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Remarks on possible meson symmetries based on outer product groups
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A previously discussed model of meson symmetries based on the group SU(3)SU(3) is updated by {1)giving
rigorous proof of a first-order mass formula obtained previously, (2) deriving a second-order mass formula,
and {3)extending the whole treatment to SU(4)SU(4). Tentative assignments are made for the new mesons
Q(3100), Q(3700), and Q(4100) in this scheme.

Recent observation of neutral (possibly vector)
mesons ' ' has made it worthwhile to search for
suitable symmetries and associated symmetry
groups that might be appropriate for mesons. One
obvious possibility is to try the group SU(4). How-
ever, the acceptability of SU(4) hinges on the ex-
istence of a new quantum number, and at the pres-
ent time there is no conclusive evidence either for
or against an additional quantum number for had-
rons. In any event it is also apparent that a sim-
ple scheme based on SU(4) will not be able to ac-
commodate the three additional mesons that have
already been reported. The present experimental
situation, although somewhat confusing, leads one
to wonder if it is not necessary to consider more
general group structures, wherein the new mesons
might find a natural place. It is in this spirit that
we would like to update and augment a possible
symmetry scheme for mesons which was explored
in a series a publications quite some time ago.

To make this note reasonably self-contained, it
is useful to begin with a brief summary of previ-
ously established results. The investigation re-
ported in Refs. 4 and 5 arose out of an attempt to
understand the nature of the singlet-octet (&u- Q)
mixing. It was recognized that the existence of a
nonet structure implied the possible utility of a
group larger than SU(3) being a useful symmetry
group for mesons. The group structure consid-
ered was the nonchiral SW(3) = SU(3)3 SU(3)—the
outer product of two SU(3) groups withoutparity mix-
ing —and the representations advocated for mesons
were of the form (d, d*), d and d* being symmet
~ic tensor representations of the two factor
SU(3)'s and d* being contragredient to d. These
representations of SW(3), upon reduction with re-
spect to the "middle" SU(3), consist of a sequence
of self-conjugate representations of the latter,
with each occurring once, and the sequence starts
with an SU(3) singlet. Mathematically, these are
the maximal degenerate representations of SW(3).
A first-order mass formula was derived, and it
was noted that the physical masses satisfy an
equal-spacing rule and also display a certain kind

of degeneracy with respect to isotopic spin. In
particular, for the lowest nontrivial representa-
tion (3, 3*) one recovers Okwbo's equal-spacing
rule as also the degeneracy of the I--1„F=Owith
one of the physical I= 0, F = 0 masses of a nonet. '
The properties of the next higher representation
(6, 6*) were worked out in considerable detail in
Ref. 5.

The treatment of the SW(3) mass formula de-
tailed in Refs. 4 and 5 suffers from one grave de-
ficiency. In these papers it was assumed that the
symmetry-breaking operator is p~.oporfi onaL to
the "hypercharge difference operator" (see below),
but the most general form of the symmetry break-
ing was, in fact, not obtained. In the present note
we shall first prove that the form of the mass-
splitting operator assumed in. Ref. 4 is, indeed,
the most general form of the mass-splitting oper-
ator to first order in symmetry breaking. Second-
ly, we will derive a mass formula which is valid
to second order in symmetry breaking. Third,
we will extend these considerations to the group
SW(4) =SU(4) @SU(4). Indeed, if an additional
quantum number is found to exist for hadrons then,
from our viewpoint, the symmetry group for me-
sons must be SU(4)CRSU(4). If no additional quan-
tum number exists then meson symmetry group
is SU(3) SU(3). Finally, we will make a tenta. —

tive assignment for the three new mesons.

FIRST-ORDER MASS FORMULA

Let us consider symmetry breaking to first or-
der in SW(3). We require the symmetry breaking
to be a vector operator of SW(3). Specifically,
consider operators 7", and S",. T", is a vector
(octet) operator under one of the factor SU(3)'s
and a scalar under the other SU(3). S „" is a vec-
tor operator under the other factor SU(3) and sca-
lar under the remainder. Then the SW(3) mass-
splitting operator is a linear combination of
(T', + S 3) and (T33 —S ',). The structure of an octet
operator in an irreducible representation of SU(3)
is, of course, given by Okubo's formula. ' In a re-
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m -m + a'JJ, 'g = Y(, )
—Y( ), (2)

which is, in fact, the form of the mass operator
assumed in Ref. 4. Thus the mass formula de-
rived in Ref. 4 is rigorously true. It has been shown
before" that Eq. (2) leads to an equal-spacing
rule for the physical masses. In this context it
is also worthwhile to recall' that the expectation
value of the operator for physical states is pro-
portional to the number of "3"indices that appear
in the components of a mixed tensor, which de-
scribes the physical meson states. Thus mass
formula (2} leads to the same result as in a naive
quark model.

Because the first-order mass formula involves
only two parameters, it is profitable to consider
the second-order mass formula.

SECOND-ORDER MASS FORMULA

cent publication Okubo' has given an elegant deri-
vation of a set of algebraic identities satisfied by
the infinitesimal generators in U(n). In particular,
he proves that for the group SU(3), the most gen-
eral form of the vector operator T'„ in a symmet-
ric tensor representation, is

T', =a+bY,

where Y is the hypercharge operator. Utilizing
the above we see that the SW(3) ma. ss-splitting
operator is a linear combination of ( YM + Y&») and

(Yi» —Y&,i), Yi» and Y&» being the hypercharge
operators belonging to the two factor SU(3)'s. The
term proportional to (Y~» + Yi, i ) cannot contribute
to meson masses. Thus we are left with the final
form of the SW(3) mass operator:

m =m, +zz'9+ b(Y'+'9'),

(I) (2) ~ (I) (2)

(4)

In the above, Y is the hypercharge and 'JJ the "hy-
percharge difference" operator. Since we have al-
ready seen how to compute the expectation value
of 'Q, calculation of that of 'JJ' poses no additional
problem. Let us apply Eq. (4) to two cases. For
a nonet, the second-order formula (4) leads to
exactly the same relations as predicted by the
first-order formula, Eq. (2}, namely:

m (0, 0) —m (2, + 1) =m(~, s I ) —m (I, 0),
m (1, 0}= m (0, 0} .

(5)

In the above m(1, Y) stands for the (mass)' of a
meson with isospin I and hypercharge Y. The
two 1=0 = Y states in a nonet are denoted by m(0, 0}
(=g) and m(0, 0} (=&a). Let us now consider the
36 piet (6, 6*), which has the SU(3) reduction
188627. It is shown in Ref. 4 that the first-order
mass formula Eq. (2) leads io the following rules
for the 36-piet masses:

m (2, 0}=m (1, 0) = L „
m(1, 0) =m(1, s2) =L„
m(-,', +1) =m(-;, ~1),

L, —m (z, sl) =m (z, + I) —L,
=L, —m( —,.', sl)
=m(-,', +1}—L, ,

where the three I=0= Y physical states that ap-
pear in a 36-piet are denoted by I.

y 12„and I.3.
The second-order mass formula Eq. (4) when

applied to the 36-piet yields the following relations:

Derivation of the second-order mass formula
proceeds exactly as in the previous case. The
second-order symmetry-breaking operator in
SU(3) is the T,", component of a tensor and its
structure has been analyzed by Okubo ' . In SW(3)
the second-order operator is therefore a linear
combination of two such terms T",, and S 33 one
pertaining to each of the two factor SU(3)'s. Ap-
plying the identities of Ref. 9 one finds that for
symmetric tensor representations

m(2, 0) =m(1, 0) =I, ,

m(1, 0) =L„
m(-,', ~I}=m(-,', ~1),

L, —m (-,', +1 ) = m (-,', +1)—L „
L, —m (2, +1}=m

(zeal)

—L, ,

L, —m (1, s2) =m (1,+2) —L,

(7)

T33 a+AY(g) +c Y(~) ~
33 = 2

S,3 =a'+O'Yj2) +C' Y(2)' .

For the terms quadratic in Y(I) and Y(2), we may
consider combinations (Yi,i' —Yi»z) and

(Y&,&'+ Y&»'). As before, the term (Y&,i' —Y&,~')
cannot contribute to meson masses. Thus the de-
sired mass formula, valid to second order in
symmetry breaking, is

Thus the second-order mass formula gives a modi-
fied equal-spacing rule in which groups of particles
still satisfy an equal-spacing rule amongst them-
selves, but the spacing is not universal. The de-
generacy of the masses with respect to isospin,
displayed by Eqs. (5)-(7), is of more general val-
idity. Indeed, this degeneracy persists to all or-
ders in symmetry breaking' (neglecting electro-
magnetic corrections).
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and

m' (0, 0, 0) +m(1, 0, 0) =2m(z, 1,0},
m(1, 0, 0}=m(0, 0, 0),

(9a)

m" (0, 0, 0) +m' (0, 0, 0) =2m(0, 0, +1),
m" (0, 0, 0) +m(1, 0, 0) = 2m(z, +1,sl) .

(9b)

ln the above m(I, Y, z} stands for the (mass)' of a
meson with isospin I, hypercharge Y, and para-
charge z. The three neutral physical states (i.e. ,
states after taking singlet-15-piet mixing into ac-
count) that are present in (4, 4 *) are denoted as

MODELS BASED ON NONCHIRAL SU(4) SU(4)

As explained earlier, if an additional quantum
number is discovered for hadrons, the correspon-
ding outer-product group will be SW(4) = SU(4)
S SU(4). We will hereafter designate this new
quantum number by z and call it paracharge. The
maximal degenerate representations of SW(4) can
be constructed out of the symmetric tensor repre-
sentation (and its conjugate} of the factor SU(4)'s.
The lowest nontrivial representation is (4, 4 *),
which has the SU(4) content of 1 15. The next-
higher representation is (10, 10*)with the SU(4)
reduction of 1815684 and so on. Mass formula
for SW(4) is derived in a manner analogous to that
in SW(3). The structure of the mass-splitting
operator in SU(4) has been obtained by Okubo"
and by the present author. " Using these results
and the identities in Ref. 9 the SW(4) mass formula
can be written down at once. " The second-order
mass formula for the maximal degenerate repre-
sentation of SW(4) is

m =m, +a'l/+b8 +c(Y +'JJ')+d(z'+ 3')
+ e(Yz +'jj3}.

In the above, g is the paracharge difference oper-
ator p = z, —z„z, and z, being the paracharge op-
erator of the two commuting factor SU(4)'s. z is
the paracharge operator for physical meson states
z z 1 + z2 If we negl ect the terms proportional to
c, d, and e in Eq. (8), we are left with the first-
order mass formula. The expectation value of the
operator p in physical meson states is equal to
the number of index "4" (in other words, the num-
ber of "charmed quarks, " to use popular termi-
nology) that appear in a mixed tensor, whose com-
ponents represent the physical meson states. Thus
the first-order mass formula yields a two-dimen-
sional equal-spacing rule and the second-order
formula a modified equal-spacing rule, exactly as
was the case with SW(3). As an example, consider
the splitting of the 16-piet (4, 4*). Setting
c =d = e =o in Eq. (8) we obtain the prediction of
the first-order splitting for the 16-piet:

m(0, 0, 0), m'(0, 0, 0), and m" (0, 0, 0). Equation
(9a) is the usual nonet mass formula. ' Equation
(9b) is the same as a mass formula derived pre-
viously by Okubo et al." and Gaillard et al. ,

' as
can be seen by writing it in a slightly different
way, namely,

m(z, vl, +1) —m(1, 0, 0} m(0, 0, sl}—m(2, +1, 0)
m( —', +1,0, ) —m(1, 0, 0) m( —', +1,0) —m(1, 0, 0)

lm" (0, 0, 0) —m(1, 0, 0}
2m (~z, +1, 0}—m(1, 0, 0)

(10)

The full second-order formula Eq. (8) when ap-
plied to the (4, 4*) representation yields two rela-
tions, the first of which is still Eq. (9a) and the
second of which is

m" (0, 0, 0) -m(-,', +1,sl) =m(0, 0, al),
—m(-,', sl, 0),

which is a weaker version of Eq. (10). That the
second-order formula leaves the nonet spacing
rule (9a) intact is only expected as (4, 4 *) of SW(4)
contains (3, 3 *) of SW(3), and we have previously
seen that the nonet rule is satisfied to second-or-
der breaking of SW(3). Exactly similar calcula-
tions can be done with any other maximal degen-
erate representation of SW(4).

TENTATIVE ASSIGNMENTS FOR P(3100), P(3700),
AND P(4100)

%'e shall consider possible assignment of the new
mesons based on both the groups SW(3) and SW(4).
ln SW(3) we may assign the three new mesons to a
36-piet representation (6, 6 *). Notice that if the
new mesons have J~ =1, then we will have two
vector-meson multiplets; the 36-piet occurring in

addition to the usual nonet of P, p, (d, and k ~.
The insertion of the masses of mesons r/r(3100),
g(3700), and P(4100) as input then completely
fixes the parameters of the second-order mass
formula, Eq. (7), and the following prediction re-
sults for the remaining states in the 36-piet:
three states with I =2, Y=O; I =1, Y=O, and I=O,
Y =0 should occur at 3.1 GeV [one of these three
is $(3100)]; two states with I=1, Y=O, and1=0,
Y =0 should occur at 3.7 GeV [one of these is
$(3700)]; two states with I = 2, Y =+1, and I = —„
Y =+1 should occur at 3.41 GeV; a state with I = 1,
Y=+2 should occur at 3.63 GeV; a state with I= —,',
Y=+1 at 3.9 GeV; and finally a state with I=0 = Y
at 4.1 GeV, which is, of course, P(4100). This is
our model I.

For models based on SU(4) S SU(4) one is at
first tempted to assign the known vector mesons
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together with the three new mesons to a 100-piet
representation (10, 10 *) of SW(4). But the parti-
cle spectrum now is probably too rich. So we do

not consider this case any further. A more eco-
nomic scheme obtains if we assign the $(3100) to-
gether with the known vector nonet to a 16-piet
(4, 4*) and the P(3700), $(4100) together with

p'(1600} and &u'(1670) to a different16-piet. " This
scheme is possible only if all the three new me-
sons are isoscalar and have J =1 . Then the
mass formula Eq. (9) predicts the spectrum of re-
maining vector mesons: a state with I =-,', Y=-1,
z = 1 at 2258 MeV, a state with I =0, Y =0, z =1 at
2308 MeV, a state with I =-'„Y= 1, z =0 (A,

*' ) at
2850 MeV, a state with I=-,', Y=-1, z =1 at 3112
MeV, and a state with I =0, Y =0, z =1 at 3905
MeV. Here the last three states belong to 16-piet
containing $(3700), $(4100), p'(1600), and

&a '(1670), while the first two states belong to 16-
piet containing p, u&, P, k*, and $(3100). Of these
predictions, that referring to the state I=-,', Y=1,
z =0 is more reliable, as it is valid to second-or-
der symmetry breaking. This is our model II.

A third model is conceivable, where one intro-
duces a 16 piet of SW(4) containing $(3100),
$(3700), and $(4100) in addition to the known nonet

[of SW(3}] of vector mesons. The masses of the

remaining members of 16-piet can be easily cal-
culated from Eq. (9).

REMARKS

(1) In the present scheme the physical meson
states are denoted by a nontraceless mixed tensor
6 „"~.".: which possesses complete symmetry with
respect to permutation of upper indices and of
lower indices. The upper and lower indices are
identified with the tensor indices corresponding
to the two factor groups in the outer product.
Thus G „" and G„"~ (p, v, X, o =1, 2, 3) denote the
SW(3) nonet and 36-piet, respectively, and G „"

(p, @=1,2, 3, 4) denote the16-pi«of SW(4). Con-
tact with the conventional quark picture is estab-
lished if we identify the upper (lower) indices with
quark (antiquark) indices. ' Thus the group-theo-
retic content of the statement "meson is a bound
state of quarks and antiquarks" is expressed rath.
er naturally in the present scheme.

(2} In SW(3), the J =z+ baryons are assigned'
to the representation (8, 1). In SW(4), the J~ =-,"
baryons are assigned to the representation
(20', 1) and J = z' baryons to (20, I). For baryon
mass relations then nothing further follows be-
yond the predictions of SU(4).
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