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ProbabiTity distribution of particles created by a black hole
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It has been demonstrated by Hawking that a spherical black hole formed by collapse will create particles, and

that the average number of outgoing particles created in each mode satisfies a thermal distribution law.

Recently, Wald has shown that the probability distribution of the number of outgoing particles in each mode,
and not only the average number, obeys the thermal distribution law. In this paper, we give a simpler and

more direct derivation of the blackbody probability distribution of the emitted particles.

I. INTRODUCTION

One of the most interesting recent developments
in gravitational theory, which may possibly lead to
observable consequences, is the prediction that a
spherical black hole formed by collapse will create
particles. ' ' Hawking showed that the object will
radiate at late times like a body of temperature
7 =tc/(2ttk), where tt = (4M) ' is the surface grav
ity of the black hole, and 0 is Boltzmann's con-
stant (G =c =k =1). This remarkable process im-
plies that a definite entropy and temperature are
associated with a black hole, as anticipated by
Bekenstein. 4

In Refs. 1-3 only the average number or average
energy- momentum were considered. Recently,
%aid has considered the question of whether the
density matrix of the created particles which reach
infinity, and not just the average number of parti-
cles in each mode, is that of thermal radiation,
and has shown that this is indeed the case. ' In the
present paper, we carry out the calculation in a
simpler and more direct way. This is accom-
plished by calculating the matrix elements in the
expansion of the initial vacuum state in terms of
the basis of the late-time Fock space, in the ap-
proximation where backscattering by the static ex-
terior Schwarzschild spacetime is neglected.
These results allow one to see directly that the
particles are created in pairs with one ingoing and
one outgoing member. The methods used here for
massless scalar particles can also be applied to
massive particles and higher spin (with appropri-
ate changes for statistics). Wald' has also con-
sidered the change in the probability distribution
taking backscattering into account.

In the present section we summarize the notation
and results of Ref. 1. In the second section we
derive the particle number distribution, and show
that it corresponds to thermal radiation. Finally,
in the third section, we derive two key equations
used in the second section and check the consis-
tency of the various orthonormality and commuta-

and the retarded time coordinate by

ru=t —r —2Mln —1 .
2M

(2)

The latest advanced time at which a particle can
leave 8, pass through the collapsing body, and
return to 8' is denoted by v, . The field satisfies
the wave equation
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FIG. 1. Penrose diagram of collapse process.

tion relations.
The Penrose diagram of the spherical collapse

process is given in Fig. 1. 8 represents past
null infinity, 8' represents future null infinity, and
h represents the future horizon. The advanced
time coordinate v is given (Schwarzschild r and t)
by

r
v =t+r+2Mln —1,

2M
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where a, P, y, g are complex numbers. It follows
that

The positive-frequency solutions incoming from
8 are the b = d~' o. ,a, —P .a~, (10)

f... =r-'F, (r)(~')-'~'e"'"F,.(e, 4), (4)
and

where E„(&)is a solution of the radial equation.
Similarly, the positive-frequency solutions out-
going at 8' are the

P g
=& '& (&)~ '"e' "& (8, 4). (5)

d~'(f a +f .a" ) (6)

or

d(u(P b„+P„bt +q c + q ct),

where a annihilates a particle incoming from 8,
5 annihilates a particle outgoing at 8', and c
annihilates a particle incoming at the future hori-
zon h. The a, a~, operators obey the standard
commutation relations for creation and annihila-
tion operators, as do the 6, b~ operators, and
the c, c~ operators. Furthermore, the 0 opera-
tors commute with the c, c~ operators. Since the

f form a complete orthonormal set, one has

P~ = d~ (~ww fw'+~a~'f~') (6)

+~au fa ~ (9)

The complete set of positive-frequency solutions
incoming at h (with zero Cauchy data on 8') are
denoted by q, , and have positive Klein-Gordon
norm, but are otherwise left unspecified in Ref. 1.

The field can be expanded in the form (suppress-
ing the E, m indices, and the integration limits
which run from 0 to ~)

r
c =

J
d&u'(y ~a ~

—q iat.).

In Eqs. (10) and (11), the indices I, m appear on b,
c„, and a ., but indices L, —m appear on a ..

Because P has zero Cauchy data on the future
horizon, it is natural to consider P propagating
backwards in time from O'. A part/'~ is back-
scattered off the static exterior Schwarzschild
geometry, reaching 8 with the original frequency,
and without any mixing of positive and negative
frequencies. A second part P~@lenters the collaps-
ing object, and scatters off the time-dependent in-
terior geometry or passes through the collapsing
body, reaching 8 as a superposition of various
positive- and negative-frequency parts. Thus, we
have on 8

f.=P."+4', (12)
with

(13)
and

(14)

The part of P~~(v) for v near vo comes mainly from
the terms in Eq. (14) with &u' large with respect to
&u. It is this part of g~ (v) which is responsible for
the steady thermal radiation which remains after
the radiation dependent on the details of the col-
lapse has subsided. Hawking assumes that this
high-frequency component of P" (v) propagates
through the collapsing body by geometrical optics,
and obtains for it the following expression,

pt2~ (V) =

'L'

co '/ r 'P, exp —i—ln o for v —v small and positive
CD

0 for v, —v negative,

(15)

where P =P„(2M) is the value of the solution of the
radial equation on the horizon in the static
Schwarzschild geometry, and C, D are constants
which depend on the details of the collapse (there
is also a factor of F, which we suppress as in Ref.
1).

By taking Fourier components of Eq. (15) with
respect to v, Hawking finds that

state vector, then the average number of created
particles per unit frequency near u reaching 8' in
the thermal component of the radiation is

(.)=J

=F [exp(2m&v/K) —I] ',

where
I g.'&. ,

I
= exp(- v~/~) I

~o~. , I. (16)
d&(l "'. I'- IP".'.I').

It follows that if the vaccum on 8 is chosen as the
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(n' )=I '[exp(2v(u/~) —1] '. (18)

This corresponds to thermal radiation of tempera-
ture T = x/(2vk}, where F„' is the finite absorptivity
of the black hole (which is not unity because
of backscattering from the exterior spacetime
curvature). We now turn to the calculation of the
probability of observing n particles outgoing at
8' in mode cu.

The factor I is formally divergent because there
is a steady flow of thermal radiation at late times,
corresponding to an infinite number of particles
reaching O'. However, as Hawking shows by con-
sidering wave packets on 8' made from a super-
position of P in a small range of ~, the average
number (n' ) of created particles per unit frequency
near (d and per unit time reaching 8' is finite, and
can be written as

(n, n~o)=(n!) '(0~(c . )"(h )"~0),

we first note that as a consequence of Eq. (10)

(23)

containing n particles in mode &u outgoing at 8',
and n particles in mode cu incoming at h. More
precisely, c and 5 represent c, and b, (an-
gular momentum is conserved in the pair production
process). If there were additional quantum num-
bers to distinguish particles from antiparticles,
then c~ would be the creation operator for antipar-
ticles incoming at the horizon, which evidently
(see the arguments of Hawking in Ref. 1) carry neg-
ative energy into the black hole. After the calcu-
lation of the matrix element of ~n, n) with ~0), it
will be easy to see that only basis states of the
form (22) have a nonvanishing sca.lar product with

To calculate

a, ~o)=0 for all m'. (19)

II. PROBABILITY DISTRIBUTION OF OUTGOING PARTICLES

The state of the quantized field (Heisenberg pic-
ture) is taken to be the vacuum ~0) on 8, defined
by

&.lo) = —f w'p. ~a' lo&

Further more,

„'lo)= jd 'y... '„,lo).

(24)

(25)

Let ~0) be the state vector corresponding to no

particles entering the future horizon or reaching
future null infinity 8'. That state is defined by

b io) =0,

c.io) = o

(2o)

(21)

for all ~. The late-time Fock space is constructed
by operating with the ct and b~ on the state ~0). In
order to find the probability distribution of the
particles outgoing at 8', as well as those incoming
at h, we calculate the matrix elements appearing
in the expansion of ~0) as a superposition of basis
states of the late-time Fock space.

Our interest here is primarily in the thermal
component of the radiation. Therefore, we make
the simplification of ignoring the parts of P, and

q which are backscattered from the exterior met-
ric and do not contribute to the thermal component
of the radiation. In this approximation we find that
the outgoing radiation is that of a perfect black-
body. (The backscattering from. the exterior
spacetime is then taken into account by introducing
the absorptivity factor I'. ) Thus, we drop the
superscript (2) on/'l and q~P, and treat relations
involving their Fourier components as strictly
valid within this approximation. Furthermore, it
is convenient to work with ~ as a discrete vari-
able, and return to the continuum limit at the end.

Let us first consider the scalar product of ~0)
with the state q {v)=

.(d V —VO~ '~'r 'P-exp —i—ln ' for v& v
CD 0

{26)

[In Eqs. (24) and (25), h carries indices Lm, while
ct a.nd a~ carry indices I, —m. ] We will show that
there is a very simple relationship between Eqs.
(24) and (25) if the solutions q, corrsponding to
particles incoming at h, are conveniently chosen. '

Following Wald, ' we effectively generate q from
P described by Eq. (15) [as noted earlier, we drop
the superscript (2), ignoring backscattering from
the exterior geometry; since we are interested
only in the steady thermal component of the radia-
tion, we use Eq. (15) to describe P for all v and
Eq. (26) below to describe q for all v]. On h the
advanced time v runs from v, to ~. Therefore, if
we replace v, —v by v —v, on the right-hand side
of Eq. (15), then the new functions on 8 describe
particles incoming at 8 for v& v, . In our present
approximation, the solution propagates by geomet-
rical optics directly into h with no scattering to 8'.
[Thus, we are neglecting an additional part of q
which is incoming ai 8 for v & v, and passes
through the collapsing body out toward 8' in just
such a way as to cancel any waves scattered to-
ward 8', so that nothing reaches 8' from q . The
main long-term effect of that part of q and of the
corresponding part of P (i.e. , P~l} is to introduce
an absorptivity factor I" into the results ]Hence, .
on 8 we let

~n, n) = (n!) '(c~t)"(bt)"~0), (22) 0 for v& vo.
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The bar appears because the P in Eq. (15) have
positive Klein-Gordon norm, so that the present
q have negative Klein-Gordon norm. The value
of q on h can be obtained by propagating Eq. (26)
forward by geometrical optics, but we will not
need it. As we will show, these wave functions q
describe the incoming member of each created
pair.

By taking Fourier components with respect to
v of q„ in Eq. (26}, one can now find y„and com-
pare it with P ~ obtained from Eq. (15). One finds
that

P,= —exp( —(ov/») y (27}

We give the derivation of Eq. (27} in the next sec-
tion, after completing the calculation of the prob-
ability amplitudes. It follows from Eqs. (24), (25),
and (27) that

5 IO&=exp( ~/-v}»clO), (28)

(0, nl ct = n' '(0, n —ll,

one finally obtains

(30)

where b„carries indices lm, while c„carries L,

The h commute with the c and c~ because
of the orthogonality of P with q and q in the
Klein-Gordon product. Therefore, we can write
Eq. (23) as

(n, nlo)=exp( —nv~/»}(n!) '(ol(cg(c )"Io)

=exp( —wr&u/»)(nl) '~ (0, nl(c )"Io), (29)

where (0, nl is the state with 0 particles outgoing
at 8' and n particles incoming at h. By repeatedly
using the relation

mode cu, the only nonvanishing matrix elements in
the expansion of Io) are of the form evaluated in
Eq. (31), corresponding to the creation of n pairs,
with one member outgoing at 8' (described by wave
function P ) and the other incoming at k (described
by wave function qg.

Since the creation and annihilation operators for
different ~ commute, one finds that the most gen-
eral nonvanishing matrix element is of the form

({n },{ng I
0& =II exp( —van /») (0 I 0), (35)

1=(olo&=l(olo&l'P IIexp(-! n.~), (36)

where the sum is over all the sets {n }, and

!L =2m/».

The sum and product can be rearranged to give

=IIoIo&l'II Q (- )
n=0

= I(oIo&l'll[ — (- )) '.

where ({n },{n }I is the basis state with n particles
outgoing at 8 and n particles incoming at h in
mode ~, for a set of various different modes ~
(e.g. , {n }={n,, n, n /with n representing the

4)J!

number of pairs in mode ~,.).
It is already evident from Eqs. (31) and (35) that

one will obtain a blackbody probability distribution
for the number of particles in each mode outgoing
at 8, and thus that the emission is that of a black-
body. To find I(0lo) I', we use Eq. (35) to write

(n, nl0) = exp( —nv~/»}(olo&. (31)
Hence

(ol(c )"(k) Io). (32)

If m & n, then one uses Eq. (28) to replace each b

by c~, and immediately sees that the matrix ele-
ment vanishes because one is left with (olct =0. If
m &n in Eq. (32), then another relation derived in
Sec. III must be used, namely

g, = —exp( —(uv/»}u „.
One then has

c.lo&=exp(- ~v/»}n.'Io&.

(33)

(34)

We can now move the (cg" to the right of (5 ) in
Eq. (32), and replace (c )"Io) by exp( -n~ v/»)

x (5 )"
I 0). The matrix element (32) then vanishes be-

cause one is left with (olb~ =0. Hence, for a given

This is the most general nonvanishing matrix
element of a basis vector (containing only particles
in mode u) of the late-time Fock space with the
initial vacuum. The most general such matrix
element involves

P„(u)) = exp( —p(un)[1 —exp( —p(u}l (40)

for the probability of finding n pairs inmode ~.
Since only the outgoing member of each pair is
observed at 8, the outgoing radiation is described
by a density matrix or mixture, with P„(cu) being
the probability of finding n particles outgoing at
8' in mode e. This is identical with the density
matrix of blackbody radiation of temperature

T =(kp. ) ' =»/(2vk). (41)

I(olo&l'=II(1 —e "")=exp +In(l —e ) . (38)
GJ

It follows that

1({n.},{n.}lo&l'=IIem(-! ~n.}[1-~p( u~)1-
(39)

Therefore, the probabilities for occupation of each
mode are independent, and we have
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The average number of particles outgoing at 8' in
mode co will then be

By comparison with Eq. (26), we see that the right-
hand side of Eq. (45) is proportional to the coeffi-
cient of f, in the expansion of q, that is,

(n ) = nP„(pl)
n-

=[exp(+111d) —1] '. (42)

, = exp( —2i&u'vp) y

Equation (44) has been integrated by Hawking
(Ref. 1), with the result

(46)

Because we have neglected backscattering from the
exterior Schwarzschild spacetime, the black hole
behaves like a perfect blackbody, Wald' has con-
sidered in detail the case when backscattering is
taken into account (I ll 1), and has shown how Eq.
(40} is modified, and that the black hole behaves
like a blackbody when placed in a cavity at the
same temperature. '

III. RELATIONS AMONG COMPONENTS

OF WAVE FUNCTIONS

In this section, we derive Eqs. (27) and (33),
which were used in obtaining the blackbody distri-
bution. We also check the consistency of the var-
ious orthonormality and commutation relations.
As noted in the previous section, we neglect back-
scattering from the geometry [and drop the super-
script (2)J.

Taking Fourier components with respect to v on
8, as in Ref. 1, we have

n, =(CD)"/"P-r 1-—
4J4)

l/2
xexp[i(pp —pu')v ] — ( —ild'} "'"/".

(4

To analytically continue this expression to negative
values of 111' (so as to obtain p„. .), we recall that
n „.is the Fourier transform of a functionp„(v)
which is zero for v& v0v Consequently, a is an-
alytic in the upper half J' plane, and the branch
cuts must be chosen in the lower half-plane. One
finds

( ~r)1/R (i~I )-1+ 1/tKd

= -i(p/)' '( —iu') "' "exp(-pm/x). (48)

It follows that

p~~l SD~ ~ I

(Cg))ltd/KP-Zs I el(fd+td )vP
td

or using Eq. (15)

n, = (2w) '(pl'/pl}'/'P

x dvexp —i—ln ' e ' ". 44

l/2
( iplI)-1+lid /K e -td 'K /K

(d

Comparing with Eq. (47), we obtain

P„,= —exp(2ipl'v, )exp( —pin/z)n

(48)

(5o)

Replacing v by ( —v+2v, ) as variable of integration,
one finds

P = —exp( —pie/ll) y „,, (51)

Finally, substituting Eq. (46) into (50), one obtains

n „,=(211} '( 'lv/lv} "/Pe " '"o

&a 1

x d
"V0

K
(45)

which is the same as Eq. (2'I} used in Sec. II.
To derive Eq. (33), we make use of Eq. (15) as

before to obtain

~/ j. /2 vC
(ap v —vp, = (2s) ' — P dv exp —i —ln ' exp(i&11'v)

(dQ) CD

=(211) ' — P e" "p dvexp -i —ln — ' exp(-il11'v).
QD"0

Comparing with Eq. (26) for j, we see that

P~„, = exp(2i&o'vp}1T

The using Eq, (50) to replace P by n, one finds

= —exp( —ldll//l )n (54)

which is the same as Eq. (33) of Sec. II.
Next we check the consistency of the orthonormality and commutationrelationswithinthepresentappraxi-



1524 LEONARD PARKE R 12

mation of neglecting backscattering. The orthonormality of the q and the commutation relations of the c,
c~ operators require that

5(~i-~.)= t d~'(y, y ~ q-„ri„, ) (55)

and

0= d~'(-y, iq i+q, iy i). (56)

From E|ls. (51}, (54), and (50), we find

(5

and the latter integral gives 6(tu, —&u, ) in the approximation in which backscattering is negligible. Similar-
ly, Eqs. (51) and (54) imply

ko (-y g i+q iiy t) = dv ( —jS i a i+a ijS )

Finally, the requirement that c commute with both b and b~ yields the relations

(58)

0 d(IO ~P~ ~ t ~ ~t +g~ ~ICE~ 0 I (59)

and

~OP td td QP ~QJ QJ ~td QP

In the same way as before, one finds that

1 GJy ld 4J QJ

Similarly, one finds that

(61)

(62)

Substituting P „.from Eq. (49), we find that

du exp(2i(ou/z)

~ 6(2(u/x}=0, (62)

since ~ x 0 (the divergence at &u =0 probably reflects the fact that the approximations used break down for
small ur). This completes our check on the consistency of the conclusions reached in Sec. II.
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of positive frequency used in Ref. 1 [using exp(+

idiot)

rather than exp(-i~t) for positive frequency does not

alter any results) .
7Wald {Ref.5) has shown that the density matrix or

operator characterizing the outgoing radiation at 5+
is independent of the particular set of wave functions
used to describe the unobserved particles incoming
at h.
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