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The question of the M =2 selection rule in weak nonleptonic decays is studied. We assume
that the weak amplitudes of the form (o.

I Z~I0) obey unsubtracted dispersion relations in the
momentum-transfer variable s = p and that they obey Holder's condition in s except at pos-
sible poles. Using unitarity, the determination of the weak amplitudes is transformed into
solving a Hilbert problem. This in turn is transformed into a system of Fredholm's integral
equations. The number of solutions is discussed, and the solution which satisfies our assump-
tions is found to be unique and can be expressed in terms of the strong interaction S-matrix
elements. Weak amplitudes which possess a pole, namely the PC-conserving parity-violating
bI =2 interactions (poles E' and K ) and the parity-conserving ~I =-,' interactions (poles &0

and K ), are shown to be consistent with our assumptions. The other ~I amplitudes either
vanish or do not satisfy unsubtracted dispersion relations.

I. INTRODUCTION

It is well known" that the M= & selection rule
is in good agreement with experiment for the
&S =~ 1 nonleptonic weak decays. The few percent
deviation from this selection rule, namely in
K'- m'm' and E- 3n decays, ' may be considered
as an electromagnetic correction to the weak
interactions. ' ' The existence of a &= ~ part in
the fundamental weak Hamiltonian is another pos-
sibility.

From the theoretical point of view, the origin
of this selection rule is an open question. In the
usual current-current form of the weak inter-
actions with currents belonging to an SU(3) octet.
or in the charged intermediate vector-boson
formulation of weak interactions, both the &=-,'
and the M=

& transitions (the octet and the 27-piet
parts, respectively) may occur with the same
order of magnitude. Thus, in order to explain
this selection rule, two alternatives may be en-
visaged. ' Either one must assume that the ~=-,'
amplitude is enhanced and/or the dd= & amplitude
is suppressed'9 (octet enhancement) or one must
add neutral currents to the theory (or equivalently,
the appropriate neutral intermediate vector bo-
sons). There is no firm experimental evidence
for the existence of neutral currents. The octet
enhancement must be a dynamical effect of strong
interactions.

Current algebra offered a hope of solving the
problem of octet dominance by the current-cur-
rent model of weak interactions using SU(3)
x SU(3) current algebra and the soft-pion limit.
This approach was only partially successful. "
In particular, it failed to explain the M= —,

' rule
for the I'-wave baryonic decays and the smallness

of A(Z', ) which is necessary in order to complete
the proof of the ~=-,' for the ~' wave.

In this paper, we discuss this problem without
assuming a specific model for the weak inter-
actions. 'We decompose the weak Hamiltonian
into a parity-conserving part K ' and a parity-
violating part X„, each of which is in turn de-
composed into M= &, &, etc., parts,

~(&) ~(~)i/2 +, ~(&)3/2 p. . .
IO Q) K y

and we make the following assumptions:
(a) We assume that all particles are spinless.

This allows us to represent the weak amplitude
of any process by a single function of the kine-
matical variables. %'e write

(~ Ix""
I 0) = F '&'(s, t„), (2)

where I u) stands for any state of particles, s
= (P„)' is the square of the total energy in the
center-of-mass system of the particles in the
state In), and t„st andfsor all the other kine-
matical variables needed to specify completely
the state I n). This assumption allows us to sim-
plify the mathematical analysis. In the case of
particles with spin, we must introduce the ap-
propriate operators and spin-wave functions. The
physical amplitude corresponds to s =0.

(2) The weak amplitudes Ei'u are analytic func-
tions of s for fixed values of t . Their singu-
laritiesarepoles corresponding to scalar particles
of the same parity and isospin as X('~ and a cut
along the real-s axis starting at the threshold of
the multiparticle states. The discontinuity across
the cut, Abs&~'~, is given by the unitarity re-
lation:

12 1465



1466 T . BE CHE RRA WY 12

AbsEt'v(s, t„)= 2(2v)4+ 5'(p„—p, )

x & o I
&'

I j ) & j I&'sl o&

= 2(2v)'P ~'(p p&-)

IF (s, t„}—F„(s', t ) I~M
I
s —s'I",

I T„s(s, t„s}—E~s(s', t„s}l«MI s —s'I
(4)

for any pair of variables s and s' except at the
poles. This implies that + and T z are continuous
in s and bounded by a polynomial of degree less
than m at infinity. If m-1, the derivatives of +
and T 8 with respect to s are constant, and this
does not correspond to the physical situation of
functions with a cut. Thus, we assume that m& 1.
Then E satisfies a dispersion relation with at
most one subtraction. We write

E (s, t )=F (s, t„)
1" ds'

+ —J, . AbE (s', t )

where T~'&" is the strong-interaction transition
amplitude for j- n in the even- (odd-) parity state
and isospin state I. We assume that this is a
known function of the variable s and the other
auxiliary kinematical variables t~ needed to
specify the states a and j. In our notation, par-
ticle states labeled by a Latin letter (j) represent
multiparticle states, while Greek letters (o) rep-
resent multiparticle states as well as the single-
particle state which we label by a if the particle is
on-mass-shell and a if it is off-mass-shell.

(3) The weak amplitudes Ft'S and the strong-
interaction transition amplitudes T~„'g are assumed
to satisfy Holder's condition in s except at the

poles. This means that some positive constants
M and m exist such that

s, it must vanish. In the case of the CP-conserv-
ing parity-violating hl= 2 interaction, the K (or
K ) is the pole, and in the case of parity-conserv-
ing Af= —,

' interaction, the ~' (or Ko) resonance may
be a pole. In these two cases, the weak amplitudes
+ ""'are found to be related linearly to the pole
term. In the cases M=&, 2, etc., no scalar par-
ticles or resonance are known to exist. We de-
duce that the & ~

& weak amplitudes either do not
exist, or, at least some of them, must obey sub-
tracted dispersion relations. In such a case, the
unsubtracted amplitudes may be related to the
subtraction constants and may thus be arbitrary.

In Sec. II we reduce the problem of determining
the weak amplitudes to that of solving a Hilbert
boundary-value problem. This Hilbert problem
is studied in detail in Sec. III by solving first the
corresponding homogeneous problem and then the
inhomogeneous one. The solution is found to be
unique if it satisfies our assumptions.

Our result bears some similarity to an earlier
work of Nishijima. " In that work, an eigenvalue
problem for strong interactions is obtained for
each set of the weak amplitudes satisfying the
selection rules ~= 2, 3, etc., when assuming un-

subtracted dispersion relations for the weak
amplitudes combined with the unitarity and charge
independence. The existence of the M= ~ ampli-
tudes gives some relations among the strong-
interaction coupling constants and leads to the
vanishing of the &=2, &, etc., amplitudes. Other
works must be mentioned in this context:
Riazuddin" and, independently, Katz and Tatur"
have used the unsubtracted dispersion relations
for the weak amplitudes in a technique similar to
that of Li and Pagels" in order to derive some
conditions on the strong interactions and the octet
dominance of nonleptonic decays. Our approach
is completely different from those cited above
although we arrive at a similar conclusion re-
garding the weak amplitudes for the various values
of M.

in the case of unsubtracted dispersion relations
and

F (s, t„)=F.(O, t„)+F (s, t„)-F (O, t.)

+ —, . —,AbF (s', t )
s ds' 1

F S —S —tt 6 S

in the case of one subtraction made at the physical
point s = 0. & is the possible pole term.

The main result of our analysis can be stated
as follows. If the weak amplitude +~'" has no pole
and obeys an unsubtracted dispersion relation in

II. THE HILBERT PROBLEM FOR THE WEAK

AMPLITUDES

The unitarity relation (3) relates only the weak

amplitudes of the same parity and isospin. This
allows us to study the problem of all the ampli-
tudes of the same parity and isospin separately.
In the following, the parity and the isospin indices
and the explicit dependence of the amplitudes on

the auxiliary variables t~ are omitted. The uni-

tarity relation (3) can be written in the form

Abs F (s) = -,' Q M, (s)&,(s),
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where we have defined the strong-interaction S-
matrix elements by

S~s =5~s-™s

M s(s) = (2)t)'5'(P„Pt-)) T„s(s) .
(8)

E (s) =E (s) + )P'„'(s) (i6)

on the real axis from the upper (or the lower) half
of the complex z plane, respectively. The weak
amplitudes E~(s) are related to Q ')(s) by Eq. (10)

The summation which includes the phase-space
integration over the states j makes both sides of
(7) and all equations where state summation is
involved depend on the same kinematical variables
s and t. The dispersion relation (5) may be
written in the form

S'„)s)=S'.(s) —P f, '
. n4(s')S's(s'),

where s, =(Qm, )' is the threshold of the state I j)
and the pole term F (s) is of the form

E„(s)=g /(t '-s), (1O

where g depends on the auxiliary variables t
We assume that the contribution of the particle a
to the amplitude of the same quantum numbers is
of the form (10) whether the particle is stable
(p real) or unstable (p complex with a negative
imaginary part -iI', where I' is the width of the
resonance). The resonance is treated, in this
context, as a state different from the multiparticle
states to which it may decay.

The meaning of the residue g becomes evident
if we consider the contribution of the one-particle
state to Abs E„(s). We find

w5(s —p')T (s = I' )F, (P =P, ),
where &, is the one-particle weak amplitude

and the discontinuity of )P (z) on the real axis is
given by

)t)"(s) —)P '(s) =i Q ~(s))P~'(s)8(s —s, ), (17)

where we have defined

f„(s)=i g M . (s)F, (s)8(s —s, )

(19)

which are known functions in terms of gf and the
strong-interaction transition amplitudes.

In the case of the one-particle state, the weak
amplitude (12) is generalized to off-mass-shell
particle a in a way similar to the pion decay form
factor, "for instance, to become

(s(p) I&. I 0) =E (P) . (2o)

Then (18) gives the discontinuity of Q, (s) along
the cut.

We define the G matrix by

or, using Eq. (16),

y"(s) —y'-'(s) =f (s)+ ig ~(s)y, ' (s)8(s —s, ),

(18)

(12)

and the contribution of (li) to the dispersion in-
tegral is given by (10) with

g, =F, T, (s=t ') (P. =P. ).
Let us define the sectionally analytic function

Q„(z) = —g ~(s)E, (s)8(s —s, ),
1

"
ds

G„(s)= 5„—iM„(s)8(s —s, ),
GI (s) =0,

G, (s) = -iM, (s)8(s —s, ),
G ~ (s) = o

This allows us to write Eq. (18) in the form

G(s)y"(s) —0' '(s) =f (s) .

(21)

(22)

where the integration has been extended formally
to the whole real axis as the absorptive part due
to the multiparticle state I j) vanishes for s& s~.
This fact is made explicit by the step function
defined as

8(s —s, ) =0 if s ~s,
=1 if s&sf .

(z) has a cut along the real axis starting at the
lowest threshold s~ up to ~. Let Q~ (s) [or )P~ (s)]
be the limits of )P (z) as z approaches a point s

The problem of the determination of the weak
amplitudes E (s) is equivalent to finding Q (z)
which are analytic in the cut z plane and which
satisfy the inhomogeneous Hilbert boundary-value
problem (22) on the real axis with the supplemen-
tary condition at infinity

y(z) =o.
The matrix G(s) as well as the functions f(s)

satisfy Holder's conditions except, perhaps, at
s= p. '. However, if the particle a is stable, we

have necessarily p. '& sf for any multiparticle state
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~ j), and f (s) as given by Eq. (19) vanishes below
sj . Similarly, G„~ becomes identical to 6~8 for
s& s&. Thus the point s = p.

' is not a point of dis-
continuity for f„or G &. In the case of an unstable
particle a, the corresponding pole lies off the
real axis. Ne conclude that in both cases, G„q
and f satisfy H51der's condition on the real axis
by virtue of our assumption (3). Consequently,
the classical methods of the study of the Hilbert
problem with continuous coefficients can be ap-
plied.

It is easy to verify that

G„8(s)= 6 8 f M—„&(s)8(s —s 8) . (24)

In the following, the matrix elements G 8 appear
only acting on functions in the form G~gQ ~. In
such a sum over intermediate states, only those
with s& s6 contribute. This makes G 8 completely
identical to the S-matrix elements. Hence we are
able to generalize it to complex values of s.

The inverse matrix of G exists and it is given by

(25)

borhood of
~
z

~
=R.

In order to solve the inhomogeneous Hilbert
problem (26), we solve first the homogeneous
problem obtained by taking f= 0,

G(s)$~' (s) -P (s) = 0 on I',

with the general condition at infinity

q (z)-y (z), (28)

A. Transformation of the Hilbert problem to a system
of integral equations

Using Cauchy's theorem, we may write

dz
ttI(z}= . , g '(z'), zED'

22r r Z-Z

where y„(z}are polynomials in z. For this, we
transform the Hilbert problem (28) into two in-
tegral equations which may be solved. Once the
general solution of the homogeneous Hilbert prob-
lem is known, the solution of the inhomogeneous
problem is easy to obtain.

This shows that G (s) is identical to the inverse
of the strong-interaction S matrix [Eq. (8)] . In
the following we shall identify completely the G

matrix with the S matrix.

0 = . , j'&(z'), z D-1 dz' - ~

g(z)=r(z) 2. -, j' &(z'), z~D1 dz' "( )
(30)

III. STUDY OF THE HILBERT PROBLEM

The Hilbert problem for several unknown func-
tions has been studied in the case of a contour
which bounds a finite and connected region in the
complex z plane. "'" The case of an open contour
may be reduced to the previous case by completing
the open contour by a curve on which G 8

-=5
~ and

=0.
Let I be the part of the real axis situated be-

tween -R and +R, where R has a large but finite
value. We close L by the semicircle C of radius
R in the upper half of the complex z plane. Let
I' be the union of C and L, D' be the region
bounded by 1", and D be the complement of D'
+ L in the entire z plane (Fig. 1). It is evident
that the solution of the Hilbert problem (22) is the
limit of the solution of the following Hilbert prob-
lem:

1 dz I0=r(z) — . , y&-~(z'), z~D' .
227T p Z Z

In particular, for s real, we obtain

(31)

i' '(s) =27(s)- —. y' '(z).P dZ
277 T Z -S (32)

Using Eq. (28), we may write Eq. (32) in the form

G(s)4 "(s)=2r(s) ——. G(z)4"(z) (33)
27T p Z-S

G(s)P ' (s) —@ (s) =f (s}, on r
where

G=G, f=f if sE- L

G=1, j=0 if saC or ~s~&R.

(26)

(27)

-Rj
~ ~ & ~ ~ ~ ~ ~ ~ t

p(-)

+R

Furthermore, the matching at z on the circle C

may be made smoothly in such a way that G~~ and
j„always obey H61der's conditions in the neigh-

FIG. 1. Transformation of the Hilbert problem on the
real axis to the HQbert problem on I = C +L, . On I.,
we have G~& = G~& and f~ =f~. On C and for s real and
such that (s~&&, we take G~&= 4~8 and f~=o.
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This may be combined with (31) to obtain the in-
tegral equation

tt "(s)=G '(s)y'(s)

+ —. [I —G '(s)G(z)] j"(z)
27' r z —S

N s(s, zl= f Ns 'Is, )N(, *)zz

du, du~, N s,u,~ ~ ~

~ ~ ~

r
x N(u„u, ) ~ N(u „z), (41)

Similarly, we find the equation for P to be

P' '(s) =y(s)

P dz
G )G' —1$

(35)

G(s)4 "(s}—j' '(s)

G s G-'z)-1

x[G(z)g"(z) —0'-'(z)] . (38)

This implies that g(z) is a solution of the Hilbert
problem if the integral equation

Q(s) = . [G(s)G '(z) —1] P(z)2zF r z —s (37)

has only the trivial solution $=0. This will be
discussed later.

B. Study of the integral equations

Let us study the integral equation (35}. It is of
the weakly singular type of the form

%e have shown that every solution of Hilbert's
problem (28) satisfies the integral equations (34}
and (35). Conversely, if P'~ and P ' are solutions
of (34) and (35), respectively, we have

P-I
y '(s) = y(s) + g V dz N ' (s, z)y(z) .

r
(42)

0' '( )=y'"(s) J ats z z')zysyz)zs*
D(PD )

(43)

where D(X~) is the Fredholm determinant and b.
is the first Fredholm minor. D(X~) and A(t, z, X~)
can be written as power series in (A. }"which are
convergent for any X. The solution (43) has a
meaning only if D(X~) &0, in which case X~ is said
to be a regular value of N~~(t, z). In our case
X~ is equal to 1 and we assume that this is a reg-
ular value. This condition is sufficient for the
integral equation (35) to have a solution and this
solution is unique (Fredholm's first theorem).

On the other hand, if A~= 1 is a regular value of
N~~(s, z), Fredholm's second theorem states that
the homogeneous integral equation (37) has only
the trivial solution Q =0. This completes the
proof of the equivalence of the Hilbert problem
(28) with the asymptotic behavior (29) and the in-
tegral equations (34) and (35).

C. General solution of the homogeneous Hilbert problem

If, for instance, n(s, z} is bounded on I', the
(P —1)-fold iterated kernel N~~~(s, z) is bounded by
c/(z —s}~+' ~. This shows that if p& 1/(1 —r},
N~~~(s, z} is regular.

The solution of Eq. (40) is well known. " It is
of the form

j' '(s) =y(s)+ & dz N(s, z)y~ '(z}, (38) In the case X~ = 1, using (42), the solution (43)
may be written in the form

where the matrix kernel N(s, z} is given by

N(s, z) =, [G(s)G-'(z) —I]2l lT z —S

n(s, z)
(z —s)' (39)

where r& 1 and the constant A, is equal to 1. This
equation may be iterated to become less singular.
The (P —1)-fold iterated equation is

ii' '( I y'"( ) z' f s*zz's(s,+zIp'=-'IzI, (zo}
r

where we have defined

'(s) =y(s) + dz X(s, z)y(z),

where we have defined

0-I
1

X(s, z)=g N~'(s, z}+ n. (s, z, 1)
q= I

1
P- I.

+ Q dun (s, u, 1)N(u, z) . (45)

Ne may look for solutions of the Hilbert problem
(28) of three types:

(a) Solutions sehich remain constant as z- ~.
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(0)=6 + I 000i 0(s, a). (47)

These correspond to y equal to constants in (44).
Assuming that the number of weak amplitudes is
finite n and taking for y the special value given by

y )=(0, 0, 0, . . . , 0, 1, 0, . . . , 0)

(46)

which corresponds to the solution p satisfying
~-1 and $~8 -0 if a&p, we get for spch a

solution

G(s)X"(s) =X (0} on I'. (51)

Assuming that the inverse matrix X ' exists, we

may write

G(s) =X'-'(s)[X"]-'. (52)

D. Solution of the inhomogeneous Hilbert problem

Using Eq. (52), we may write the inhomogeneous
Hilbert equation (27) in the form

[X 'Q]i' —[X 'Q]( '=[X ']' 'f on I . (53)

The general solution of the Hilbert problem (28)
which remains bounded at infinity is a linear com-
bination of such solutions; i.e.,

This has the general solution

dx-'(z) j(z) = . ,
' [X&-&(z')] 'f (z')-

y(-) —Q C y(())

8

=C~ +C() dz3l„t)(s, z),

where C are arbitrary coefficients.
(5) Solutions which vanish at infinity. Let us

consider the solutions which behave like

(48)

+ P(z), (54}

where P(z) is an arbitrary polynomial. We may
write also

0(z)= . F(0)J", (Fi-'(*')] '&(*')
2ir Z Z

+ X(z)P(z) .

P„(z)-z ', k&0. (4&)

If the homogeneous Hilbert problem (28) has such
a solution, then any function of the form P(z)(t) (z),
where P(z) is an arbitrary polynomial is also a
solution. Particularly, the functions P,
z|I},. . . , z" 'g are solutions which vanish at
infinity. We deduce that the functions ]}) (s),
sg~„'(s), . . . , s' '(])(~'(s) are solutions of the inte-
gral equation (35), which is equivalent to the Hll-
bert problem, but with y =0. However, this be-
comes identical to the integral equation (37) for
which we have no solution [if X~=1 is a regular
value of N~'(s, z)]. We deduce that the homogen-
eous Hilbert problem (28) has no solutions which
vanish at infinity.

(c) Solutions which have a polynomial as prin-
cipal value at infinity. Such solutions are given
by (44) with y (s) equal to the principal value of
|I}„atinfinity.

We deduce that, within our assumptions, the
most general solution of the homogeneous Hilbert
problem (28) is given by Eq. (44) with y„(s) equal
to an arbitrary polynomial. The solutions which
have the lowest principal values at infinity cor-
respond to y equal to constants. The n indepen-
dent solutions (47) form the fundamental system
of solutions. We define the fundamental matrix
X by

Taking the limit R- ~, the Hilbert problems
(27) and (22) become identical and the solution of
(22) is the limit of (55) as R- ~; i.e.,

4 (z) = . x(z), ' [x&-'(z')]-'f(z )2i 1r Z Z

+ X(z)P(z) . (56)

+ 2. X"(s)P [X' '(z)] 'f(z),
2g7r Z —S

(58)

or, using Eq. (19), we get for the physical am-
plitude (s =0}

P (0) =F (0)

As z- ~, X 8- 6 8 and the contribution of the
semicircle C to the integral in (56) vanishes if
f„(z), i.e., the strong-interaction transition am-
plitudes, vanish at 'infinity. The supplementary
condition Q(z)-0 as z-~ is satisfied only if the

arbitrary polynomials P(z) in (56) are taken to be
identically zero. Thus the solution of the Hilbert
problem (22) which vanishes at infinity is given by

oo

4 (z) =, . X(z), [X'-'(')]-'f(') (57)

and the weak amplitudes (16) become

E(s) =I(s) +-,' G '(s)f(s)

x (s}=(}(s~(s).

This obeys the Hilbert equation

(50)
X )(0)FJ (Ã ( )]p Mg( )Fg( )

Sg
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IV. CONCLUSION

%'e have shown that the solution of the Hilbert
problem (22) is unique and is given by Eq. (59)
in terms of the pole term E if such a term exists.
If there is no pole term, the Hilbert problem (22)
becomes homogeneous and our discussion of Sec.
III shows that this problem has no solution which
vanishes at infinity, and the weak amplitudes
either do not exist or they must obey subtracted
dispersion relations. Thus, only the weak am-
plitudes which have a pole term are consistent
with the assumption of unsubtracted dispersion
relations. This is the case of the M=-,' parity-
violating amplitudes (K' and K' poles) and the
hl= —, parity-conserving amplitude (~' and K

poles). The other isospin transition amplitudes

either do not exist or they must obey subtracted
dispersion relations.
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