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On-mass-shell current-algebra sum rules for Kn scattering are investigated. At threshold these sum rules relate
the combinations a " —a '" and a " +2a" of I =

2 tand 3 S-wave scattering lengths to their soft-meson
predictions plus "correction" terms. A dispersion-theoretic approach is used to calculate the corrections to both
the soft-koan and soft-pion values for each of these scattering length combinations. The dispersion relations
are assumed to be dominated by the K~(890) and a J = 0 v meson. The correction to the soft-pion value

a '"—a ' = 0.210m„' is found to be very small, thus suggesting that the on-mass-shell current-algebra
prediction for a '"—a "' is nearly equal to the soft-pion value. Self-consistency requirements of the analysis
favor F~/F„1.22; this implies that a fairly large (-30%) correction to the corresponding soft-koan
prediction of a '"—a'"-0.14m ' is needed. The Ks' and v contributions to the latter correction increase this
value to 0.177m '. Furthermore, since the K~ and ~ corrections to and the soft-koan value of a '"—a '"
decrease with increasing F„/F, a value of F„/F ~ 1.3 seems, at least in the context of the present study, to be
rather unlikely.

I. INTRODUCTION

Current-algebra low-energy theorems' have
proved to be an important tool in probing the
structure of elementary particle interactions.
Since the relations which result from these low-
energy theorems involve amplitudes in which one
or more pseudoscalar meson mass has been ex-
trapolated to zero, it becomes necessary to de-
termine the error made when testing them with
experimental data (to which, of course, only on-
mass-shell amplitudes can be directly related)
There have been various estimates of these errors
in a number of different applications of the soft-
meson current-algebra approach. For the most
part these attempts have made use of either
kinematic correction factors" or dispersion re-
lations in the pseudoscalar meson mass. '

Recently, however, an on-mass-shell approach
to current-algebra sum rules was suggested. ' The
current-algebra theorems are written with all
amplitudes on-mass-shell, the price being that
terms which vanish in the soft-meson limit now

contribute and must be evaluated. These "cor-
rection" terms give a measure of the error re-
ferred to above.

In their application to mN scattering, Brown
et al. ' evaluated the corrections to the Adler-
Weisberger' and Cheng-Dashen' relations and
found them to be small, as expected. In a sub-
sequent application to mm scattering' it was found
that the corrections to the Adler sum rule"
could be as large as -25% but were likely to be
smaller. The magnitude and sign of the correction
terms lead to upper and lower bounds on the com-
bination 2a —5a' of I=O and 2 S-wave scattering
lengths. Although on less secure theoretical

grounds, the corrected sum rule for the I=O
0 term gave rise to results which are consistent
with the model of Gell-Mann, Oakes, and Renner
(GMOR). '

The purpose of the present investigation is to
examine the on-mass-shell current-algebra sum
rules for Km scattering. " " Whereas the earlier
on-mass-shell applications provided information
on pion mass extrapolation effects, the study of the
Km sum rules affords an opportunity not only to
estimate the corrections to the soft-kaon sum
rules, but to compare them with the corresponding
corrections to the soft-pion relations in the same
Process. It is possible that this gives a better
idea of the relative reliabilities of soft-kaon and
soft-pion ealeulations than ean be obtained from a
comparison of, say, on-mass-shell current-alge-
bra approaches to nÃ (see Ref. 15) and KX (see
Ref. 16}scattering.

There are two current-algebra sum rules for
Km scattering; these correspond to the t-channel
isospins I, = 0 and 1. The on-mass-shell I, = 1

relation leads to a corrected Weinberg-Tomozawa
sum rule"'" for the combination a'" —a'" of
I =-,' and —,

' S-wave scattering lengths. The combi-
nation a'"+2a'~ is related to a 0 term in the
on-mass-shell version of the I, =0 sum rule. We
will express each of these sum rules in a re-
duced-m form" and a reduced-K form, in order
to determine the respective soft-pion and soft-
kaon corrections.

The present analysis will parallel the earlier
study' of mm sum rules. As before we will employ
a dispersive approach to calculate the correction
terms. They are first expanded, completely gen-
erally, in terms of invariant amplitudes. Un-
subtracted dispersion relations" are then written
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for these invariant amplitudes. The dispersion
relations are assumed to be saturated by the most
important low-lying resonances, in this case the
K*(890) and an I= 2 scalar meson (v). The con-
tributions of these resonances are determined, as
previously, from hard-meson current-algebra
calculations" "of the relevant three-point func-
tions. In the present work we will make use of the
analysis of Fenster and Hussain. "''

In order for the analytic structure of the sum
rules to be correct, the residues of the K* and
If. poles in the correction terms must equal their
counterparts in the Kvt scattering amplitude. This
requirement provides us with conditions on the
parameters. Although we demanded exact equality
in the earlier mm analysis, we felt that it would
not be worthwhile to attempt an exact matching
of the residues in the present case (although it
would have been possible to do so), in view of
the uncertainties in several of the parameters.
Nevertheless, we did find a solution for which
the residues of both K* poles together with those of
both z poles are very nearly equal. These con-
sistency conditions prove useful in narrowing the
range of uncertainty in several of the parameters.

One of the main results of the present ca.lcula-
tion is that the K* and g corrections to the soft-g
sum rule fpr ai/2 —a are bpth very small fpr
all & parameters in a plausible, physical range. "
It is reasonable to suppose that higher-mass con-
tributions to the reduced-w correction terms are
also small. Thus, we conclude that the on-mass-
shell current-algebra prediction for a' ' —a' ' is
nearly equal tp its spft-pipn limit' pf
= 0.21 m

Of course, if we know the on-mass-shel. l value
of a'" —a'", then we can accurately judge the
success of the reduced-K estimates. Now, the
residue conditions mentioned above favor the
value 1.22 for the ratio of kaon to pion decay con-
stants, Fr(F, . This leads to a soft-kaon value
for a'" —a"' of 0.141m„', from which we infer
that the effects of extrapolation in the kaon mass,
in this case, are of the order of -30%. The K*
and K contributions to the reduced-K correction
terms have opposite signs, the K~ contribution
being --0.021ei, ' and that of the If: -+0.057m, '.
Thus, for the best values of the parameters the
corrected value of a'" —a'" in the reduced-K
case is raised from the soft-K value to
-0.177m

An interesting by-product is obtained from the
present analysis. Namely, it appears highly un-
likely that the ratio Fr/F„can be greater than
1.3. This result is a consequence of the above
consistency requirements on the K* and e pole
residues.

For the a'"+2a'" sum rule we again find small
corrections in the reduced-m case, leading to a
value for this combination which is close to zero,
when use is made of the GMOR value' of the 0
term. The corresponding reduced-K prediction
for a'~'+2a' ' is also very small and agrees well
with the reduced-m result.

Previous hard-meson current-algebra studies
of Km scattering have made use of a number of
different approaches. These include simple linear
mass extrapolation' from the soft-meson point to
threshold, more sophisticated mass extrapolation"
based on the Fubini-Furlan technique, '

K domi-
nance" of (v~ s"V„='(0)~K) [where V„'(x) is
the strangeness-changing vector current], and

Lagrangian calculations in the tree approxima-
tion."'" Most of these calculations have yielded
predictions fpr a —a which are close to the
soft-pion value. However, it seems to us that the
present analysis justifies the conclusion that the
effects of pion mass extrapolation on the deter-
mination of a'" —a'" are minimal. In addition,
the present investigation has dealt more fully with
kaon mass extrapolation effects than have the
earlier studies.

This paper is organized as follows: In the first
part of Sec. II we will develop the formalism re-
quired for the reduced-K analysis of the Km low-
energy theorems. At the end of this section we
then simply list the analogous reduced-m expres-
sions, whose derivation parallels that of the re-
duced-K case. Our results together with details
of the numerical analysis will be presented in
Sec. III. Section IV will contain our conclusions.
Vfe have reserved for the Appendixes a more
complete account of the ingredients required to
calculate the correction terms. In Appendix A we
extend the hard-meson three-point function analy-
sis of Fenster and Hussain to include the w me-
son, while in Appendix B the explicit forms of
the K* and z contributions to the correction terms
are given.

ll. THE ON-MASS-SHELL SUM RULES

As was stated in the Introduction, there are two
methods of calculation that can be used here:
Either the pions or kaons can be reduced put of
the state vectors. We will follow the reduced-K
calculations here in some detail, and then, at the
end of this section, we will simply list the results
for the reduced-m case.

Reduced K
In the process'

we can use partial conservation of the axial-vectpr
cur re nt {PCAC) in the form"
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s, A,"(x)= F,m, 24.(x) (o = 4, . . . , 7)

to write the on-mass-shell ()-matrix element for (1) as follows":

q„„=—(2 ) '(2P'qq )
""'

J d'*d'& ' e '*(,(Pe)l(P '
„Pq, P(A'( )&A."(») )P e(& -*)(d (&l &, A;( H

+bq, F, '5(y'- ~)[A'b(y), A."(x)]]I 2.(po}}.

K K K 4K'

Defining the equal-time commutation relations

5( y' —x') [Aob( y), A,'(x}]= if„,V,"(y}5'(x —y),

5( y' —x') [A', (y), s,A:(x)]= ia„(y)5'(x- y),

(4)

(6)

In this expression, the operator A is obtained
from A by the explicit removal of the pseudoscalar
pole, that is,~

isospin amplitudes for Km scattering. We can
write

Mbd ac(V, VB}= 5cd5abM {V, VB}
(+)

+ 2[Td, T ]2 M (V, VB) . (12)

Similar isospin decompositions can be made for
the other matrix elements appearing in Eq. (7).
Projecting out the even- and odd-isospin ampli-
tudes from Eq. (7) leads to

the expression for the S-matrix element can be
rewritten as

i{2)/}'5(q+p, —p —pb)
( )bd, ac (2X)6(I6pOqbpO pO )1/2 bd, ac & B

where the matrix element M is given by

Fx Mbd «(v, vB}=—p)&qbRbd «(v, VB)+cab cd(t)

(6)

Fx'M" (v, vB) = p" q R'„'1(v, vB) +(T(t),

Fx'M' '(v, vB) =P"q R„'1'(v, VB)-mxvF(t) .

The correction terms

R"(v, vB) = p" q R—(2'g'(v, vB)

(14)

—2mxvfb, af«F(ta),
with

&.b, .d(t) -=(2o}'(2p'2p's)'"(xd(ps)l c.b(0}I 2.(p })

and

. (21/)'5(q+ p, —p —p, )
(2w) (2p 2p )1/2 bd ac( & B}

(8)

will be determined in a manner analogous to that
used in the mm case.' We begin by expanding
R„'1'(v, vB) in terms of the particle momenta.
Making use of PT invariance we can write'

RtO'), =A ' POP1+ B,' (POQ1+Q„Pb)

+ R"(Po&1 —&OP), ) + CI'Qo Q1

+C2' (Qvt)1 —&OQ1)+Cb' &a&1+Ca' g21

ps T(A~~ y A X) 7l'& p

(8)

F(t) is the pion electromagnetic form factor. In
the above, we have introduced the invariants

where we have defined the combinations

P = -'( p. +p8),

Q = '(P+ q}, -
-p ~ (p„+p()) s-u

v=
2mK 4mK

'

p ~ q t -2mK
vg =

2m~ 4mK

where

s=-(q+p )',
t = (p q)', --

and

u = -(q —pg)'

are the usual Mandelstam variables.
As is well known, there are two independent

(10}
and

&=q-P

Using the relation

one finds that (i =1,2; j = 1, . . . , 4}

A ', B, , and C&' are even in v;

A, B, and C&( are odd in v .

From Eqs. (15) and (16) we find that
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8 ' (v, vs) =m»'v'A ')(v, vz)+ vm»(m»' —2m»vs)BI" (v, vs)

+ 2 vm»(m»' + 2m»vs) B,'' (v, vs) + —,'(m»' —2m»vs)' C', ' (v, vs)

+m»'(m»' —4vs') C,"(v, vs) —(2m» vs +m»')'C, '' (v, vs) + 2m»vsc("(v, vs) . (17)

In order to determine the invariant amplitudes we assume that they satisfy unsubtracted fixed-t disper-
sion relations. Thus, denoting the absorptive parts of A, . . . , C, by a, . . . , c„we write

)- » (»( ) )
1 1 1

7T p V —V V +V

Bt.»(, )= — » »t»( ','), », ) ((=(,2),1 ", 1 1

7T p V —V V +V

7T p V —V V +V
(20)

where we have made use of the crossing properties given above. Although we have assumed unsubtracted
dispersion relations for all of the invariant amplitudes, this is probably only rigorously justifiable34 for
the amplitudes A '), B, ), and C,.

Denoting the absorptive part of R by r one has

r"„"„=— »(27r)' g (2p~2p()2k'2k )'~' (», ((t)()) ~
A~~ (0)

~
k)(k~ A,"(0)

~
», (t) )) 6(s+ k')

J
I

k

+»(2»)' P (2t)gt)'()2k' 2k")'" (v, (p())(A, (0)~ k')(k'[4" (0)~ »,(p ))f)(u+0") (21)

We assume that r is saturated by the K*(890) and
an I=; scalar meson, ~. The matrix elements
contributing to Eq. (21) in this approximation are
evaluated in Appendix A. The absorptive parts
a ', . . . , c4' are obtained from the expansion for
r'„'„' which corresponds to Eq. (16). The resultant
K* and g contributions to the amplitudes
A ', . . . , C, ' are given in Appendix B.

Once expressions for R ' (v, vs) have been ob-
tained from Eq. (17), they may be substituted in
Eqs. (13) and (14). This, however, still leaves
F(t) and cr,'('), ~ to be evaluated, before the full
expression for M ') may be obtained. Since this
cannot be done within our theoretical framework,
we choose rather to evaluate the expressions at
t =0 (i.e. , vs = -m»/2). We may thus use the fact
that F(0) =1 to help determine M at t=0. The

M(-' = -'(M'" —M"'),
) = —(M /2+2M /2)

(23)

and Eq. (17) one can now evaluate Eqs. (13) and

(14) at threshold and t= 0 to obtain

GMOR model" will be used to evaluate o"(0).
The Km S-wave scattering lengths are most di-

rectly obtained by taking v=m„, t=0 (threshold)
in Eqs. (13) and (14). The threshold value of the
amplitude with definite isospin is related to the
corresponding S-wave scattering length by

a'=
( )M (v=m„ t=0),

-1
8n' m„+m~

where I is the s-channel isotopic spin. From the
relations

l /2 3/2 ~ (-) mg 3 (-) mga —a , (m„m~ A m„, — +2m, m~ J3, m„, —
8TTE~ (m, +m~) z

4 (-) mac 2 (-) mg
+m~ Cl m„- —mz C4 m„— —m„tnt (24)

al/2 + 2 a3/2 m 2m A( +)-3
8~x,2(m „+m, )

1

JC 4 (25)

We will refer to Eqs. (24) and (25) as threshold sum rules.
For convenience, we define
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D(v, vs) =3M '(v, vs) .
Then

2v "dv'ImD(v', vs)
D(v~ vg) =—

/2 p2
m&

If we use the optical theorem in the form

(26)

(27)

o„, = ~ ImM (t = 0),
2q, s

where q, is the center-of-mass momentum, then at threshold we have

ts» 2m, " dv'( 2q, W-s) [o'„",(v') —o",,', (v') I

V -PS

(28)

(29)

Introducing p, as the laboratory momentum of the pion (assuming the K is stationary), then

Wsq, =m~p, . (30)

Further, letting oP —=p, +m, ' (&o = v at I =0) and inserting the definition for the scattering lengths, we obtain

nl/2 n3/2 ~2» Pc
(

1/2 3/2)
2n (m, +m»)

(31)

This expression for the scattering lengths will be evaluated later as a consistency check on the theory.
A second approach to Eq. (14}is possible, which involves taking the derivative of both sides of that

equation with respect to v and then setting v=0. Let us first concentrate on (8 /sv) M~ '(v, vs)~, o From
Eqs. (26) and (27) one finds

m» 2F»' " dv'ImM i(v', —m»/2)
V

Applying the optical theorem, this equation becomes

, S M( ) m» F»' m»dp, (o",,', —o'„", ) 4F»'ma'm» dp, (a', „'t —o't„",)

Bv 2 )p o 3g (d 3 7t' (d
(33)

The second integral on the right-hand side is negligible relative to the first, owing to the fact that it is
much more rapidly convergent. " Thus, the second term is dropped, and a comparison of Eqs. (14), (31),
and (33) leads to

m„ 8 m~
8»F» (m„+m») s v ' 2

Using Eq. (17}, the above relation becomes

mg a (34)

'2'-' c ') ' —'c'-& ')
2

a -a = mgBy — -+my
y v, —

3r m. 2 Bv 2

( ) mg—mg —Cg v~- mg a4

Equation (35) will be called a v=0 sum rule.
Reduced g

The equations and results for the reduced-m case are very similar to those for the reduced-K
case except for a few changes in notation. The momenta and isospin are assigned according to

«.(q)+If, (p.}-v, (p)+ed(p, ).
Using PCAC in the form

~v~a(x) = F,m„'P, (x) (a=1, 2, 3),
the S-matrix element becomes

-i(2»}a5(q+p„p —ps}-
Bd, ac (2»}B(16pO OpO pO)1/2 Od, ac( ~ B) &

(36)

(37)

(38)
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where

F, Mf ~ «(v, vs) =P q&R(~ «(v, vs}+o,'~ «(t}—2mwvf~„f~, G(t),

and G(t) is the kaon isovector form factor, defined by

(2w)'(4POPo)'"(K~(P') I &." (o) lK.(P))=f n.G(t)(P +P')"

In the above, v retains the same definition as in the reduced-K case, but v~ is defined as

P a'' 2m.

(39)

(40)

(41)

Ne have used primes to distinguish the reduced-n quantities from
case.

The form of the low-energy theorems in the reduced-m case can
letting F~- E„and so we have

F,'M" (v, vs} =P"q R„'~ (v, vs)+o'(t),

F,'M' (v v') =puq R„'~ (v, vs) -mwvG(t) .

those corresponding to the reduced-K

be obtained from Eqs. (13) and (14) by

(42)

(43)

R„', is expanded in terms of invariant amplitudes A', . . . , C,', which are assumed to satisfy unsubtracted
dispersion relations. R' can be expressed as

P"q R„'z (v, vs) =mr'v'A' (v, vs)+ vmw(m, ' —2m, vs)B,' ' (v, vs)+2vmz(m, '+2m, vs)B' '
(v, vs)

+ ~(m, ' —2m, vs)'C,' '
(v, vs) +m, '(m, ' —4 vs )C,' '(v, vs) —(m, '+ 2m, vs)'C,' '

(v, vs)

(44)

The absorptive part of R', denoted by r', is

,(v, vs) = — w(2w)' Q(2p 2p82k 2k )'~' (K~(pw)~ A~ (0)~ k)(k~A, (0)~K,(p~)}5(s+k )

+ w(2w)6 Q (2Po 2Pos2k'o2k' )" (K~(P )( As,"(0)(k')(k'(A~~(0))K, (P„))5(u+k' ) (45)

Repeating the arguments of the reduced-K case, we easily find the threshold sum rules to be

8m', '(m „+m~)

4 i(-) mff 2 t( ) m+m, C, m„, —
2

-m, C, m„— —m, m~
J

(48)

a'"+ 2a'" = ' 'A"
8wF, '(m, +m„}

mK w(+) mr+2m„m~B, m„, —
2

(47)

The v =0 sum rule analog of Eq. (35) is found to be

2 I(-) ff 4 t( -)
tÃ~ +my 7T?

2' „m~8~ 0, —
2

+m „CjBV v=0

—m~ —C4 vy— mg e (48)

ill. NUMERICAL ANALYSIS AND RESULTS

One of the aims of the present calculation is to
obtain a reasonably accurate value for the scat-
tering lengths in the Km process. Regrettably,
some of the data needed for the calculation are not
known with great precision (for example, the s
mass and width). However, a number of "con-

sistency conditions" can be imposed to obtain con-
siderable control over the parameters.

For example, the pole structure of the correc-
tion term was examined for consistency. This
was done by requiring that the residues of a par-
ticular pole (either K* or w) in R and M (evalu-
ated by the narrow-resonance approximation) be
equal. The necessity of this condition is apparent
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from Eqs. (13) and (14), since the form factors
F(t) and u(t) cannot exhibit these poles (nor any
v dependence). It was found that residue equality
was only possible if the saturated form of the
first Weinberg sum rule" (see below) for K„and
K was relaxed" by -1(F/~. This then allowed ap-
proximate residue equality for both the K~ and
the w poles simultaneously in both the reduced-m
and reduced-K approaches.

Similarly, additional relations amongst the pa-
rameters were obtained by evaluating the expres-
sions for the K and K* decay widths from the three-
point functions, determined in Appendix A, and
then setting these widths equal to those used in
the evaluation of M(v, vs) by the narrow-resonance
approximation. Values of the parameters were
sought which maximally satisfy these require-
ments together with the above residue conditions.

The above calculations were repeated and re-
fined until a self-consistent model was obtained.

Parameters

2 2
gP gAy F 22+
mp mg

2g'E* 2+
mg +

2
2g&w +F 2

In the last line of Eq. (49}we have introduced a
parameter p', which is usually taken to have the
value p'= 1.0; in our case p' turns out to be
slightly less" than 1.0.

To evaluate the above sum rules, we need to
know gp'/m~'. We write

(49)

Inspection of the general expressions obtained
for R,"~ „(v, vs) in Appendix B shows that there are
a considerable number of para, meters required
to describe the correction terms. In Table I we
list those particle masses and widths used as in-
puts. These quantities were not adjusted in the
course of the calculations. This would certainly
have been possible in the cases of the A, and K„
"resonances, " but was not found to be necessary.

We make use of the first Weinberg sum rules"
to eliminate several of the parameters. They are
written in the slightly modified form"

(52)

we find f,(0) =0.94. This, in turn, implies

(53)

The phenomenological value of this last quantity
is quoted ' a.s

( )

——1.27 y 0.03 . (54)

The achievement of residue equality of the K*
and z poles in the Km scattering amplitude and

correction terms depends on all of the parameters

TABLE I. Particle masses and widths used in the
calculations.

Particle Mass {MeV) Width {Mev)

functions is taken to be -1.0, which is the pre-
ferred value these authors obtain in calculating
I'(K*- Kx}, although they conclude that the value
of -5~+ could be as small as -0.6.

For F„we use the value of 92 MeV. We allow
the ratio FE/F, to range between 1.0 and 1.30
and find that the most consistent value is 1.22.
This is somewhat higher than that found by Ger-
stein and Schnitzer (1.09) using the GMDR"
symmetry-breaking scheme and somewhat lower
than that of McKisic" (1.28) and Pagnamenta and

Re nne r" (-1.25) .
There appears to be some controversy regarding

the mass and width of the z meson. Our analysis
favors the high mass solution of 1200 MeV,"and

a value for F„'/F„' of 0.20. The latter value is
lower than the 0.38 obtained by Gerstein and
Schnitzer" and higher than that of Pond" (0.14}
and corresponds to a value t'or I (x- Kv) of 500
MeV, substantially higher than the low of 90 and

close to a high of -450 MeV. The decay width
is related to the appropriate vertex function 1(q, p)
(and thus to F„, see Appendix A) by the formula

r(x-Kv) = ', x-,'x ~1(q, p)~', (51}
K

where q, is the center-of-mass momentum of the
K or m.

From the analysis given in Appendix A it follows
that the K„ form factor f,(t) is given at t = 0, by"

f, (o) = (F.'+Fr' —F ')
~

2
gp

p

(50)
K

138

496
which reduces to the KSRF ' relation for $'=1.
However, we find from the experimental value"
of the p- e'e rate that $'=1.4+0.2, which is
somewhat higher4' tha. n the KSRF value.

The parameter 5~+ introduced by Fenster and
Hussain" in their treatment of the K*K@ vertex

KN

891

1100

1320

1420

50

55 {into Kn)
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TABLE II. The ratio of the residue of the K* pole in the correction term to that in the Kn
scattering amplitude for the reduced-K case with F»/F „=1.22, FK/F „=0.45, and 1/p~ =1.1.

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

0.00
-0.10
-0.20
-0.30
-0.40
-0.50
-0.60
-0.70

-0.80
-0.90
-1.00
-1.10
-1.20
-1.30
-1.40
-1.50

0.366
0.390
0.416
0.441
0.468
0.495
0.524
0.553

0.582
0.613
0.644
0.676
0.709
0.743
0.777
0.813

0.368
0.397
0.428
0.460
0.493
0.527
0.563
0.599

0.637
0.6 76
0.716
0.757
0.800
0.843
0.888
0.934

0.371
0.405
0.442
0.480
0.519
0.560
0.602
0.646

0.692
0.739
0.788
0.838
0.890
0.943
0.998
1.055

0.375
~ 0.415
0.456
0.500
0.545
0.592
0.642
0.693

0.747
0.802
0.860
0.919
0.980
1.044
1.109
1.176

0.380
0.425
0.471
0.520
0.572
0.625
0.682
0.740

0.802
0.865
0.931
1.000
1.071
1,144
1.220
1.298

0.386
0.435
0.487
0.541
0.598
0.659
0.722
0.788

0.857
0.928
1.003
1.081
1.161
1.244
1.331
1.420

0.393
0.446
0.502
0.562
0.625
0.692
0.762
0.835

0.911
0.991
1.075
1.161
1.251
1.345
1.442
1.542

0.400
0.457
0.519
0.584
0.652
0.725
0.802
0.882

0.966
1.054
1.146
1.242
1.342
1.445
1.553
1.664

0.408
0.469
0.535
0.605
0.680
0.759
0.842
0.929

1.021
1.118
1.218
1.323
1.432
1.546
1.664
1.786

0.416
0.481
0.552
0.627
0.707
0.792
0.882
0.977

1.076
1.181
1.290
1.404
1.523
1.647
1.775
1.909

0.424
0.493
0.568
0.649
0.735
0.826
0.922
1.024

1.131
1.244
1.362
1.485
1.613
1.747
1.887
2.031

just mentioned, but perhaps most sensitively on
(' and 6»~. In Table II we list for the reduced-K
case the ratio of the residue of the K* pole in the
correction term to that in the scattering ampli-
tude as a function of (' and 6+„ for Fz/F, =1.22.
Consistency is represented by the curve in the
$' —6»~ plane for which the ratio is unity. The
corresponding curve for the K* pole in the re-
duced-m case is found to be nearly coincident.

1/2 3/2

For this combination of the scattering lengths,
we have outlined five methods of evaluation,
namely, by the threshold and v=0 sum rules in

both the reduced-m and reduced-K approaches,
and by use of the dispersion relation Eq. (31).
We treat the reduced-m calculation first.

In the reduced-m approach, the "uncorrected"
value of a"' —a'" is 0.210m„'. Fpr v =m „ the
K* contribution to the correction term reduces
this to 0.208&@ '. Inclusion of the g term raises
this value to 0.218m„'. The result is fairly insen-
sitive to changes in 5»~ and $', remaining constant
to within +0.002m, ' for the ranges 1.1&)' &1.7
and -1.5 &5»~&-0.3. It is also insensitive to val-
ues of the g mass and width for which consistent
solutions could be found. While a very broad, low-
mass g could appreciably increase the reduced-g
prediction, its contribution to Eq. (31) would (as-
suming that the I=—,

'
Km cross section dominates

that with I=-,') make the dispersive value of
a' '- a ' much larger than the reduced-w value
could ever become without enormous, higher-
mass contributions. If we use Eq. (48) then we ob-
tain 0.21'„' and this remains constant for the

same range of 5»* and $' as above.
In the reduced-K approach, on the other hand,

the uncorrected (soft-kaon) value of a' ' —a'~' is
0.141m, ', considerably different from the reduced-
m case due to the F» ' factor. The correction terms
are necessarily quite large, with the K* term
reducing the uncorrected value to 0.120m „'when
evaluated at threshold. The x term restores this
value to 0.177m, '. The result is quite sensitive
to variation in any parameter. The v=0 sum rule
also gives a'/' —a'"=0.18m, ', when the second
term on the right-hand side of Eq. (33) is taken
into account.

In Table III the combination a' ' —a"', as de-
termined in the reduced-K case, is shown as a
function of $' and 5+~ for Fz/F, = 1.22. Compar-
ing Table III with Table II pne sees that a' ' —a'"
varies by &15@along the eonsisteney curve in
the $' —5»+ pla, ne.

Increasing Fr/F„above 1.22 (or decreasing it)
makes it more difficult to satisfy all the con-
sistency conditions. In fact, it is probable that
Fr/F, cannot exceed 1.3. For Fr/F„= 1.3 the
satisfaction of all consistency conditions requires

~
F„/F„~=—0.6. Then, using Eq. (52), we find

Fz/[F„f,(0) j = 1.45, which is much higher than the
result (54) deduced from experiment.

We wQl npw calculate a / —a / using the fixed-t
dispersion relation in Eq. (31). This integral is
evaluated by means of the narrow-resonance ap-
proximation

os(s) =4m'(2 la+ 1), 5(s —m„'), (55)m, i (Z- Xv)

q,
'

where m„and I (R —Km) are the mass and partial
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TABLE III. Predictions for the S-wave, I =-,'- and 2 K7t scattering length combination
{in units of gpss„- ) in the reduced-K case with F&/F „=1.22, FK/F, =0.45, and

1/p = 1.1. The soft-kaon value is a -a~ =0.141 m „

3 .00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

0.0
-0.10
-0.20
—0.30
-0.40
-0.50
-0.60
-0.70

-0.80
-0.90
-1.00
-1.10
-1.20
-1.30
-1.40
-1.50

p.206
0.205
0 2Q5

0.204
0.203
0.203
0.202
0.202

0.201
0.200
Q.200
0.199
0.199
0.198
p.197
0.197

0.202
0.201
0.200
0.199
0.198
0.198
0.197
0.196

0.195
Q.195
0.194
0.193
0.192
0.192
0.191
0.190

0.198
0.197
0.196
0.195
0.194
0.193
0.192
0.191

0.190
0.189
0.188
0.187
0.186
0.185
0.185
0.184

0.194
0.192
0.191
0.190
0.189
0.188
0.187
0.186

0.185
0.184
0.182
0.181
0.180
0.179
0.178
0.177

0.190
0.188
0.187
0.186
0.184
0 ~ 183
0.182
0.181

0.179
0.178
0.177
0.176
0.174
0.173
0.172
0.171

P.186
0.184
0.183
0.181
0.180
0.179
0.177
0.176

0.174
0.173
0.171
0.170
0.169
0.167
0.166
0.164

0.182
0.180
0.179
0.177
0.176
0.174
0.172
0 ~ 171

0.169
0.167
0.166
0.164
0.163
0.161
0.160
0.158

0.178
0.177
0.175
0.173
0.171
0.169
0.168
0.166

0.164
0.162
0.161
0.159
0.157
0.155
0.154
0.152

0.175
0.173
0.171
0.169
0.167
0.165
0.163
0.161

0.159
0.157
0.155
0.153
Q.151
0.150
0.148
0.146

0.171
0.169
0.167
0.165
0.163
0.160
0.158
0.156

0.154
0.152
0.150
0.148
0.146
0.144
0.142
P.140

0.168
0.165
0.163
0.161
0.158
0.156
0.154
0.151

0.149
0.147
0.145
0.142
0.140
0.138
0.136
0.134

width into Km of the resonant particle, R, and
where q, is the center-of-mass momentum of K
or v. Including the K*, ~, and K„resonances, we
obtain

a&i2 a3i ={) 18~ (56)

(0.093m, ' from the K*, 0.065m, ' from the x,
0.018m, ' from the K„).

To bring this value up to agreement with the re-
sult obtained from the reduced-7t analysis, the
width of the z would have to be raised to about
800 MeV. Vfhile w'e could get a consistent solution
for this width, it mould completely saturate the
dispersion relation without appreciably raising
the reduced-K prediction for a"' —a'~. Higher
mass contributions required to increase the latter
value would oversaturate the dispersion relation
(assuming the I = 3 cross section is dominant).

An alternative is to use the low mass solution
for the I(., taking a mass of about 900 MeV. Re-
cent experiments rule out an "intermediate"
width particle, implying either a very broad,
hidden resonance or a very narrow (I'&7 MeV)
one." The narrow resonance would not saturate
the sum rule, a width of 150 MeV being required.
It seems extremely unlikely that a K meson with
this width (or one between 7 and 150 MeV) is
sufficiently broad to be hidden, as the ~ meson is
in the m-m case.~ Moreover, a width close to
150 MeV would lead to the same problems dis-
cussed above in connection with a. ~ with a width
of 800 MeV.

It is probable that exact evaluation' (as opposed
to narrow-resonance approximation) of Eq. (31)
as well as inclusion of higher-energy contribu-

o(0) = --,'m»',

o'(0) = -~~

(57)

Substituting these results, one finds that a'"
+2a' ' =0.006ypg „'for the reduced-m case. This
is close to zero, as expected from earlier theory.
Similarly, in the reduced-K ease, the same com-
bination is calculated to be 0.005m, ', which is
in good agreement with the reduced-m case. This
result is somewhat surprising due to possible
subtractions neglected in the dispersive contribu-
tions to R ', or to extrapolation effects arising
from taking the K off the mass shell in the v-term
calculations leading to (57).

IV. SUMMARY AND DISCUSSION

From the above study of on-mass-shell current-
algebra sum rules for Kv scattering several re-
sults should be emphasized.

(I) It appears certain that the on-mass-shell
current-algebra prediction for the combination
a' ' —a' of g z and 2 8-wave Km scattering
lengths is very close to its soft-pion value~ '~

of =0.21m

tions would eliminate the present discrepancy
between (56) and the reduced-v result.

a» +2a»

From the expressions for the even amplitude,
Eqs. (25) and (47), the value of a'"+2a'a may be
obtained, if o(0) and o'(0) are known. Although
these terms have not been rigorously calculated,
they may be approximated by assuming the GMOR
symmetry-breaking scheme, "which leads to
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(2) For the value of Er/F, = 1.22, favored by
the present analysis, result (1}implies that the
soft-K prediction for a'" —a'" of -0.14m„' is
in error by -30%. This provides a yardstick by
which one can estimate kaon mass extrapolation
effects in Km scattering.

(3} The K* and x contributions to the "correc-
tion terms" can raise the soft-K value of a"' —a'"
to about -0.18m „'.

(4) The present investigation implies that

Ex/F, s 1.30; not only does the soft-K value of
a'" —a'" (-0.12m„' for Fe/E„=1.3) decrease
for increasing Fx/F„but so also do the K* and
a corrections, which are of opposite sign.

It is worthwhile to expand briefly on some of these
conclusions.

The smallness of the corrections to the soft-m
prediction, upon which result (1) depends, should
hold for any z mass e1.0 GeV. A large correc-
tion could only be obtained, if, as in the nm case, '
a very broad, low-lying z were found. A z width

large enough to cause an appreciable change in the
reduced-p prediction for a' —a would greatly
oversaturate the dispersion relation for this
combination of scattering lengths (unless the
I= —,

' Kv cross section is surprisingly large), by
making the dispersive value much larger than the
reduced-n value could become.

The discrepancy between the predicted re-
duced-K value of a'" —a'~ =0.177m, ' and the
"correct" value of 0.21m, ' [result (3)] could be
erased by taking Fx/E, = 1.0. However, for val-
ues of Fe/F, & 1.10 it becomes increasingly dif-

ficult to satisfy the consistency requirements for
the K~ and g residues and widths, while still
maintaining reasonable values for other parame-
ters. In addition, we know from the fixed-t dis-
persion relation for a' ' —a'" that there may be
important contributions to the reduced-K value
that have not been taken into account. Indeed, by
approximating the dispersion integral (in the
narrow approximation) with the K*(890), a ~ of
mass 1200 MeV and width 500 MeV, and the
K„(1420}the dispersion relation predicts a"' —a'"
=0.18m, '. K parameters, such as a mass and
width of 900 and 150 MeV, respectively, which
could raise this to -0.21m„', are ruled out ex-
perimentally4' and are not: favored by the present
model. A more realistic form for the resonances,
however, would probably result in a small in-
crease. '

APPENDIX A: VERTEX FUNCTIONS

As has been previously noted, Fenster and
Hussain" have calculated the vertex functions in-
volving K*Kv. However, a„V,". (i =4, . . . , 7) is set
equal to zero in their calculations when clearly
it can be used as an interpolating field for the ~

meson. In order to include the z in our calcula-
tions then, it is obviously necessary to expand
the previous calculations. This is done by adding
four new vertex functions I which involve B„V4",
etc. , to the four functions I'which arise from the
K*. This gives a pole dependence (note here that
K* has f-type coupling while v has d-type) for
the three-point functions of the form"

l 2 2

d 'x d 'y e ""e'r'( T (8„A," (x), &, A', ( y}, V, (0)j},= if„, ,",", , b x ~ (k) I'„(q, P)'"gee(q'+m, ')( p'+mr')

'" (q'+m„')(p' mr'}r( k+m„')

m 2 2 2

d xd y e '"e' '(T(s&A,"(x},B„A~(y}, 8~V, ( 0)}) 0= d ~,
(

2 '2}( 2™m2}(k2
",

}
I'(q, p), (A2)

d'x d'y e "*e'"(T(S„A,"(x), A;( y), V,"(0)j),=f„, ';, 4r' (P)he~(k) I'„(P, q)'"gx*g. q'+m, ') 'A
A

+fabc
( 2+m 2)(p2+ 2}p Icw ) q 'qr~ p)

1l K r UgX Tf(k) I (

A

'" (q' + m „')(k' + m „')( p' + rn x
')

d'xd ye ' e ' T e„A," x), Ab(y) a), y 0) =-i ~ . . , g " p)Z'„(p, &)
A

a&c
( &+m 2)(p2+ 2)(g~ 2) I (V~ P (A4)
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d xd'ye ""e' '(T(A,"(x),Ai(y), V, (0))),
V

=if„, a"„'(q)a" (P)ib. ",'(k)I;„(q,P)-if.„,K, ,}a„" (q)h "(k)I" (q, P)

F F F v

+if„, ;, „6",'(ip}~,',"(k)r.,(p, q)+if„. . . ' '„. . . ~„',"(k)I'„(q, i)

F 0' UyX

F.F.q" k' ~" ( )~ ( )
.
d F.F F.q"0'k'

abc' (q2+m 2)(k2+m 2) KK P 0 Pi'q abc( 2+~ 2)(p2+~ 2)(k2+~ 2) ('qPP) } ( )

and

K K Z T2( }+I/c )I ( ) d K K KP g2T ZllF,m
'(~, 2) ~, q «„(P "q I — .b, (p2, 2)(k.", 2)&K, (q) .(q P)g„, +m~ +m,

F F F 2 P v

abc g (q2 + 222
2
) (k2 + 222

2
) KK ( P c P~ 'q abc

(
2 2

) ( ib2 + 2
) (k2 + 222

2
)

('q & P ' ( )

We can substitute these relations into the usual
Ward-Takahashi identities to obtain the expres-
sions for the desired vertex functions. However,
in order to evaluate the Ward- Takahashi identities,
we need to know the current divergences so that
all eommutators will be calculable. Using the
GMOR model" we obtain'

[A,'(x), A,"( y) ]5 (x' —y') = if„,V,"(x)5(x —y),

[V,'(x), V,"(y)]6(x' —y') =if„,V,"(x}5(x—y},

[V,'(x},A,"(y)]5(x' —y') =if„,A,"(x}5(x—y),

[A,'(x), V,"(y)]5(x' —y') =if„,A,"(x}5(x—y),

[V',(x), a„A,"(y)]5(x' —y'} = if„,a„A," (x)6(x- y),

[A.'(x), a„V,"(y)]5(x'- y') = f~,d„,a„A,"—( y)5(x y),
(dg

(A7)

[A.'(x), a„A,"(y)]5(x'-y')
4i=
3 (d)bdabafabd8}( Vd (y)5(x —y},

where we take" c = -1.25. Here,

&2+ c
)

~2- —,'c
~3

a=4, 5, 6, 7 (A8)

W2- c a=8.

We have seven independent Ward-Takahashi idep-
tities, assuming qV,

"4 0. They are

(p —a},Jd' d'p ' d""(T(d,d". (*),B.A(p}, V.'to))), = ifd' d'p " (p(a,d "(*)d.d';(p), "a,V. (0}).), ,

+f,~ d'y e'P'(T[a„A22 (0},a, Ab( y)])c

+f d, d'xe '~(T[5„A,"(x),a„A;(0)))„ (A9}

(p -q) i d'xd'y e ' ' '(eT(2a„A,"( ), Ax;(y}, V, (0))),= id'xd-'y e ' e'2 "(T(a„A,"(x),A;(y), a„V,"(0))),

+f„,f d' ye"'(T]&„A,"(0},A;(y))),

+f„, d'xe ' (T]5 A."(.
2. ), A;(0)j), , (A10)
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(y-V). f d'"d'ye '"e'"(y(d!(*),dl(y), V.'(t))}).=— d'x d' ye ""e"'(T(A,"(x),A;(y), a„l',i(0)),

+f„, d'y e' '(T(A," (0), A,'( y)j)a

+fid, d'xe ""(TI(A,"(x),A;(0)))a, (A11)

d' d'y '" ""( (yde," )td ty), V,'(t))}),=e f d'*d'y '" ' '( t yde."t ), e,d ty), V,"(0)}),

.d—. f.f. d, '.y ""(yte,v'(y), v.'(o)})

f~,d
—d dx e ""(T(S „A," (X), Ad (0)))a, (A12)

d' d'y ' e'"(T(ed. t 1 d(y), e, v,'(0)}),= 'f d *d y''" '''(T(e, d( l, ed (yl e v, (0)}),

adyaefeaa d ye'" T ~„V~(y ~ ~qVc 0) 0

fcsedbed d +e T ~ pAa (+) ~ yA4 0 0
COg

q& d xd ye ""e'~' T A,"(x),A~(y), V, 0) 0=-i d xd ye ' "e'~ T 8 A" x, A& y), V, 0

+f. d'y e'"(T(l'l(y), I".(0))).

+f d d y e' (Tyy(A", ( y), A (0d))) , a (A14)

and

q„d xd ye ""e'~' T A," x), Ab y, 9&V," 0) 0=-i d xd ye ""e' ' T B„A,"(x,A~ y), &&V, (0)

+faM d' ye'" T V~ y ~~&Vc( 0

+ fcsedaef1 d y e' T A& y ~ ~&Ac 0) or
(dg

(A15)

where k=p —q.
As it turns out, the I's and I"s separate into two sets of equations, and the I"s retain the same form as

was calculated by Fenster and Hussain for K*. Since we have not made such strong assumptions as they
have (e.g. , E, =Fz), then the functional forms of our vertex functions will be somewhat different, as shown
below. Additionally, once a two-point function for the vector current and its divergence has been evaluated
(analogous to the expression in Fenster and Hussain for the axial-vector currents) the I"s can be solved.
The values for those vertex functions which will be of use in our calculations, are given below. Thus,
afte r c onside rable algebra, we have

1 2

I', .x(e P)=
2

'* '"+ "' [g„.(P+e)x+(2+5K*)(g,x). g..&, ) g, k&. R.-xq, j, --
gE+ gA I g EA

(A16)

Tay)(P q) = 2(q (P+dfa) )+(2+v~x )[(f )&d(yq a~)gay)l —Cy)Pa —q gat))+ 2 [(P ™z„)gay)—PaP))iy (A17)

where

mE+ 2 2

m (g g ) 4 E E AI Ai) & (A18)
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and

with

2m~~ C~g
1if2

E,m~ C~„
(A19)

and

c=~
0 2

'a
(A20)

1;,(q, p) = ~ [(p +2m» '+q }g„—p, p —q, q ] — " [(p'+q +2m„')g —p, p —q, q ],2PE„g 20+KgA,

where P =+i =(f,~,/d, ~,}»+„+,0 „,~ obviously
l
Pl' =1 so it will disappear from the calculations. Also

r.(p, q) =d(p, q)q. +e(p, q)p. ,

where

(A21}

(A22)

A mA mg mgA 1 A A

2+ F C+A mA 1 A
mg

A

2 m'-
X» = — (u» "2 = 6.369,

c 3 ™»

{A23)

(A24)

(A25)

X„= &u, ", = -6.690.2 mK

c~3 m,

We can obtain 1",(q, p) from the above by substituting» —K, A, -K„, p- -q. Finally,

(A26)

1'(q, p)= 2F / F ( (f-, -c „}(p q) 2F.'[(p q)+-HX p']'f. - (A27}

To go from our results to the corresponding ones
of Fenster and Hussain one must multiply by 2 be-
cause of different normalizations.

since the latter contain no K pole. Hence, multi-
plying both sides of Eq. (A3) by (q'+ m, '}(k'+ m»*')
and taking the limit q'--m, ', k'--mz*' leads to

APPENDIX B: CALCULATIONS FOR REDUCED E
AND REDUCED n

The K* and g contributions to the correction
terms will be evaluated using the results of Appen-
dix A. For the reduced-K case the matrix ele-
ments {»lA lK*) and {»lAl») can be obtained from
Eq. (A3) in terms of the vertex functions 1 „,and

I'„, respectively. These vertex functions have
been determined by means of Ward-Takahashi
identities and are given by Eqs. (A17)-(A20) and

(A22)-(A26). The corresponding reduced-» matrix
elements can be obtained from these expressions
by making the changes K —m, p ——q, K —A„etc.

We note that the second and fourth terms of Eq.
(A3) do not contribute to the matrix elements of A,

(2»)'(2q 2k )'~'{v,(q) lA~(0)lK,*(k))

1=f.~ &»"*(k)&»'„(p) 1'.,( p, q),

where c~~ is the K* polarization vector and

p =k —q. Similarly, simultaneous projection of the
m and g poles gives

(»)'(2q'2k')'" (s.(q) I &i(0}I ».(k) )

id.„s»-"( p) r „(p, q) .abc g EA
A

Substituting back into r ""[Eq. (21)] we have the
following contributions.
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For K*:

r"' „=-» f,f„, , eg (k)b, "'(p)I' „(p,—ps)e»~ (k)a»' (q)I',z(q, —p )5(s+k')1

Vo~ «A

f~ f &
s»~ (-k'}A» (q)I' z(q, Ps)e»~+(-k')6& (P)I' &(P, P )6(u+0 )

~EA Po

where k=q+p~=p+pz and k'=-q+P&.
For a:

&,",' „=-w dN, d a» (p)1'&(p -ps)s»'(q)1', (q, —p )5(s+k')
A

+» d„,d„, .~,"'(q)1',(q, ps)&","(p)r„( p, p)&(u+k") .

We can now evaluate the absorptive part in terms
of p, q, p, ps, by using Eqs. (A17)-(A 20) and

(A22)-(A26) and then change variables to P, Q, b. .
Integration over s and u in the dispersion rela-
tions will then yield A, . . . , C4. Defining NE* and
N', as

and

J5 =H~ —H, +H3 -H7+H, o &

Je = -Hj. +H2 H3+H4 Hs+He +H7 —H8+ &9+Hlo &

J, =H„.

1 1
NE* =

mEg —S mEg

1 1
K 2 + 2m, —s m, —u

we have for the K* contribution

c+) L +
A. = —J NEg,

(y)8, = —J2NEg,

(&) LB = —j NEg,

-(.) = —J4A Eg,

If we define

and

8i =-d- d6»*+ s — s (p. k),dmE d5Eg
mE mEA A

8, =e(m»„'-m»')+dX,

1=2ps k+6 *(ps'k)+m. ',

6),dr d'z'
e, =8,'(p .p, )+2 ', (p p, )+ .(p q}

mE mE
A A

where d and e are given in Eqs. (A18) and (A19},
then

.(*)
C2 = —J5NEg, + ', (k p )'+ 2', (k.p )(k. q)

mE+ mE mE+

(&)
C3 = —JeNEq,

and

(~)
C4 =

16JVNE*

where

-gICAL=-
(mE

' —mE')' '
A

and where

J, =H-, +He+H9,

J2 =H2+H3,

J, =H4 -H5+He+He —Ho,

J4 =H, +H7+H, o,

d A.

mE*' mE* mE

dh8, 8,'+, ' s(k p}+
mE mE+ mE+

d 5EgA,
H, = —8,d6»g(p~ ~ ps) —,(p ~ p~)

mE
A

— -'- '*(k p )' ' .(k p.)
mE+ mE+

, (k p)(k p.)+ 2
' .(k p)

mE mE+ mE mE4
A

d5»t 82
(k g

82

mE~' mE*
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H, =6,&, ,

d'5~~A.
H, = d&„-6,(p„p,)—,(f &.q)

mg
A

A(' = —d N'
4 K K

(~)B, = —dKhKNK 7

8, 'i = —(d„k „—d„'}H'„,

JC

(k ~ pg(k q)
mjf mg +

C(k) g 2NW

4 K K

d8ag8~(k ~ 6, 6~
(k )

8~'

mug my 4

mph'

d2$ 2

H, =d'& *'(P. I, ) '*, (k P.)'
m@0

2d5~g 6, („) 6,'
mg+ mgQ

dA. 8,
H = -d&~+ 0~, H~-

m gA

H„= 6, 62+ (k q), H = -d8 8, ,
e,dh

mg~ mg+

6,dA, S~d&
Hlo 2 + 2 2 (k 'q) ~ Hll 62

m m

For the z contribution

where d„=d(q, -p ), .

e„=e(q, -P ),
and

(qpg m'
)+A A

d(q, -p } and e(q, -p ) may be obtained from Eqs.
(A22) and (A24), respectively.

The corresponding correction terms for the
reduced-n case can be obtained from the above
expressions by interchanging the labels K—m

and K„—A, .
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