- (1/r'A)[(2m/r) —(2e'/r')], (6.9)

and where the asterisk signifies that the con-
straints and a boundary term, resulting from an
integration by parts, have been discarded from
H~. Since V and S are the same functions defined
in E(ls. (12) and (13) of Ref. 1 it is easily shown
that Hamilton's equations may be combined to re-
produce E(l. (11) of Ref. 1:

82 82
+Ne -"(V+ST)

~

=0,
kQ I (9 j (6 10)

Evidently H~ is a positive-definite function of the
gauge-invariant canonical variables provided V,
and V are positive-definite on the interval
(r„~) for each L ~ 2 and for all e and m such that
~e

~

m. Proof that V, and V are indeed definite
is straightforward algebra which we relegate to
the Appendix.

The positive definiteness of H~~ may be used as
the basis for a stability argument similar to that
given in Ref. 13 for the odd-parity perturbations.
The conservation equation obeyed by H~ is

with

ar ==Ne "=1—(2m/r)+ (e'/r')

and

(6.11)

dH~
„,'=[Ne-"(P.R. ,«+P R „.)]~„"

=[1/I, (L+1)](R, (R, ,«+R, R „*)~„

(6.1'7)

+3m

(-2e(L —1)' '(L+2)' '
2 (L 1P/2(L 2P/a)

-3m j
(6.12)

ArA"=
~

7

0 -oj

o' = [9m2+ 4e'(I —1}(I,+ 2}]'/'

then the canonical transformation

(6.13)

8, H p, pg

(P / kP )
diagonalizes the reduced Hamiltonian H~~:

(6.14)

Hr«=+ ', dr Ne "L(L+-1)[(P,)'+ (P )']

with

V, = VaoS .

+ )[(R, „)'+(R „)']

+ I /i(i+ (((I» (R)((R ) .((),'+'
(6.15)

(6.16)

As was shown in Ref. 1, E(ls. (6.10) may be de-
coupled by the orthogonal transformation which
diagonalizes T. Equivalently, if A is an orthogonal
matrix for which

which expresses the time derivative of the Hamil-
tonian in terms of an energy flux through the
boundaries at the event horizon and at spatial in-
finity. For solutions with boundary conditions of
ingoing radiation at the event horizon and outgoing
radiation at infinity this flux obeys dH«r/dt ~ 0 so
that H~ remains bounded by its initial value on any
time interval throughout which the outgoing radia-
tion boundary conditions apply. In particular this
result may be used to prove the nonexistence of
unstable (exponentially growing) normal-mode so-
lutions obeying the outgoing radiation boundary
conditions. This argument is essentially equiva-
lent to that given in Ref. 1.

VII. THE L = 1 PERTURBATIONS

The L = 0 and L = 1 perturbations require a
special treatment and were not discussed in Refs.
1 or 13. However, the L = 0 perturbations are
spherically symmetric and merely allow for small
changes of the charge and mass parameters within
the Reissner-Nordstr'om family of solutions. In
this section we shall discuss the L = 1 perturba-
tions for both the odd- and even-parity classes.

The odd-parity perturbations (for L~ 2) were
discussed in Ref. 13. For L=1, the Regge-
Wheeler expansions simplify since the angular co-
efficients of h, and P, vanish. Therefore, these
two functions drop out leaving only the two con-
jugate pairs (h„p, ), (E, A) and the shift function

The canonical transformation
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k, =(2/r')h, , w, =(r'/2)P, —2eA,

f=Z+(4e/r')k, , v, =A
(7.1)

leads to the variational integral

16mI = dt dr wyky g+7ly g Xg) 7 2
r+

Turning to the even-parity perturbations we begin
with the Regge-Wheeler expansions (5.4) and (5.7)-
(5.9) and observe that, when L =1, the angular
coefficients of K and -G and of P~ and -P~ be-
come equal. Therefore, we may set G = P~ = 0 to
exclude superfluous variables. Define new canon-
ical variables q„q„q„and 8 by

with

H~ = dry~
r+

=4 drNe" 2 r'm+ 4e r'm& '

+ dr% 2e r' m&'+e "m

dr [are -'(f/2)')

«&Or
r+

(7.3)

q =2re "k
q, = Ae'"k, —(2e/r') [f, —(4e ' /A)ek, ]

q, =K, H=f, —(4e ' /A)ek, ,

where

A =+ (6m/r) —(4e'/r '),
and in which k, and k, are defined by

k, = (2/r)e ' h, -K+ 2re ' [(e ' /A)k, ),
+(2e ' /A)k, ,

k, =H, e~[re-K] „
—e' [(2/r)e h, -K].

With new momenta m„~„~„m~defined by

(7.7}

(7 6)

(7 9)

Variation of the shift function ho gives the con-
straint n, r=0. Since k, is cyclic we have my g

0
and thus m, = c= constant. If one considers purely
stationary perturbations then Hamilton's equations
give

w, =re' P»[
' —(1/A)]-

+(1/rA)[(r'e Pz) „+(2r'e P„) „]
—(2e /A)P„+ (2e/rA)a, , (7.10}

0=f
= (2e/r')[(2/r')v, + (4e/r')vz]

+(4 r/') y
v—2(He v~ „) „, (7.4}

v, =(r'e" /A)P„+ (2re "/A}P„,

re~(r'P„) „+2re"P„+2r'e P»,

vz= (2e /A}eP„+ (4e /rA}eP„+ a, ,

which has the regular solution we have

vq = (2e/r)6a, v, = c=-6m5a

and (from the k, , =0 equation)

h, = (-2m/r)5a+ (e'/r')5a.

(7.5)

(7 6)

d'x(P'h„, +&Ih', )
~ ~

This solution corresponds to perturbing the
Reissner-Nordstrom black hole to a slowly rotating
Kerr-Newman black hole (with rotation parameter
5a).

In addition to the stationary perturbations there
are solutions corresponding to electromagnetic
radiation. The wave equation satisfied by these
perturbations (e.g. , the equation for vz} may be
readily derived from the variational integral (7.2}.
We only note here that for any actual perturbation
solution (which has v, = c) the Hamiltonian Hr is
a positive-definite function of f and v&. This re-
sult allows a stability argument of the type pre-
viously discussed provided suitable boundary con-
ditions are imposed upon the perturbations.

R"' = (2/r)e '~w, sin 8 Y»,

3C
e ' = —(1/r ')(v, + rAv, ) sin 88 Y,o/9 8

X'=-e q, sin6} Y, ,

h", = f, sin8 Y», -

(7.12)

while the Hamiltonian becomes

(7.11)

(modulo a boundary term}. Thus the new variables
are canonical and, as is easily shown, the trans-
formations are invertible.

In terms of the new variables the perturbed con-
straints become simply
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dr(Ne (w II)' —(2/r)Ne Aw, w,

—(2/r)Ne "w,[w, e '"+ (w, /r) —(2e/rA)e ' (w„- (2e/r')w, }—(1/rA)e ' (rAw, ),]I

+-' dry H „)'
+

+ dr /e~ rA)' (H' 18 m' r' -36m'e' r' +32 me'jr') —8 e' r')
7+

+-,' dr Ãe A' q, 2e r' e '" eq, + Gm r H+rAH „+ 2e r q,

+ A[ (m/r-) + (e'/r ') ][+(4e'/r '
A) q, + (2e/r '}H —e' Aq, + (1/r) e' q, ]

—(4e'/r ')q, + (e/r') A'[H+ (2e/rA)q, ]]

+-,' drNe f»+2H „+ 4e r)e' q, + 4e rA q, + 2e r' H) —(4e r'A)e'"q,

+ dr &H&p &pfg + (2 r}e Hp'3 2 r }Ap(&3 + rA~, }
Y+

(V.13)

Variation of the perturbed lapse function H„shift functions H, and h„and scalar potential ap reproduces
the constraints (7.12). It is easy to show that the constraints are conserved in time provided they are
satisf ied initially.

The unconstrained, gauge-invariant functions are H and a~which comprise a canonical pair. Hamilton's
equations for these functions may be obtained from H~ or, equivalently, from the reduced Hamiltonian H~
obtained from Hr by setting the constraints f„q„w„w, to zero It is. easily seen that Hr is a positive-
definite function of H and w„provided the quantity [18(m'/r'} —36(m'e'/r') +32(me'/r'} -8(ee/r 6}] is posi-
tive-definite on (r„~}for all e and m such that

~
e( &m. A proof of this inequality is given in the appendix.

The corresponding stability result follows as in the preceding sections.
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APPENDIX

To complete the argument of Sec. VI we need to show that V, and V, defined by Eq. (6.16), are positive-
definite on (r, , ~) for each L~ 2 and for all e and m such that

~
e~ ~m. The function S defined by Eq. (6.9)

may be written as

S=(1/r'A)[L(L+1) —(2m/r)+(2e'/r')]+(2Ne /r'A')[{L —1)(L+2)+(4e'/r')],

and is thus manifestly positive-definite for the given range of variables. Therefore, it is sufficient to
prove that V = V-aS is positive-definite since the definiteness of V, =V+@8will then be trivial. V may
be reexpressed as

V =+[Ne /(rA)'][(8e'/r'} —(6m/r)]'+(8Ne /r'A)(e'/r')'

+ (o/r')(2mr —2e'}[(Ne /r'A)+ 6Ne "/(rA)']+ [4Ne "/(rA}'](e'/r'}C, + (Ne~/r'A) C, ,

where

(A2)

C, =4A —(o/r), o = [9m'+4e (L —1)(L+2)]"

C, = [L(L+1){L—1)(L+2) —(8e'm/r')+ (3m/r)A —(o/r)(L(L+1) +2e ' }],
A = (J —1)(L+ 2) + (Sn/r) —(4e'/r ') .

(A3)

Thus it suffices to show that C, & 0 and C, &0. Since o &m(2L+ 1) (with equality holding for
~ e~ =m) we have
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C, - 4& —(2L+ 1)(m/r)

- 4[(L —1)(L + 2) + (6m/r) —(4m'/r') ] —(2L+ 1)(m/r)

=4(L' —2)+2L[1 —(m/r)]+ [2L- (m/r)]+(4/r')(6mr —4m')

Similarly,

&0. (A4)

C, =- L(L+ 1)(L —1)(L+2) —(8m'/r ') + (Sm/r) [(L—1)(L + 2) + (6m /r) —(4m'/r ') ]
—(2L+ 1)(m/r}[L{L+1}+2 —(4m /r) + (2m'/r ') ]

= L'(L' 1) —4(L+ 2) + (2I.'+ 2L+ 8)[1 —{m /r) ]+ (m'/r ') [(20+2(2L+ 1))(1—m/r) + 4I.], (A5)

which is manifestly positive-definite for L ~ S. For L=2 Eq. (A5) reduces to

C, (L = 2) ~ (2/r ')(12r ' —14mr '+ 19m'r —15m') =—(2/r )D(r) .

How ever, D(m ) = 2m ' and

dD(r)/dr =8r'+28r'[1 —(m/r}]+ 19m',

which is greater than zero for r ~ m. Therefore, C, &0 and consequently V is positive-definite.
To obtain the corresponding stability result for the L = 1 perturbations it suffices to show that

C3 -=1Sm'r ~ —3 Qn 'e'x ' + 32m e'r —8e'

is positive-definite on (r, , ~) for all ~e( ~m. But

dC, /dr = 72m'r(r' —e') + S2me'

is greater than zero on (m, ~}. Therefore, one need only show that C,(m) &0. However,

C, (m) =m'[18 —S6(e/m)'+24(e/m)'+8(e/m) (1 —(e/m)'}],

and it is easy to show that 18 —36y+24y' is positive-definite for all real y.

(A8)

(A 10)
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