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In a recent Letter we reported on some work which led us to suggest the possibility of narrow spikes in the
e*e~ annihilation cross section into hadrons. In this paper, we discuss the theoretical infrastructure of this
work more thoroughly, and improve and extend the calculations and experimental predictions. We examine a
colored quark-gluon model of hadronic matter, with color an exact SU(3) gauge symmetry. In addition to the
light quarks that make up ordinary hadrons, a heavy quark, such as the charmed c, is included. The narrow
resonances recently discovered by the MIT-BNL and SLAC-LBL groups are interpreted as c¢ bound states
(orthocharmonium). In this energy range, the effective coupling has become small according to asymptotic
freedom, and many aspects of the bound-state structure can be calculated. The existence of 0~
(paracharmonium) states is predicted, and decay widths and mass splittings are estimated. The total e*e”
cross section into hadrons is predicted to scale asymptotically, with an approach to scaling from above that

can be calculated over a large energy range.

I. INTRODUCTION

Two groups (MIT-BNL! and SLAC-LBL?*?) have
recently announced the discovery of new heavy,
long-lived particles. More recently, the e*e”
cross section has been measured* up to E
=5 GeV and an enhancement discovered in the
vicinity of 4.1 GeV. We discuss here some recent
theoretical work® which was stimulated by the
large e*e” cross section reported some time ago®
and which has predictive impact on the new devel-
opments. It is fundamentally an analysis of the
e*e” total annihilation cross section into hadrons
in an asymptotically free quark-gluon theory,
although more general consequences of the model
will emerge. The failure of the total cross section
to scale® led us to consider the possibility” that
in addition to the light quarks that make up ordin-
ary hadrons, there exists a heavy quark such as
the charmed ¢ with 2m,=2 3 GeV.

We examine a colored-quartet model with color
an exact SU(3) gauge symmetry. If the asymptotic
freedom of this model is to explain Bjorken scal-
ing,® then at momentum scales above one or two
GeV, the effective coupling strength must have
become small. This means that perturbation
theory can be applied at energies of order 2m,;
however, approximate scale invariance will
emerge only for energies substantially higher
than 2m,.°

We analyze the e*e” total annihilation cross
section into hadrons in perturbation theory. At
energies above the nominal two-quark threshold
2m,, the perturbation expansion is well behaved,
and we can calculate the deviation from scale
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invariance due to the finiteness of m,. In a domain
about 2m,, however, the expansion breaks down
as small internal momenta dominate the Feynman
integrals. This produces two kinds of breakdown,
the first coming from Coulomb-like singularities
associated with massless particle exchange.
These can be handled just as in electrodynamics,
by first summing uncrossed ladders and then per-
turbing about that. The result is a Balmer series
of resonance peaks in the total cross section with
spacing and widths calculable in perturbation
theory. However, a second kind of breakdown due
to “infrared slavery” destroys this simple picture.
The internal momenta are small enough so that
Yang-Mills~type radiative corrections lead to a
large effective coupling strength associated with
the binding. Nevertheless, we shall see that many
features of the resonance structure can be cal-
culated.

In Sec. II, we define and motivate the model of
strong interactions to be examined. We discuss
the renormalization of the theory and the effective
coupling strength as a function of the momentum
scale. Particular attention is paid to the break-
down of the perturbation expansion for o(e*e”
—hadrons) due to the presence of quark thresh-
olds.

Section II is devoted to the perturbative analysis
of the total e*e” annihilation cross section above
and below 2m, . The total cross section is argued
to scale for E_,, > 2m, with a calculable approach
to scaling. The perturbation expansion is shown
to break down in a domain about 2m, because of
Coulomb-like singularities. A partial summation
of the perturbation expansion suggests cc bound
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states. However, this particular approximation
proves unsatisfactory because a positroniumlike
picture of these states is shown to be inconsistent,
because of the importance of Yang-Mills infrared
effects at the typical momentum transfers in-
volved. We discuss what can and cannot be com-
puted in perturbation theory. The predicted quali-
tative structure of 0,+,- & pagrons (Ecm.) from E
~1GeV to E_, > 2m, is summarized.

In Sec. IV, we present calculations and experi-
mental predictions. Properties of the observed
orthocharmonium states and predicted parachar-
monium states are computed. Using these results,
we estimate the approach to asymptotic scaling
from E_;, ~5 GeV through SPEAR II and higher
energies. We compare charmonium dynamics
with that of the conventional mesons such as the
¢ and n’.

In Sec. V, we discuss the problem of higher
light-quark thresholds. The charmonium states
decay into ordinary hadrons through vector gluons.
We discuss the possible existence of gluonic mat-
ter (quarkless resonances) in these decays.

1. PRELIMINARIES

The model

The strong-interaction model to be analyzed is
defined by the Lagrangian density

L=—5F F¥ + P(iP-my)p . (2.1)

¥ is a set of twelve quark fields describing a quar-
tet of quarks u, d, s, and ¢ each coming in three
colors: red, white, and blue.'® Each color multi-
plet has a single mass, and color is taken to be

an exact SU(3) gauge symmetry. Thus, there is
no vector field mass term. F}, is the gauge-co-
variant curl, and D, is the covariant derivative:

(Du w)nzap ‘pn—%gAﬁ ()\a )nmwmy (22)

where ¢,, is one of the four color triplets. The
symmetries of the theory [the breaking of U(4)
%xU(4)] are just the symmetries of the bare-quark
mass matrix m,. We will take m,>m, ,m,, m,.
For our purposes, the most important feature
of this model is its asymptotic freedom,® which
underlies our entire perturbative analysis. The
accompanying infrared instability may be the
source of the strong binding forces that apparently
allow only color-singlet physical states. We
emphasize that the main thrust of this work is
dynamical: an examination of a theory that has
both asymptotic freedom and a heavy quark. Al-
though we use the SU(4) model with its heavy,
charmed quark of neutral As =1 fame, this is not
essential. The numerical results of Sec. IV will
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depend on the details of the model but modifica-
tions appropriate to other heavy-quark models
can easily be made.

Renormalization

We define the renormalized coupling constant g
in terms of two- and three-point functions at some
Euclidean momentum configuration of scale M.

A convenient choice is the vector-meson propaga-
tor and the 1PI three-vector-meson vertex at a
symmetric point.!! The asymptotic freedom of
the model assures us that with M taken large
enough, a,=g?2/4m will be arbitrarily small. If
Bjorken scaling is to be explained by this kind of
theory, then g <1 for M>1-2 GeV, a condition
easily satisfied by the numerical fits of Sec. IV.

The choice of a particular definition of renormal-
ized quark mass is a matter of convenience. Any
two variants, m and m’, are related perturbatively
by m’=m[1+ O(a,)]. A brief discussion of our
choice and related ones is given below.

If the Lagrangian (2.1) describes the strong
interactions, the quark mass matrix characterizes
the first level of hadronic symmetry breaking.'?

A standard analysis begins with the transformation
properties of the symmetry-breaking term in the
Hamiltonian.!® Hence, it seems desirable to have
the renormalized mass matrix proportional to the
bare mass matrix, e.g., m; =Zmy with a common
Z. (Note that a common mass renormalization is
sufficient to render all Green’s functions finite
because the logarithmic cutoff dependence of each
my; is mass independent.)

For our purposes, it will be convenient to adjust
Z so that to any finite order of perturbation theory,
the ¢ propagator has a pole at f=m,. This imitates
the conventional prescription in electrodynamics
and facilitates the translation of various electro-
dynamic calculations into the present context.
Note that this perturbative prescription leaves
open the true structure of the ¢ propagator near
#=m,. This depends on the infrared behavior of
the theory,’ which is necessarily a strong-cou-
pling problem in an asymptotically free theory,
regardless of what is arranged in perturbation
theory. In particular, it is an open question
whether quarks can exist as physical particles.
With Z fixed by an “on-shell” subtraction of the
¢, we do not have the freedom of also subtracting
the light quarks on shell. Thus, the inverse u
quark propagator will not vanish at g#=m,, but
this is not important.

Another choice of Z, which is convenient from
the standpoint of the renormalization-group equa-
tion, is to make all renormalizations independent
of the renormalized masses.!>*'® A particular
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example is suggested in Ref. 15: All wave-func-
tion and charge renormalizations are performed
with m,;=0, at momenta characterized by a scale
M. The mass divergences of the m; #0 theory are
removed by identifying m; by m; = Z~'m, where Z
renormalizes the operator J¢ in the m,; =0 theory.
We will not make explicit use of this prescription,
but it will be mentioned again in discussion of the
renormalization-group formalism that underlies
the calculations.

A bound on the integrated ¢'e” total cross section

The application of this model to e*e” annihilation
into hadrons requires a certain amount of care.
The most direct and reliable (but probably least
exciting) thing to be done is to place a bound on
the integrated total cross section. The hadronic
vacuum polarization m(¢®) with spacelike ¢ is
given, through its spectral form, by such an
integral. Asymptotic freedom allows a perturba-
tive calculation'” of m(q?) for —¢*>2 1 GeV?, and
thus one can bound the integrated total cross sec-
tion. This has been looked at in detail by Adler!®
for a three-triplet model and can easily be ex-
tended to the three-quartet model taking into ac-
count the effect of the heavy-quark mass in the
perturbative calculation.

0,,, (¢"¢” > hadrons), perturbation theory, and the
renormalization group

Much of what we do from here on involves the
use of perturbation theory for timelike ¢°. This
section is devoted to providing a partial justifica-
tion for this and to pointing out the problems. In
the case of an asymptotically free theory, the
question is simply whether or not the perturbation
expansion breaks down. The renormalization
mass M is chosen large enough so that a =g?/4n
<1, and perturbation theory can be used provid-
ing dynamical effects (such as large logarithms)
do not enter which make the effective expansion
parameter large. We must show that successive
terms of the expansion in powers of a,, in fact,
get systematically smaller for the kinematic do-
main of interest.

First suppose there are no mass parameters
in the Lagrangian. Euclidean Green’s functions
still exist since the external momenta provide an
infrared cutoff. This follows from the analysis of
Kinoshita.!® If all the external momenta are on
the order of M, there will be no large logarithms
to destroy the perturbation expansion. The Kino-
shita theorem can also be applied to a timelike
Green’s function such as the hadronic vacuum
polarization in this model. Its imaginary part is

proportional to the total hadronic cross section,
and the Kinoshita theorem tells us that o, is
finite in each order for nonzero s (the center-of-
mass energy squared) in this zero-mass theory.
Hence, the coefficients of aj in the expansion for
0 are all finite.

We expect these coefficients to be of comparable
magnitude as long as s is of the order of M2, and
typically they contain powers of log(s/M?). For
very large or small s/M2?, we can use the re-
normalization-group apparatus to improve the
ailing perturbation expansion. This amounts to
recognizing that the coupling constant g is actually
a function of the renormalization mass M: g
=g(M). We are free to choose an M appropriate
to a given s, e.g., choose M=vVs. Thus, for the
object R(s)=(3s/4ma?)o(e*e” - hadrons),

R((s /M?), (M) =R(1, g(Vs)) , (2.3)

and there are no large logarithms in the expansion
of the right-hand side in powers of g(¥'s) for any
5.2% Of course, now the question is the size of
g(Vs). We infer from asymptotic freedom and
Bjorken scaling that g(Vs) is small for vs2 1-2
GeV, decreases like 1/logs for larger s, and
increases to a nonperturbative value below 1 GeV.
The introduction of nonzero quark masses m;
offers no serious complication in the renormaliza-
tion-group analysis. For simplicity we consider
the definition of m; given earlier for which all
renormalization constants are m; independent.
Just like g, m; will also depend implicitly on M
and we can construct the function m; =m;(M). [The
virtue of these renormalization conventions is
that g(M) behaves as in the massless theory and
is independent of m,.] Now we can write

(2.4)

For a quark-gluon theory, m;(Vs) can be computed
for any s such that g(Vs) is small; in that domain,
m;(Vs) increases as a positive power of logs. Any
other definition of m; may differ in a calculable
fashion that is higher order in g.

If we are interested in the behavior of o,, for
a modest range of s, Eq. (2.4) is really no im-
provement. We can just as well choose M to lie
within that range and use ordinary perturbation
theory. The difficult problem is the application
of perturbation theory in the timelike region for
nonzero quark masses. As s increases, no matter
how large it becomes, it will always be passing
through multiples of the quark masses—the nom-
inal quark thresholds. This introduces a new
small momentum, typically occurring in denomin-



12 HEAVY QUARKS AND LONG-LIVED HADRONS 1407

ators and logarithms to arbitrarily high powers

in higher and higher orders of the expansion.

Thus, perturbation theory may be unreliable. This
does not occur for spacelike external momenta

for the vacuum polarization, for example, be-
cause one is never near a threshold, and Feynman
integrals are always finite.

We will examine in some detail the perturbative
expansion for ¢, near the two-quark threshold
and show how useful physical information can be
extracted. We will return to the question of mul-
tiple quark thresholds in Sec. VI. Our discussion
is qualitative and by no means definitive. How-
ever, it appears that these thresholds must be
unimportant if a simple quark model for o, is to
be useful.

Ill. PERTURBATION THEORY AND ITS BREAKDOWN
NEARE, =2m,

The perturbation expansion for R(s)=(3s/4ma?)
X o(e* e~ —hadrons) begins with the graphs of Fig.
1. The zeroth-order contribution [Fig. 1(a)] is

3 -2
R(s)= E Q%+ z Q% 3 8(s —4m?),
light heavy
quarks quarks

(3.1)

where v=(1-4m,?/s)"2., We have scaled the light-
quark masses to zero, v is the velocity of the ¢

in the c.m. frame, and the kinematic factor in the
heavy-quark term is just two-particle phase
space. The two sums over quark charges squared
are 2 and 4, respectively, in the three-quartet
model. This contribution to R(s) is indicated by
the dotted line in Fig. 2.

The O(a,) contribution [Figs. 1(b) and 1(c)] can
also be written down immediately by making use
of identical electrodynamic calculations.?!+2?
Through this order, we have

tn ol Do

(a)
g ] g
LG DS RTIW g WS
q
(b) (c)

FIG. 1. (a) Zeroth-order contribution to o, (e*e”
—hadrons); (b) and (c) the O(a;) contributions to
0,,,(e*e ~—hadrons).

R(s)= Y Q,2(1+a %)

hight
quarks

+ Z Q,20(s — 4m>2W 3502 [1+aa,f@)],

heavy
quarks

(3.2)
where a=% for an SU(3) color group. The function
f(v) is rather complicated (Ref. 22, Eq. 5-4.200)
involving a combination of Spence functions, but
it approaches 3/4m asymptotically, in agreement
with the light-quark result. Schwinger has written
down?®2 an interpolating formula for f(v) which has
the correct v-1 and v - 0 behavior and which
agrees with the exact f(v) to + 1% throughout the
interval O to 1. This is completely adequate for
our purposes; it is

T 3+v/mw 3
f(v)———_(i—;}—ﬂ) (3.3)
R(s) through order a, is indicated by the solid line
in Fig. 2.

As v-0, f(v)x1/v. This behavior comes from
Fig. 1(b) and is a consequence of a Coulomb-like
final-state interaction. In nth order, » massless
vector exchanges (uncrossed ladders) give »
factors of 1/v. This breakdown of the perturbation
expansion for small v is connected to a breakdown
below E_,, =2m,. There, the sum of (uncrossed)
gluon exchanges is responsible for the formation
of positroniumlike bound states. Three important
comments about this behavior are in order.

(1) For E_,, large enough so that + a,f(v)< 1,
second-order perturbation theory will suffice to

1

m¢ 22ﬂ1c 3m c 4 Mme E c.;:i
FIG. 2. R(E_, ) through order o in the three-quartet

model. The dotted line is the zeroth-order contribution

which approaches 4 asymptotically. The solid line is

the sum of the zeroth- and first-order terms for ag =0.2.

The perturbation expansion becomes unreliable for

E_ ., <1 GeV and within a 2-GeV region centered on

E..=2m,. For m,~2 GeV, this region is indicated by

the vertical dashed lines.
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calculate the approach to free-quark-model scal-
ing. Numerical estimates of this approach are
presented in Sec. IV. An important point of princi-
ple is that the observation of this drop in R would
provide a measurement of the parameter m,. This
mass parameter, defined according to the re-
normalization prescription in Sec. II, is measur-
able despite the possible permanent confinement
of the quark.

(2) In the nonrelativistic limit, v—0, the sum
of all the uncrossed ladder exchanges between the
¢ quarks can be summed exactly. In this limit,
1+%a,f(v)=1+ %a,(n/2v), which are the first
two terms in the expansion of the nonrelativistic
enhancement factor

I wCoulomb (O)I 2 -

l wCoulomb(ao ) l 2

(3) The breakdown of the perturbation expansion
near threshold due to Coulomb singularities is
thus easily dealt with. There is, however, another
more serious breakdown coming from the non-
Abelian structure of the theory. As threshold is
approached, the typical momentum transfer flow-
ing through exchanged gluons decreases. This
means that the higher-order corrections to these
lines become more and more important, increas-
ing the effective coupling strength. A measure
of the typical momentum transfer (k) is (k%)
~% (E.,,?-4m.?) and when this is less than about
1 GeV?, the effective coupling strength will have
become large (order 1).

Below E__, =2m,, the effect of the c is first
seen in order a%, e.g., Fig. 3, where the only
Cutkosky cut is through the three gluons. This
graph and similar higher-order graphs remain
small corrections to the dominant light-quark
graphs of Fig. 1 until (4m,2/s - 1)*2~a,. In this
region one again encounters both Coulombic and
Yang-Mills—-infrared breakdown of the perturba-
tion expansion. The Coulombic ladder exchanges
between the quarks of Fig. 3 produce positronium-
like narrow resonances, orthoharmonia. If un-
crossed ladders were really the dominant contri-
bution in this region, then the charmonium system
would be a positronium duplicate with a Balmer
series of resonances whose widths are given by
three-gluon decay.

La /v
1-exp(4a,n/v)"

(3.4)

C C
Imw‘%

FIG. 3. Lowest-order perturbative contribution in-
volving heavy-quark loops below E ,, =2m,.

The Yang-Mills breakdown will obliterate this
lovely picture. The typical momentum transfer
in an exchanged gluon is (k) ~ (m,> - E__ %/4)'/2,

In a positronium picture, the ground state is at
E.n=2m, -3 (%a,)m, which gives (k)
~3(%a.m,, the inverse Bohr radius. For a,<0.3
and m, <2 GeV, (%) =300 MeV, and the Yang-
Mills corrections will certainly have become im-
portant. In fact, the Yang-Mills corrections will
begin producing a large effective coupling strength
as soon as (k)= 1 GeV corresponding to E_

= 2m, -1 GeV. Altogether there will be a domain
of width ~2 GeV centered on E_,, =2m, in which
the theory becomes strongly coupled because of
the infrared instability of the Yang-Mills theory.
This domain is indicated in Fig. 2.

If the spikes at E. =3.1and E_ =3.7 are bound
states in this model, they will certainly lie inside
the strong-coupling domain. Thus we do no! ex-
pect a Balmer series, and, in fact, a simple
Coulomb picture will not even describe the ground
state. Nevertheless, some things can be calcu-
lated in perturbation theory. Even though the ef-
fective coupling strength responsible for cc bind-
ing has become large and the Coulombic picture
broken down, the coupling strength associated
with the annihilation into states containing no ¢
quarks remains weak. The relevant momentum
scale here is E_, , not the momentum transfer,
and this lies in the weak-coupling regime. As
shown in Fig. 4, we divide the transition of two
¢ quarks to ordinary hadronic matter into a part
A which represents binding, i.e., A contains all
possible interactions of the ¢’s, and a part B, rep-
resenting their annihilation into other quarks and
gluons. Thus, B is defined by being two-charmed-
quark irreducible. As the ¢ and ¢ approach their
mass shells, A contains severe infrared divergen-
ces in perturbation theory, indicating that the ex-
pansion is no good; it must be reexpressed in
terms of a larger effective expansion parameter.
However, B is regular in each order, so we can
expect successive orders in perturbation theory
to actually get smaller by powers of o, (as defined
by the scale of the problem, E__ ). The possible
effects of very light other quarks on this argu-
ment are closely related to the general problem
of multiple-quark thresholds. (See Sec.V.)

c c
T T

FIG. 4. The transition of a ¢C pair into ordinary had-
ronic matter (uncharmed quarks and gluons).
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Applying ordinary perturbation theory to B, we
can ask which final states correspond to the
largest amplitudes. The hadronic state occurring
first, which contains no ¢ quarks, is three gluons,
as indicated in Fig. 5(a) (three because we are
interested in a color singlet and because of charge
conjugation). Our ignorance of the binding mech-
anism or quark wave function can be canceled out
by comparing the total ordinary hadronic decay to
the electromagnetic decay indicated in Fig. 5(b).
This observation is the basis of the calculations
of the next section.

Let us return briefly to the question of a
Coulomb-type approximation of the binding. It
breaks down for the ¢ quark but if there are other
yet heavier quarks, Coulomb wave functions may
be accurate descriptions of at least the lowest-
lying states. (Note that as the quarks get heavier,
they tend to remain closer together, and at short
distances single-gluon exchange certainly does
accurately describe the interaction.) Thus for an
8 GeV quark, for example, we have a reliable
description of the binding of ¢ and ¢ and can esti-
mate any decay of such a hadron. (The excited
states would be strongly bound, however, and
certainly smaller in extent than indicated by the
Bohr model.)

Attempts have been made to treat the dynamics
of the strong-coupling region. Even though the
Coulombic picture breaks down for the 3.1 and 3.7
resonances, it is very likely that the motion of the
¢ and ¢ is nonrelativistic. Several groups®'*
have assumed this and solved a Schrddinger equa-
tion with a linearly rising potential to represent
Coulombic breakdown at large distances and quark
confinement. With a potential containing both a
short-distance Coulombic piece and a linear
piece,? it is found that the linear piece dominates
for both the 3.1 and 3.7 and that the motion is in-
deed nonrelativistic, justifying use of the Schro-
dinger equation. It is clearly an extremely im-
portant problem to elucidate the connection of this
approach to the underlying field theory. This
comment may not be as specious as it sounds.
The nonrelativistic character of the charmonium
system means that a Bethe-Salpeter formalism

c c et

PO

< c e
(a) (b)

FIG. 5. (a) The transition of a ¢C pair into three
gluons; (b) the electromagnetic transition of a c¢ pair
into e*e”,

may be useful in the sense that the skeleton ex-
pansion of the kernel could be truncated. The
single ladder exchange with vertex and self-energy
insertions might give the Schrddinger equation,
and relativistic and spin corrections could be cal-
culated.

IV. CHARMONIUM PHENOMENOLOGY AND
NUMERICAL ESTIMATES

In this section, we tabulate some of the numer-
ical predictions appropriate to the colored SU(4)
quartet model. These are improvements and ex-
tensions of the estimates in Ref. 6 and focus main-
ly on perturbative calculations and the structure
of the e*e” total annihilation cross section. A
more extensive discussion of the charmonium
level structure and decay modes has been given
by Appelquist ef al.?® and by Eichten ef al.?®* For
a more complete treatment of charm phenomeno-
logy, we refer the reader to the review of Gaillard,
Lee, and Rosner.?® We emphasize again that
these calculations can easily be modified to de-
scribe‘any asymptotically free model with heavy
quarks.

Properties of the 3.1

We have argued that perturbation theory can be
applied to the two-c-irreducible matrix element
for the process cc— states containing no charmed
quarks (Fig. 4). The lowest-order contribution
is the transition to three gluons shown in Fig. 5(a).
Even though the perturbation expansion for the
binding breaks down because of non-Abelian in-
frared structure, the motion is nonrelativistic
and the radius of the cc bound state is large com-
pared to the ¢ Compton wavelength.?® Thus to
leading order in v/c,

I'(3.1~hadrons) = | M,(3.1)|2| 4(0) |2, (4.1)

where for M, we take the spin-summed and color-
summed matrix element into three gluons®”:
16 5 1
2 = — — — 3 ———

M, (3.1)] or (m-9) 15 % el (4.2)
The wave function at the origin enters since the
annihilation takes place in a region of order 1/m,
in radius.

The leptonic width via one photon into 71 is

r(3.1-T1)=|M(3.1)[2] ¢(0)]?, (4.3)
where
IM,(3.1)[2=4(Q, @ )*m,? . (4.4)

In the ratio, the unknown wave function cancels,
and we have
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re.1-71)  2qQ.a)
I'(3.1=-hadrons) (7 -9)& ap"

If we take I'(3.1~-71)=5.2 keV, I'(3.1-hadrons)
=55 keV,* and Q, =3, we find

(4.5)

@,=0.2. (4.6)

This value of @, along with m, <2 GeV means that
the momentum transfer in the bound state is too
small to allow a Coulombic description of the
binding.

Properties of the 3.7

If this peak is interpreted as the first s-wave
radial excitation of the 3.1, formulas analogous
to (4.1) and (4.3) describe its direct decay into
uncharmed hadrons and its leptonic decay. Its
leptonic width has been reported to be I'(3.7~71)
=2.5 keV.?%+2® This is smaller than the 3.1 leptonic
width since |¢(0)| is smaller for the radially ex-
cited state. Since the Coulombic description has
broken down, quantities like |¢(0)| and the exci-
tation energy cannot be calculated in perturbation
theory. With the linear potential model for ¢
confinement,?3?* however, the experimental orders
of magnitude seem reasonable. The bulk of the
large width (~0.5 MeV) of the 3.7 is presumably
due to strong and electromagnetic transitions to
lower-lying charmonium states and these have
been listed and estimated in Refs. 24 and 26. The
one quantity that can be calculated perturbatively®’
is the ratio of the leptonic width to the direct de-
cay width into uncharmed hadrons. Using the ex-
perimental lepton width, this hadronic width is
found to be about 50 keV, a small fraction of the
total width.

Predicted charmonium states

The expected states have been tabulated and dis-
cussed in Refs. 23, 25, and 26. We will discuss
only the 0~ para states that should accompany
both the 3.1 and 3.7. For these states, called 7,
and 7/ in Ref. 27, several important predictions
can be made using perturbation theory in o .

The 1, is expected to sit about 50-100 MeV
below the 3.1. A precise calculation of the hyper-
fine splitting is difficult because of the non-Cou-
lombic structure of the binding. Various estimates
are discussed in Ref. 26 and they tend to give the
same order of magnitude. The 7, can decay into
hadrons predominantly through two gluons or it
can decay electromagnetically into two photons.
These widths can be calculated since |¢(0)] is
known from, say, the leptonic width of the 3.1.
We find

3 al
I‘(nc-—hadrons)=5 sz? r3.1-171)
=6.7 MeV (4.7)
and
C(n,~yy)=% (3.1~ T1)=1keV, (4.8)

where we have used a,=0.2 and I'(3.1-71)=5.2
keV.28 Thus the 7, is expected to be much broader
than the 3.1 and to have an electromagnetic
branching ratio of 0.1%.

These values lead to a substantial Primakoff
production cross section for the n,. On Pb with
E, =200 GeV, Dashen e/ al. find*®

Opy, (¥ =1,) =100 nb . (4.9)

Other ways of finding 1, include hadronic produc-
tion and electromagnetic decay of higher char-
monium states. See Refs. 23, 25, and 26.

The approach to the asymptotic region

If there are no more heavy quarks, then R(s)
should decrease to asymptotic flatness from
around E_ =5 GeV. The second-order expression
for R(s) is given in Eq. (3.2) and we now know that
a;=0.2. This coupling constant has been defined
at a Euclidean momentum scale M which we take
to be 3 GeV. The falloff comes from two sources.
The first is the decrease of the threshold enhance-
ment near s=4m.2. The second is the logarithmic
decrease of the effective coupling constant a(s)
as s increases throughout the region s =1 GeV?2.
For the case of the conventional charm model,
we can make some numerical estimates. The
transitional domain in which the theory becomes
strongly coupled is about 2 GeV in width, extend-
ing from E., =3 GeV to E_,, =5 GeV (Fig. 2).
Below 3 GeV, the perturbation expansion should
converge and R(s) will be given, through second
order, by the first (light-quark) term in Eq. (3.2).
With a,~0.2, R(s)~2.2 in this region, quite con-
sistent with experiment.**®* Beyond E,,, =5 GeV,
perturbation theory should again be applicable.
R(s) will be given, through second order, by Eq.
(3.2) with @ replaced by the running coupling
constant ofs):

as
1+ (25/12ma log(s/M?)

a(s)= (4.10)
The approach to 4 is quite rapid. At E_,, =6 GeV,
for example, we find R(s)=3.5+0.2 where the
estimated error comes from the uncertainty in
the value of a;=a(M?) and from the uncalculated
higher-order terms. Thus if the colored quartet
model is the correct theory of strong interactions,
R(s) will have to decrease substantially between
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5 and 6 GeV. Beyond E_.,, =6 GeV, the rate of
decrease is very slow and, in fact, R(s) should
remain nearly constant through E_ =9 GeV. This
results from an interplay between the slowly ris-
ing two-particle phase-space factor and the slowly
decreasing a(s). The accurate measurement of
R(s) through these energies is very important for
testing the three-quartet model and the specific
dynamics of the gauge theory.

Ordinary hadrons

We have made the point several times that the
binding of the cc system is predominantly non-
Coulombic. If this is true for quarks in the 1.5
GeV mass region, it is even more true for the
light 4, d, and s quarks. The spectrum of the
conventional hadrons will depend strongly on the
long-range quark-confining forces. The dynamics
of these systems is further complicated by the
fact that, unlike charmonium, the quark motion
is relativistic. Other than charmonium, the
mesons most treatable by nonrelativistic methods
are those with quark content cs such as the (pre-
dicted) F* with J°=0".

What about the decay-rate calculations? For
example, can the ratio I'(¢p - T71)/T'(¢~ 37) be
computed? If the ¢ is a pure ss state, then the
37 decay must go via annihilation into gluons. If
the decay can be considered to take place at the
origin, thatis, if the ¢ radius is much bigger
than 1/m,, then |y(0)|2 enters both the leptonic
and three-gluon decay widths. It cancels in the
ratio so that one predicts

L(p-T1) _ 9na®

r(¢- 37{) B 10(712 - g)asii(l GeV) . (411)

With o, (3.1 GeV)=~0.19, the renormalization-
group equation leads to a, (1 GeV)=~0.26, so that
I'(¢p~T1)/T(¢p-371)=~0.01. Experimentally, this
ratio is =0.002, which means we have probably
underestimated the nonstrange width by a factor of
about five.

There are at least two possible sources of this
error. First of all, the effective coupling constant
is large enough so that the higher-order terms in
the perturbation expansion may not be so small.
More importantly, the locality assumption [the
use of |¥(0)|] in the hadronic decay is probably
bad. The annihilation takes place over region of
order 1/m, is radius and this may not be small
compared to the ¢ radius. This is certainly an
effect that will increase the hadronic width.

A frequently repeated “explanation” for the
narrowness of the 3.1 and 3.7 is the OZI rule.?°
For meson decays, it says that decay amplitudes
corresponding to connected quark diagrams (in

which ¢ and g lines run through the diagram) are
allowed and those corresponding to diagrams in-
volving qq annihilation or creation are strongly
suppressed. For the direct decays of 3.1 and 3.7,
the cc pair must annihilate and asymptotic free-
dom offers a possible explanation of this rule.
Note, however, that one does %ot calculate duality-
like diagrams involving initial and final ¢gq pairs
but rather the decay into gluons [Fig. 5(a)]. For
the ¢ meson, the coupling constant o, (1 GeV) is
probably still small enough so that asymptotic
freedom can explain the purity of the ¢ as an ss
state and its narrowness into nonstrange hadrons.?
We have seen, however, that the width calculation
is more complicated than for the 3.1 and 3.7.

0~ states can communicate with two gluons so
that Zweig’s rule should be less operative. Thus,
for example, 7, is expected to be broader than
the 3.1[Eq. (4.7)] and the n’ is much less a pure
sS state than is the ¢.2® The OZI rule seems also
to be operative in the decay 3.7—- 3.1+ mm, which
involves a disconnected quark diagram.** Here,
the momentum flowing into the ordinary hadrons
is about 600 MeV, which is getting quite small to
believe in an asymptotic freedom explanation of
OZI suppression.

V. ADDITIONAL REMARKS

Higher thresholds

Having made a big issue out of the breakdown of
perturbation theory at a two-quark threshold, we
must face the question of the behavior at higher
thresholds. Even for the interpretation of char-
monium, this question is not academic because of
the light quarks. Our estimates of R(s) assumed
R jigh quanks (8)=2 + 6(ag ). Certainly, perturbation
theory breaks down at each and every threshold
in sufficiently high orders because, even without
Yang-Mills corrections, there will be pairwise
Coulombic interactions. So for s>m, instead
of becoming simple, our expansion gives a rapid
succession of unreliable threshold singularities.

In what sense can these high threshold effects be
unimportant in certain quantities such as R? First
recall that the (1/v)"" singularities, where v is
some generalized threshold factor, e.g., v
=(1-n*m?/s)"% are a signal that nonperturbative
effects are important. We propose the following
interpretation of these singularities. The lowest-
order description of any quark threshold (given
by the tree graphs for e*e~ - n quarks), i.e.,
g2""*¢,, where ¢, is the phase space for n
quarks, is reliable if smeared over the vicinity
of the threshold. That is to say that the integral of
the true total cross section in that vicinity exceeds
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the lowest-order description by a correction of
order a4 (E . ). (Furthermore, remember

a,(E. . )-0as E_ -~«.) Locally, for a particular
E, the nonperturbative effects may be large when
compared to the calculation in any finite order;
however, the actual enhancement above the naive
expectation (i.e., a? 2%p,) are 6(a? ') when
smeared.

This is what would happen in pure QED for
O,+,-. At high energies, the possibility of pro-
ducing several positronium atoms or even mole-
cules drastically alters the shape of o near thresh-
olds. But the net effect on a smeared o is neg-
ligible. In the quark-gluon theory, the fact of
quark binding is signaled by the threshold singu-
larities, while the smeared R may be computable.

We offer only a crude consistency argument,
following the dispersive analysis used to bound
the integrated cross section near the two-quark
threshold. We assume that the nonperturbative
effects are confined to the regions where pertur-
bation theory breaks down. Hence, near s=n’m?,
the contribution of states with fewer than » quarks
(and any number of gluons) is well described per-
turbatively, i.e., successive orders in o are,
in fact, less and less important. So the production
of fewer than n quarks provides a fairly constant
and small background near s =n°m?. We propose
a model for R which consists of the computable
background at any s (i.e., fewer than s'/?/m quarks
in the “final” state) plus the appropriate lowest-
order threshold factor for each threshold plus
everything else:

R=R background +R threshold +AR.

This is free of content until we approximate AR.
We assume that AR is, in fact, localized about each
threshold and assume further that AR(s)>0. If
we are only interested in smeared quantities,
such as AA,= f,,AR dE integrated over the neigh-
borhood of the nth threshold, it is sufficient to
approximate AR by a sum of 6 functions. If R is
bounded as s—, it is related to II(¢), the space-
like vacuum polarization, via the usual once-sub-
tracted dispersion relations. We can now, order
by order, estimate the AA,, since perturbation
theory is good for II(¢). In particular, by con-
sidering the 6(a” ~2) calculation, we deduce that
AA, =0+ 6(a""1).

If one seeks causes for skepticism, they are
plentiful. This analysis is inspired by electro-
dynamics, where the result has been tested, at
least crudely, in e*e~ annihilation. In the quark-
gluon theory, the final states are hadrons, so
perhaps this expansion is never useful. A more
particular criticism might be that the non-Abelian

effects are expected to extend 1 GeV above and
below each nominal threshold, while the light-
quark thresholds are certainly closer than that.
Therefore, cumulative effects may be important.
We can only point to the flatness of R between 2
and 3 GeV and claim that that is an asymptotic
phenomenon.

Gluonic matter

Assuming the validity of perturbation theory
where it is self consistent, we have argued that
charmonium decay is well approximated by the
decay into three gluons. This requires that these
subsequently decay into hadrons with unit proba-
bility and that the interactions responsible for
hadron production do not significantly alter the
gluon production amplitude. What can be said
about this hadronic final state? Above some en-
ergy, the three gluons are approximately ortho-
gonal to any gq state, in that the mixing between
them is 6(a3/?), and so the expansions of these
states in terms of the hadron basis (effectively
multipion states) must also be orthogonal.

A theoretical description of the various pos-
sibilities for this gluonic matter is given in terms
of hypothetical gluon sources G(x) and the source
correlation functions.3® With the photon treated
as an external source of the electromagnetic cur-
rent 23,Q, P;(x)y, ¥;(x), we studied 0®"¢”. Similarly,
for the 17 three-gluon source

Gu(%) =3, [ Fix (x)F R (x)F S, (x)] d**

we can study the two-source correlation function,
(0| G, (x)G,(y)]0), or define a ratio R;, normaliz-
ing the correlation function to the analogous free-
field function.

If asymptotic freedom is ever relevant, R.(s)
~1las s-». Below 1 GeV? or wherever a,(s) is
too large for an expansion parameter, we can say
nothing except that R;(s)=0 for s< (3m,)?, but
we can enumerate the possibilities.

But first consider some general features: If
R;(s==)=1, then R;=1 for some finite s. Fol-
lowing our perturbative philosophy, R;=1 for,
say, s 2 GeV? because order by order there are
no anomalously large terms in the expansion for
R;. But how far down in s can we go? We regard
w-¢ mixing and I'(¢ — 3m) as evidence that a (1
GeV) is in some sense small. On the other hand,
we must also account for the existence of the p’
(1600), which is naturally interpreted as a bound
state of two light quarks. Recall that we esti-
mated that even for large s, perturbation theory
may be unreliable for 1 GeV above and below any
nominal threshold. So if m, , 0.5 GeV, the p’
is likely at the upper end of such an interval.
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Thus, R; may be very different from 1 for s
<2 GeVe.

The various possibilities are as follows.

(1) Rg=0 for s<2 GeV?. This seems unlikely
if in fact R;~ 1 above 2 GeV?, particularly as it
contrasts markedly with R,+,- which averages out
to its free-field value for 0 <ss 4 GeV?.

(2) R; may rise smoothly above s =9m,?% per-
haps overshoot, and come down to 1 from above.
This would correspond to nonresonant multipion
intermediate states.

(3) R; may have bumps below 2 GeV?, much as
R,+,- is bumpy. This last possibility is exciting
because it is simple to distinguish experimentally.
The bumps would manifest themselves as SU(3)
singlet resonances. Of course, other pure gluon
channels could also have resonances. Well below
1 GeV, the strength of the gluon-quark coupling
implies that these SU(3) singlet mesons are as
strongly coupled to pions as is anything else.
Above 1 GeV, mixing as measured by
(0] G, (x)d,(y)]0), where J is some quark current,
is certainly small, O(a,*?). The 3.1 should be a
good laboratory source of gluonic resonances,
decaying through them into ordinary hadrons.
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On the theoretical plausibility of well-defined
bumps in R;, we only comment that those models
based on a quark-gluon Lagrangian that explicitly
exhibit hadrons all include quarkless mesons.
Some of these are dual vortex rings,3* box excita-
tions in lattice gauge theories,® and bags®* con-
taining only gluons. The last of these is particu-
larly suggestive: Why shouldn’t the gluonic spec-
trum resemble that of bags with massless quarks?
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