Is the relation $R \approx 16\pi^2/f_0^2$ of physical significance?*

Hidezumi Terazawa
University, New York, The Rockefeller University, York, ¹wYork ¹⁰⁰²¹ (Received 23 January 1975)

It is shown that the present remarkable agreement between the previously predicted asymptotic limit $R \approx 16\pi^2/f_p^2 (= 5.7\pm 0.9)$ of $\sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$ and the recently reported SLAC-LBL $e^+ \cdot e^$ colliding-beam data with $R = 5.1 \pm 0.4$ at 5 GeV center-of-mass energy is of physical significance if R stays approximately constant for higher energies.

In the previous papers' I have predicted the asymptotic limit R of $R(s) = \sigma(e^+e^- \rightarrow \text{hadrons})/$ $\sigma(e^+e^-\rightarrow \mu^+\mu^-)$ to be approximately $16\pi^2/f_\rho$ ³ =5.7±0.9, where f_o is the ρ -dominance coupling constant $(f_0^2/4\pi = 2.2 \pm 0.3)$. I have also predicted that the scaling² of $\sigma(e^+e^- \rightarrow \text{hadrons})$ will be seen in the near future since the CEA' and SLAC-LBL preliminary⁴ data of e^+e^- colliding-beam experiments have shown $R(s)$ reaching 4.5-7.5 at the total center-of-mass energy squared $s \approx 25 \text{ GeV}^2$. total center-of-mass energy squared s \cong 25 GeV².
The original derivation of the relation $R \cong 16\pi^2/f_o^2$, however, strongly depends on the assumption that the function $\Delta(q^2)$ defined by

$$
\langle q_{\mu} q_{\nu} - q_{\mu\nu} q^2 \rangle \Delta(q^2)
$$
\n
$$
\Delta(q^2) = -\frac{2}{f_{\rho}^2} \left(\frac{m_{\rho}^2}{m_{\rho}^2} - \int dx \, dy \, e^{4\alpha x} \langle 0 | T(J_{\mu}(x)J_{\nu}(0)\theta_{\lambda}^{\lambda}(y)) | 0 \rangle, \right)
$$
\n
$$
\Delta(q^2) = -\frac{2}{f_{\rho}^2} \left(\frac{m_{\rho}^2}{m_{\rho}^2} - \int dx \, dy \, e^{4\alpha x} \langle 0 | T(J_{\mu}(x)J_{\nu}(0)\theta_{\lambda}^{\lambda}(y)) | 0 \rangle, \right)
$$
\n
$$
\Delta(q^2) = -\frac{2}{f_{\rho}^2} \left(\frac{m_{\rho}^2}{m_{\rho}^2} - \int dx \, dy \, e^{4\alpha x} \langle 0 | T(J_{\mu}(x)J_{\nu}(0)\theta_{\lambda}^{\lambda}(y)) | 0 \rangle, \right)
$$

where J_{μ} and $\theta_{\mu\nu}$ are the electromagnetic current and the stress-energy tensor of hadrons, respectively, can be smoothly extrapolated from $q^2 = m_0^2$ to q^2 =0. It has, therefore, been highly desirable to derive the same relation from different assumptions⁵ or to study the extrapolation of $\Delta(q^2)$ more carefully.⁶

Very recently the SLAC-LBL group' has reported the detailed data on the total cross section for e^+e^- - hadrons, showing that $R(s)$ is approximately constant from $s^{1/2} = 2.4$ GeV to 3.8 GeV aside from the very narrow resonances $\psi(3105)$ and $\psi(3695)$, rises between $s^{1/2} = 3.8$ and 4.1 GeV, and at $s^{1/2} = 5$ GeV has a value of 5.1 ± 0.4 in remarkable agreement with the predicted value of $R \approx 5.7 \pm 0.9$. Although the constancy of $R(s)$ for higher s is still subject to future experiments, it seems worthwhile to find whether this agreement is real or a mere coincidence. In this short note I shall show that it is of physical significance and not a mere coincidence if R(s) stays approximately constant for higher s.

In deriving the relation $R \approx 16\pi^2/f_p^2$, I have started with the low-energy theorem by Crewther⁸ and by Chanowitz and Ellis⁹:

$$
\Delta(0) = -\frac{R}{6\pi^2} \tag{2}
$$

The theorem is an immediate consequence of the canonical trace Ward identity⁹ which can be written in the form of

$$
\Delta(q^2) = -\frac{q^2}{6\pi^2} \int ds \frac{R(s)}{(s-q^2)^2} - \frac{R}{6\pi^2}.
$$
 (3)

What I have proved rigorously is

$$
E(m_{\rho}^{\ 2})=1\ ,\tag{4}
$$

with the definition of $E(q^2)$ given by

$$
\Delta(q^2) = -\frac{2}{f_{\rho}^2} \left(\frac{m_{\rho}^2}{m_{\rho}^2 - q^2}\right)^2 E(q^2).
$$
 (5)

Then, what I have assumed is that the extrapolation function $E(q^2)$ does not change much between $q^2 = m_p^2$ and $q^2 = 0$ so that

$$
E(0) \cong \frac{4}{3},\tag{6}
$$

where the isoscalar contribution is included by assuming SU(3) symmetry. In general, $E(0) \approx 1+r$ if the ratio of the isoscalar contribution to that of the isovector is r . It follows the general relation $R \approx 12\pi^2(1+r)/f_\rho^2$. Notice that the nonvanishing $E(0)$, which is a consequence of the ρ -double-pole dominance of $\Delta(q^2)$, is consistent with the nonvanishing R , which is an assumption leading to the low-energy theorem (2).

Now that fairly precise information on $R(s)$ has become available $3,4,10$ for $s^{1/2}$ below 5 GeV, one can explicitly calculate $E(q^2)$ from Eqs. (3) and (5) to see whether the above-mentioned assumption is working if $R(s)$ is approximately constant for $s^{1/2}$ above 5 GeV. The result of such calculation of $E(q^{\,2})$ as a function of $q^{\,2}$ for $q^{\,2}$ between 0 and ${m_{o}}^2$ is shown in Fig. 1. The shaded area indicates where $E(q^2)$ should be found with approximately $60%$ probabilities. For comparison, the three broken curves are presented to illustrate how $E(q^2)$ would behave if the right-hand side of Eq. (3) is calculated from the ρ resonance in $R(s)$ only, from the R -term only, or from their sum. The contri-

12 1506

FIG. 1. The calculated extrapolation function $E(q^2)$ defined by Eqs. (3) and (5) for q^2 between 0 and m_o² (the shaded area). Also shown are the same functions calculated from the ρ resonance in $R(s)$ only, from the R term only, and from their sum (the dashed curves).

butions of ω and ϕ resonances and the continuum in $R(s)$, including ρ' (1250) and ρ'' (1600), to $E(q^2)$ for q^2 between 0 and m_p^2 are, at their maximum, 7%, 2% , and 9% of the total, respectively, and those of $\psi(3105)$ and $\psi(3695)$ are negligible (less than 1%). Although the statistics in the data ¹⁰ for $1 \leq s \leq 4$ GeV² are rather poor, the result would not be changed by more than 3% . This result clearly shows that $E(q^{\, \bm{2}})$ varies very little (less than $20\%)$ from $q^2 = m_\rho^2$ to $q^2 = 0$ and that $\Delta(q^2)$ is always dominated by the ρ -double pole in this re-
gion,¹¹ which confirms the assumption mention $\mathsf{gion,}^\mathsf{11}$ which confirms the assumption mentione above. Also it is remarkable that none of the single contributions of ρ , ω , ϕ , and the continuum in $R(q^2)$, or the R term in the right-hand side of Eq. (3) can make $E(q^2)$ flat in the extrapolation region. They are cooperating in such a way that only the total sum of them all can make this occur. The remaining question of whether $R(s)$ stays approximately constant for s larger than 25 GeV² will soon be answered in the coming SLAC (SPEAR) and DESY (DORIS) experiments at higher energies.

- "Work supported in part by the U. S. Atomic Energy Commission under Contract No. AT(11-1)-2232.
-)Present address: Institute for Nuclear Study, Tokyo University, Tanashi City, Tokyo 188, Japan.
- 1 H. Terazawa, Phys. Rev. Lett. 32, 694 (1974), Phys. Rev. D 9, 1335 (1974); 11, 49 (1975).
- ² J. D. Bjorken, Phys. Rev. 148, ¹⁴⁶⁷ (1966); V. N. Grivov, B.L. Ioffe, and I. Ta. Pomeranchuk, Phys. Lett. 24B, 554 (1967).
- $3A.$ Litke et al., Phys. Rev. Lett. $30, 1189$ (1973); G. Tarnopolsky *et al.*, $ibid$, 32 , 432 (1974).
- 4 B. Richter, in Proceedings of the XVII International Conference on High Energy Physics, London, 1974, edited by J.R. Smith (Rutherford Laboratory, Didcot, Berkshire, England, 1974), p. IV-37.
- 5 Such an attempt has been made by O'Donnell. See P. J. O'Donnell, Univ. of Toronto report, 1974 {unpublished), and talk presented at the Ninth Balaton Symposium on Particle Physics, Balatonfured, Hungary, 1974 (unpub-

lished).

- Some argument has been made against the smooth extrapolation but not quantitatively. See J. Ellis, CERN Report No. Th. 1880-CERN (unpublished), and talk presented at the weekend meeting on Deep Inelastic Phenomena, 4-5 May 1974, Rutherford Laboratory, 1974 (unpublished), and E. Etim and M. Greco, Nuovo Cimento Lett. 12, 91 (1975).
- 7 J.-E. Augustin et al., Phys. Rev. Lett. 34, 764 (1975).
- 8 R. J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).
- ⁹M. S. Chanowitz and J. Ellis, Phys. Lett. 40B, 387 (1972); Phys. Rev. D 7, 2490 (1973).
- 10 C. Bacci et al., Phys. Lett. $44B$, 533 (1973); F. Ceradini *et al*., *ibid*. <u>47B</u>, 80 (1973); M. Bernardini *et al*., ibid. 51B, 200 {1974).
- ¹¹It cannot be stressed too strongly that the ρ -doublepole dominance of $\Delta(q^2)$ is consistent with the scaling of $R(q^2)$ and inconsistent with the ρ -pole dominance of $R(q^2)$.