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Making use of chiral SU(4)SU(4) and scale-symmetry breaking together with a saturation we obtain limits

for the charmed-pseudoscalar-meson masses. These limits only allow charmed (C = + 1) pseudoscalar states
with masses below 2.5 GeV. The existence of such states with masses above 1.5 GeU would imply strong
restrictions on the theory: 8 has at least dimension l~ = 1, u has at least dimension l„=2, and the a mass is

higher than the upper limit noted in the Particle Data Group table. If the masses of these states are above 2
GeV, it furthermore follows than l„=3 and l~ = 2. Assuming the Gaillard-Lee-Rosner relation between the
masses of the vector mesons and the quarks, identification of the Q(3, 1) with the 4t), implies l„=3, lz

——2,

m, =0.92 GeV, I,-0.42 GeV, and mD = 2.2 GeV. We have assumed integer dimensions. We have furthermore

assumed that the effective m, is not much above 0.9 GeV.

A simple extension of the Weinberg-Salam model
to include hadrons requires the existence of charm
as a new quantum number of the strong interac-
tions. ' One is thus led to SU(4) rather than SU(3)
as the fundamental symmetry of the strong inter-
actions. Since the masses of the charmed and

noncharmed particles are considerably different,
it is clear from the outset that this symmetry is
broken in the real world. Assuming that the SU(4)
symmetry-breaking Hamiltonian density trans-
forms as the sum of a singlet and the eighth and

15th components of an SU(4) 15-piet, SU(4) mass
formulas then follow in analogy to the Gell-Mann-
Okubo mass formula for SU(3). [These SU(4) mass
formulas have already been noted in Ref. 2. I In

case of the pseudoscalar mesons we will recover
these mass formulas in the context of broken SU(4)
8 SU(4) symmetry and turn our attention to the
breaking of this larger symmetry.

In analogy to broken chiral SU(3)8 SU(3), it is
appealing to consider the situation in which all the
pseudosealar mesons are Goldstone bosons in the
symmetry limit. In this way one is able to formu-
late and deal with broken SU(4)8 SU(4) in precisely
the same way as chiral SU(3) 8 SU(3) has been
dealt with in the past. Since there are at present
several experimental indications' for a new class
of particles the enlarged multiplets as required
by SU(4) might actually exist. We will take this
point of view in the present paper and start by
writing the ehiral-symmetry-breaking Hamiltonian
density u as

contained in the (4, 4) e (4, 4) representation of
SU(4) 8 SU(4). [As is well known, such a symmetry
breaking follows from assuming that SU(4) 8 SU(4)
is perfect except for a quark mass term. ] Fur-
thermore, we denote by Q, through Q» the 16
pseudoscalar densities in the representation con-
sidered. Previous treatments of the assumption in

Eq. (1) will be discussed after establishing our re-
sults. It might be obvious that within the present
scheme additional assumptions are required to ob-
tain information on the masses of the charmed
pseudoscalar mesons. For example, one might
arbitrarily require a certain transformation prop-
erty of the symmetry-breaking Hamiltonian density
under subgroups of SU(4)8 SU(4). However, we
will not take this attitude in what follows. Rather,
we investigate the possibility that along with brok-
en SU(4) 8 SU(4), a theory of broken dilation sym-
metry may be formulated. In this way the conven-
tional ideas' ' already contained in the literature
concerning scale symmetry breaking may be taken
over to the present situation. In other words, we
assume that there is a Goldstone e meson state
which is responsible for the breaking of scale
symmetry. Furthermore, we continue to assume
that scale symmetry is broken by u as well as by
a possible q-number 5, both of which are assumed
to have a dimension. These assumptions then
yield restrictions on the masses of the charmed
pseudoscalar mesons.

We start by noting that from Eq. (1) it follows
that

u(x) =o,{x)+c,o,(x)+ c„o„(x),
where v, through 0 „denote the 16 scalar densities

2 2
—2(2P /2 (2a)
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1 2m~'+rnid' —3mD'

m 2+mD2 (2b)

4m~2 —3m, 2 —m„' =0,
2 2= 2 2

mD —OZP = m —02

(2c)

(2d)

2 2 2 y 2 3 2m„' = —3m„+;m~ + ~2 (2e)

In the above mD and m~ denote the masses of the
I =-,'-, S=O and I=O, S=~1 charmed mesons, re-
spectively, while m» denotes the mass of the state
corresponding to the I= 0, F= 0, 8 = 0 15th com-
ponent of 8 "A„. No assumptions concerning its
mixing with q'(958) are made here. Equations
(2c)-(2e) have already been derived in Ref. 2. The
method of that reference is, however, not appro-
priate in the context of broken scale symmetry.

A simple derivation' starts by assuming SU(4)
in the form

computation yields C~ ='-,' for the (4, 4)(4, 4)
model. Note that, of course, there is also a corn-
pletely pedestrian method to check Eq. (7) in our
model: Compute the v terms and add them. For
our purpose it suffices to check the vacuum ex-
pectation value of Eq. (7) under the assumptions
in Eq. (6).

The reader should notice the important result'
implied by Eq. (7}: Independent of the model of
chiral-symmetry breaking, ( —u), is positive.
This has interesting consequences for broken
scale symmetry [Eq. (10)]. We may now get an
expression for (u&0=&oo&o by using the fact that to
lowest order in SU(4}SU(4) the Goldstone pion
saturates ([Q„',B&A„'])0, so that

(v 3 + v 2 c„+c„)&o, &,.

and

&A~A„(x)~P &=lf5,eP„e
'"'*

&0
~ y (x)

~

P~&= 6„,re "*

(3)

(4)

This has the consequence

2' f'm, '
—(u)0 =0=~3+ v2 c, +c„ (9)

f'mn' = —f& [Qg, 6"&„1&,
and the SU(4) assumption

&c, &, =(o„&,= 0

(5)

(6)

which hold to lowest order in SU(4}SU(4}.
We also note' that the symmetry-breaking

Hamiltonian density u may be expressed in terms
of the pseudoscalar meson a terms by means of
the formula

([Q"„a&V "]+[Q„",s A"„]),
R

(7)

with Cs the value of the SU(4)@SU(4) Casimir
operator C2=—Q„[QrQ"„+Q„"Q„"}in the irreducible
representation of SU(4) I3SU(4} and parity. Equa-
tion (7) follows by first noting that s "Z„=i[Q,u],
so that the expression in Eq. (7} represents the
action of the Casimir operator C, on u. The
result then follows by noting that C, has the same
value in the (m, u) as in the (n, m). Since C, is a
positive operator it thus follows that CR is also
positive. In the case at hand a straightforward

where P" denotes the SU(4) 15-piet of pseudoscalar
mesons. Upon multiplying Eq. (3) by S" and com-
puting ~ "A„ in terms of the Q by use of the usual
formula I[@,u] =8 "&„and comparing to Eq. (4},
the results in Eqs. (2) then follow. Another trans-
parent way of arriving at Eqs. (2) would be to
start from Eq. (3) together with the saturation
assumption

Equation (9) is also easily derived independently
of the result in Eq. (7) by explicitly computing
([Q'„,a~A'„]&, and using Eq. (6). Note that upon
use of Eqs. (2} and (9), knowledge of (u&0 is thus
equivalent to knowledge of the masses of the
charmed pseudoscalar particles.

In the following we next use broken scale sym-
metry in order to obtain a, prediction for &u)0.
For this purpose we start by noting that if the
strong-interaction Hamiltonian density 8„„„,is
written as u(x)+6(x)+ (a chiral-invariant part
with dimension 4), it then follows that'

3 [m, '+ (I„—2)m, ']'
32ml', (4 —l„)(l„-I ~)

x(m ' —4m ')'~'

where l„and tq are the dimensions of u and 5, re-
spectively, and where ~, and I', denote the mass
and width of the & meson. As is well known, l„
&4 so that from Eqs. (7) and (10) it thus follows
that lq «„&4. We will assume integer values for
these dimensions in what follows.

Solving Eqs. (2} and (9) we obtain for mc the ex-
pression

( u) m 2 tl/2
0

mD rn~ c2 2f m„m,
The physical values of &„ under our assumption of
integer dimensions are L„=1,2, 3. In the quark
model, the a, are given by g~, g such that L„=3.
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(The &, , d,.»,g;», etc. , can be found e.g. in Ref.
8). We shall do the calculation for l„=3 in what
follows. For ~„=1,2 similar predictions result.
It is well known that l„=3 implies violation of
multiplet symmetries, such as SU(4) for boson
matrix elements of o, and/or 6. We refer to the
literature for this (e.g. , Ref. 9).

If the quark model for the o', is assumed, one
may define

R =— (m, —m„)/(m, —m„) (12)

in terms of the quark masses, If SU(4)SSU(4) is
only broken by the quark mass terms,

oo+c Bo8+ ci5c» =q(&o+ cs&~+ ci~&»)q

one may then obtain from Eqs. (2) that

(13)

and

R = (m ' —m, ')/(m ' —m, ') . (14)

(The reader should compare Ref. 2 for a derivation
of these results under assumptions different from
ours. ) Thus, we may also express our results in
terms of m, /m„.

According to Ref. 2, the masses of the charmed
vector mesons can also be computed from m, /m„.
For the P, with hidden charm one has'

recently discovered' $(3.1) in this case has too
large a mass to be the P, . (For l„=1, 2 even
lower charmed masses are predicted. )

If l~ is closer to 3, the value of (-u}0 increases,
and so do the predictions for the masses of the
charmed states. We conclude from Table I that
for any reasonable set of the E-meson parameters
the present theoretical scheme implies ~D, ~~,

2.5 GeV.
A reasonably high mass (perhaps 1.5 GeV} of the

charmed-pseudoscalar-meson masses implies
lq ~1 (such that 6 cannot be a c number}. Itfurther-
more follows from this lower limit on the mass
that l„~2. If the lower limit on the pseudoscalar
charmed masses is 2 GeV, &q =2 and I„=3 follows.
Results on t„are easily obtained by observing that
[Eq. (10)] (-u}, depends on l„and I q mainly via
the denominator (4 —l„)(l„-l~). This has its mini-
mum value, 1, only for I„=3 and lq=2. For any
other allowed dimensions, (4 —l„)(l„—l~)~ 2. The
value 2 implies l„=3 and Lq

—-1 or 1„=2 and lan=1.
Finally, if the $(3.1) were the P, and if we could

use Eq. (15), then it would follow that l„=3, lq= 2,
and m, is almost fixed at 0.9 GeV. In order to
derive l„=3, lq =2 we note that (units GeV)

m~ [(4 —I„)(l„-l, )- 2, m, & 1, F, 0.5]&2.5.
C

(16)

2R =(m&, ' —m 2)/(mr*' —m~') . (15) If m@, —-3.1 GeV and l„=3, l z-2 then m, and I',
We assume that this result can be taken over from
Ref. 2. In the analogous case of the pseudoscalars,
the corresponding relation [Eq. (14}] has been
derived above under our assumptions. It should
be noticed that the derivation of Eqs. (14), (15),
and the vector mesons mass formulas given in

Ref. 2 is not obviously correct once broken scale
invariance is taken into account. This is related
to the fact that, as mentioned above, SU(4) viola-
tions are implied by u having a unique dimension
(e.g. , Ref. 9). We take our derivation of Eqs.
(2c)-(2e) and (14) as an indication that also the
analogous relations for the vector mesons will
be correct.

We are now ready to list our estimates under
various assumptions. The simplest version of
the model has a c-number & with lan=0. Table I
shows that the extremely low results for ~~, m~,
and m„exclude these possibilities if the limits
on m, and I', (& 0. 1 GeV and ~0.6 GeV, respec-
tively) given in the Particle Data Group table are
correct. However, '" the effective ~, might also
be as big as about 0.9 GeV. Table I also shows
that the resulting charmed pseudoscalar masses
under that assumption are somewhat low though
not really excluded. " If Eq. (15) is correct, the

lg=0

m, 0.7

r, =0.6
mD

mp

m&,

m. /m.

0.27

0.55

0.37

0.25

6.9

0.48

0.62

0.96

24

0.85

0.97

m, 09
r, 045

mD

mF

mis

m, /m„

m @

0.83

1.2
1.4

1.7

1.0
1.4
1.5
1.8
8.9
214

2.0

1.4
2.1
2.1

2.5
19

454

2.9

TABLE I. Upper limits on the charmed masses under
various assumptions. It is assumed in the table that l„
= 3. Units: GeV.
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mq (l„=3, l z ——2, m, =1.1 GeV, I', = l.l GeV)

=3.1 GeV.

Thus values of m, larger than 1.1 GeV make no
sense since they would require I', & m, . At the
border of the possibilities for m, appears to be
m, =0.92 GeV such that I', =0.42 GeV in this
scheme. The resulting charmed masses are given
by

mD =2.2 GeV, m~ —-2.3 GeV, m, ~ =2.8 GeV,

R =22, m, /m„=500, and mz =3.1 GeV.

The uncertainties of these results should be obvi-
ous from the above.

If the charmed-pseudoscalar-meson masses
should turn out to be considerably larger than the
masses noted in Table I, part of our theoretical
scheme would have to be abandoned. A crucial
assumption going into our derivation was the Gold-
stone nature of the possibly existing & meson. Use
of the & might be replaced by direct use of the I
=0 s-wave mw phases. This already might bring
considerable changes and is under present investi-
gation. [ Such changes have also been found in
previous treatments of SU(3)SU(3) symmetry
breaking. "] An easy way to obtain arbitrary large
predictions for the masses of the charmed psuedo-
scalars would be to give up the idea that u and &

are also almost fixed. One has for example

mz (&„=3, &q=2, m, =0.92 GeV, I', =0.42 GeV)

=3.1 GeV,

have integer dimensions. It is seen from Eq. (10)
that with l ~ arbitrarily close to I„and/or I„arbi-
trarily close to 4, arbitrarily large charmed
pseudoscalar meson masses result.

In conclusion we would like to note that the as-
sumption in Eg. (1}has already been considered
by several authors 8. xs. i4 Our treatment differs
from each one of these references on several
points. Firstly, in accord with expectation based
on Refs. 2 and 3 we assume that SU(4) is an ap-
proximate multiglet symmetry and that just the
pseudoscalar mesons are the Goldstone bosons
of broken SU(4) SU(4). In particular —unlike
Ref. 14—we do not assume Goldstone-breaking of
part of the vector SU(4); as can be seen from Ref.
14, making this assumption will only yield physical
results if at the same time the total vector-SU(4)
group is used to obtain equality of coupling con-
stants.

Secondly, in obtaining our values of cs and cy5
we have made no assumptions on the q' mixing
with the I =0, ~ =0, S =0 member of the 15 piet.
We remind the reader that particular assumptions
concerning that mixing were essential to obtain the
clash of Eg. (1) with positivity in Refs. 13 and 14.
Our values of c, and &„ are in agreement with
positivity.

As our main point, we have introduced scale
symmetry breaking in order to derive Eq. (10}.
It is this result which implies the physical con-
sequences given in our paper.
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