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Broken-mass solutions to superconvergence relations
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%'e use an ansatz motivated by duality and the quark model to saturate superconvergence relations
near t = 0 for scattering of mesons in the vector and pseudoscalar nonets. The saturation is carried out with a
few low-lying states, using the observed mass spectrum rather than the degenerate masses characteristic of a
nonet —or SU(6)—symmetric model.

I. INTRODUCTION

Historically, rapid saturation schemes for me-
son-meson superconvergence relations (SCR's)
have led to unpleasant consequences, namely de-
generate masses for members of the vector-me-
son nonet. ' ' In this paper we suggest a scheme
which uses rapid saturation (that is, saturation
with a small number of low-lying resonances),
yet avoids the degenerate masses.

In the present section we first review the pro-
cedure for expressing SCR's in a helicity formal-
ism; readers familiar with this formalism can
skim Eqs. (1.1)-(1.10}for the notation. We then
introduce and motivate the assumptions of the
model. One of these assumptions is that s-channel
couplings may be split up into an "st part" and an
"sM part. *' In Sec. II we show how to calculate the
su part, given the st part. Then in Sec. III we
solve some SCR's for meson-meson scattering,
inserting only the lowest-lying resonances (those
with quark orbital angular momentum 2=0), yet
keeping the masses nondegenerate. In Sec. IV we
ask whether the coupling scheme presented in Sec.
III is unique; we find that there exist two further
schemes which also produce rapid superconver-
gence. Section V contains a discussion of the
W-spin and SU(3) properties of each coupling
scheme (both our original scheme and the two new

schemes introduced in Sec. IV). An appendix dis-
cusses some details of s-to-u-channel helicity
crossing.

A helicity formalism seems best suited for
bringing out the coupling structure which produces
superconvergence. We therefore begin by review-
ing briefly the usual procedure for constructing
SCR's from helicity amplitudes. '

s -channel center -of-mass helicity amplitudes
can be expanded as a sum of invariant M functions
times factors depending on the center-of-mass
scattering angle 6), and three-momentum P. Con-
sequently helicity amplitudes, considered as func-
tions of s and t, possess kinematical singularities
(coming from the square roots in cos8 p, etc.) in

addition to the dynamical singularities predicted
by the Mandelstam representation. ' Since SCR
are essentially dispersion integrals in s, we must
remove the kinematical singularities in s before
we can disperse. Although we are interested in
computing s-channel amplitudes &A' X,

' 8, IH, I X,
'

X,'&,

it is somewhat easier to remove s kinematical
singularities from a t-channel amplitude, so we
first cross to the t channel by applying an s-to-t
helicity crossing matrix, '

&q&i8~ IH~I». & =II di i (x) &q &! 8.IH. I~i &2&.

Wherever there is danger of confusing I;- and s-
channel helicities, we shall put primes on the
latter. The s kinematical singularities of Ht are
readily deduced from its partial-wave expansion:

(1.2)

(1.3)

A. and p, are the spin projections along the initial
and final beam direction:

g=A —h, (1.4)

ln Eq. (1.3), 6'~ is a power series in cos8, and
therefore a power series in s, since cos6, is linear
in s. The 1 icos(9t terms contain various square-
root, etc. , kinematic singularities involving s;
but these factors may be divided out of the sum
(1.2}, since each d contains the same (1+cos8,)
factors. What remains is a power series in s
which can have singularities where it diverges,
presumably only at dynamical singularities in s':

Equation (1.2) exhibits the s dependence of H, ex-
plicitly in the d 's, all of which have the form

d~~=(1 —cos8, )
' " ~'(1+cos8, )

'" ~'6'~(cos8&} .
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&~,X, j Hj~, ~,)- s" '(& "*,
Mx=max(/Xj, j I(. /),
o.(t) =leading Regge trajectory . (1.6)

Suppose n(t ) -Mx is so negative that an unsub-
tracted dispersion integral for s'il& converges:

((/ &f ck rm(, (qz(H(, , (&(lzq&li(s s&
cuts

=s&q~& IIT((s, t) I I.~, ) (I 7)

&~,~, 8, iH, i ~,~, )
(sin8/2)" "(cos8/2)'""' '

(1.5)
We have written the 1+cos6)& factors more com-
pactly by using the half-angle identities 2 sin 8, /2
=1 —cos8„2cos'8, /2 =1+cos8,. In order to write
a dispersion integral for &„we need its asym-
ptotic behavior for large s and small t. From
Regge asymptotics for H, plus the linearity of
cos8& in s, we get

Then H& is said to superconverge, and one gets
a sum rule, or superconvergence relation, by
taking s =0 in Eq. (1.7):

ds'1m&A, A., jH(s', t) j X,X, ) =0 . (1 6)

[Actually Eq. (1.8) is an infinite set of sum rules,
one for each t].

We say that an SCR is of the "spin" type if the
t channel is nonexotic [a(t) = —,'], and o(t) -Mx
in Eq. (1.6) is small because Mx is large (Mx & —,).
We say that an SCR is of the "SU(3)" type if the
t channel is exotic and c((t) -Mx is small because
o.(t) is small.

We shall work within the usual sharp-resonance
approximation, which assumes that the imaginary
part on the right- (left-) hand cut is well approxi-
mated by a sum of s (u-) ch-annel Breit-Wigner
resonances, with the imaginary part of the Breit-
Wigner denominator approximated by a delta func-
tion:

I &h, k, jH, jX,A, ) = II d . (It; ) g 6( — )&P.,'A,' ~H ~A'J)&A,'A,'jH~ t&, 'J)h(12- j)h(34- j) d .„.(8,) ( 0) .

(1.9)

The integral in Eq. (1.8) is then trivial, and Eq. (1.6} reduces to an algebraic equation for the scalar cou-
plings &, having the general form

P h(12 -j)h(34 —J)fz(sz, m, ', t ) + g h(14 —j)h(32- J)f/(uz, m; ', t ) = 0 . (1.10)

The second sum comes from the crossed cut.
The functions f~ in Eq. (1.10) involve the d~(8,),

the helicity crossing matrices, and the (1 +cos8, }
kinematic-singularity-removing factors. The f's
are complicated functions, therefore, and it is not
a good idea to try to solve Eq. (1.10) by brute-
force methods. Some hints or guidance from mod-
els is essential.

For hints as to how to saturate spin SCR's, 1.et
us first review the usual procedure for satisfying
SU(3) SCR's. Veneziano's original vv —v~ dual
amplitude (for example) may be extended to
IIII-IIV(II and V members of the 0 and 1 non-

ets) by multiplying each beta function B(tj) by the
boxlike SU(3) tensors M;, diagrammed in Fig. 1

3 4 l 4

what follows we can ignore the distinction between
M and M. The contribution to Eq. (1.8) from each
pole in B(s, t) at t =0 will not spoil SU(3} super-
convergence because the M„box cannot contribute
to exotic t channels. (When sliced down the middle
vertically, M, & contains a quark-antiquark state in
the t channel. ) Each pole in B(s, t) is multiplied
by M,&, so that each level in the mass spectrum

A (Il II —II V) = (M„-M„)B(s, t ) + (M,„-M~) B(s, u)

+ (M,„-M,„)B(t, u) . (st)

2 I

(su)

/
3 2

(tu)

Each corner of each box in Fig. 1 is an SU(3)
Clebsch-Gordan coefficient linking quark-anti-
quark to the external meson. M;~ is identical to
M;,. except that the quark loop is anticlockwise; in

FIG. 1. Structure of M~&, M~„, and»~~„~ All internal
lines represent SU(3) quarks. Each trilinear vertex
represents an SU(3) Clebsch-Gordan coefficient linking
a quark-antiquark pair to the external meson.
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superconverges by itself, and we have a theorist's
dream, single-level superconvergence, the most
rapid possible, similarly for the B(t, u) term. The
B(s, u) term, however, is multiplied by an M
which does contribute to exotic t channels. SU(3}
superconvergence is preserved not by M,„, but by
the asymptotic behavior of B(t, u), which is s t"',
negligible because u and o(u) «0. Many poles in

B(s, u) must contribute with alternating signs to
produce this small resultant, so that presumably
the superconvergence of B(s, u) at t=0 is many-
level and very slow.

The foregoing information about the SU(3} depen-
dence of the amplitude suggests our first two as-
sumptions about the spin dependence of the ampli-
tude:

(1) s-channel couplings may be split into an s t
and an su part (similarly for crossed I and u--

channel couplings).
(2) st and su parts superconverge independently,

and only the st part superconverges rapidly at
t =0 (similarly for the crossed couplings).

Assumptions (1) and (2) imply that we must con-
struct s-channel couplings which separate natur-
ally into st and su parts and then insert only the
st part into the SCR. (In practice the st and su
parts are closely related by the requirements of
charge-conjugation invariance and factorization;
therefore, determining the s t part determines the
total coupling. }

In making these assumptions, we in effect are
saying that the spin superconvergence properties
of the st and su parts are similar to their SU(3)
superconvergence properties, at least near t =0.
We can give an argument which suggests that rapid
superconvergence, if it occurs at all, occurs
nearer t =0 than t«0. For t«0 the resonances
contribute with alternating signs, and the super-
convergence of the st part is slow (just as the
superconvergence of the su part, discussed above,
was slow for u«0}. As we move toward t=0, the
Legendre polynomials P~ associated with each
resonance become more coherent, and it becomes
less likely that a nonsuperconvergent contribution
from one resonance will be canceled by a corre-
sponding contribution from another resonance. It
becomes more likely that cancellations will occur
between a small number of resonances having the
same value of orbital angular momentum I, but
contributing to the SCR with different signs be-
cause they have different values of total spin S
or/and total angular momentum J.

We need more information than is supplied by
the above assumptions (I) and (2). Among the
meson-meson reactions with two or more external
V's, there are eleven independent helicity config-
urations which satisfy Mx = 2 and therefore spin

3' 5 L, O

/
S4-, ~4

L, o

FIG. 2. st part of the meson-meson helicity amplitude.
L (J.') is the orbital angular momentum in the initial
(final) state; g is quark orbital angular momentum.
Lines with arrowheads are spin-2 quarks. x' s denote
rotation matrices.

superconverge. Which of the eleven are the ones
that single-level superconverge? Also, which
value of t in Eq. (2) is the rapid superconvergence
value?

To answer these questions, we construct a spe-
cific model for the couplings, one motivated by
the diagrams of Fig. 1. Consider the butterfly-
shaped diagram of Fig. 2, which is meant to rep-
resent the spin dependence of the st part of the am-
plitude. (For simplicity, we postpone discussion
of the su part and isospin dependence until Sec. II.)
Each trilinear vertex in the diagram represents
a Clebsch-Gordan coefficient, just as in Fig. 1,
but now the Clebsch-Gordan coefficient couples
spin rather than SU(3) multiplets. The body of
the butterfly-shaped diagram is made up of quark
and antiquark coupling in some manner with L (L'),
the orbital angular momentum S,S, (S,S,), to form
angular momentum Z. If the diagram is cut in
half horizontally, the intermediate values obtained
are those in &(3 &(3 —=S(3 . These J values are
just those predicted by the quark model, if we
identify 3 (=0 or 1) and Z with quark spin and
quark orbital angular momentum, respectively.
If the diagram is cut vertically through the two
horizontal quark lines coming from S, and S, we
find that possible values for intermediate quark
total spin are &I; therefore, f&3- X,'f &I. This
fact suggests spin superconvergence in the crossed
t channel. [Of course, we want I-channel helicities
fg- X, f &I, not s-channel helicities f8, -&,'f & I,
and s- and t-channel helicity amplitudes differ by
quite a complex transformation, Eq. (1.1). Never-
theless, when we do cross to the t channel in Sec.
111, we do find a zero in the f k, —A, f

= 2 amplitude. ]
To see in more detail how the intermediate 4

values arise when the diagram is sliced horizon-
tally, let us consider the simple case =0. Then
spin-parity conservation requires I =I.'=1, and
the body of Fig. 2 reduces, as shown in Fig. 3(a).
This diagram contains six Clebsch-Gordan coef-
ficients, but we focus on the two forming the left
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)) h(12»J) h(34»J )

(b) (c)
FIG. 3. (a) Diagram of Fig. 2 for the caseS = 0; L=I ' = 1. (b) Diagram (a) with contributions of definite 4 projected

out using Eq. (1.12). The couplings h are still degenerate. (c) Diagram (b) with each ~ assigned a different coupling
strength.

edge of Fig. 3(a), and for clarity suppress all
quark indices except those associated with quark
line aa' (we use a bra-ket notation (jml j,m, j,m, &

for Clebsch-Gordan coefficients):

~ ~ &S,A, I
—,
' a ' ~ ') 5„d,',' ( 8,) &S,A, I

—,
' a" ~ )

The x on line aa' stands for the d(8,) rotation ma-
trix in Eq. (1.11); the reason for inserting this
matrix will become apparent shortly. W'e have
anticipated a subsequent step by inserting a Kron-
ecker delta &„. We insert a similar Kronecker
delta &» on the right-hand antiquark line. Then
we replace the Kronecker delta's by using the uni-
tarity of the Clebsch-Gordan coefficients:

The sum is over a complete set of intermediate
states, i.e.,

J'=
~ 3~ = 1 or 0. Equation (1.12) ex-

hibits explicitly the contribution to the helicity
amplitude from the intermediate pseudoscalar
(J= 0) and vector (J= 1) mesons making up the
2=0, 8 =J=1 or 0 level of the quark model. In
diagrammatic language, Eq. (1.11}changes Fig.
3(a} into Fig. 3(b).

The upper J vertex in Fig. 3(b) has a rotation
matrix on each of its quark legs. Using the rota-
tion property of Cleb sch-Gordan coeff ic ients,

& J&12~2 n& d ~ (8.) d.'. '(8,) d~„=(8,) & Jql zm'kn'&.

(1.13)

We can move these matrices through to the J line.
We get just the d~„characteristic of a helicity
amplitude for a spin-J intermediate particle. This
result explains why rotation matrices were in-
serted on all internal lines running vertically in
Figs. 2 and 3.

Next we explain the azimuthal quantum numbers
indicated for angular momenta S„L,S,

in Fig. 2 (and subsequent figures). The vertex
making up the lower half of Fig. 3(b) is one way
of coupling the three angular momenta L, S„S,
to form J. By the theory of angular momentum
recoupling, this vertex is therefore some weighted
linear combination of the Clebsch-Gordan coef-
ficients &LOSX I J&& x&S,X, S, —X, I

S&&, which arise
when the angular momenta are recoupled in famil-
iar "spin-orbit" order: Sy(3Sp total spin S;
S3 L =J. From Eq. (B.5) of Jacob and Wick, he-
licity amplitudes can be expanded in a series of
spin-orbit coupling amplitudes":

&g&.8.le. l),), &
= Q I(2L+ I) (2L'+ I)]''&LOSAI JA& &S,),S, —)), ISA& d „(8,)

X&L'S'la'ILS&&L'OS')
I J) &&S,qs, ~, IS') & . (1.14)

Therefore, the top and bottom vertices dia-
grammed in Fig. 3(b) yield (after recoupling) a
specific set of reduced matrix elements
&L'S'IH ILS) in expansion (1.13). To get the
Cleb sch-Gordan coeff ic ient s right, we must choose
the azimuthal indices in Figs. 2 and 3 to match
the azimuthal indices in expansion (1.13), @ED.

Since expansion (1.13) is valid relativistically,

so is the coupling procedure of Fig. 3(b), even
though the latter superficially appears nonrela-
tivistic. Indeed, the nonrelativistic "feel" to he-
licity amplitudes coupled in a quark-loop or spin-
orbit formalism may go a long way toward explain-
ing the nonrelativistic feel of the quark model it-
self.

In Fig. 3(a) or Fig. 3(b}, each J couples with the
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same strength h (as indicated by the over-all fac-
tor h' multiplying these figures). In Sec. III, where
we solve the SCR's in detail, we start out initially
with split couplings as well as split masses, as
indicated in Fig. 3(c}. To satisfy the SCR's, how-

ever, we find we must define reduced couplings

h 12-Z}—: h(12- J)
[s ~ —(m, —m, )'] ' "[s ~ —(m, +m, )'] '" '

(1.15)

where s ~ is the (ma, ss)' of resonance 4, and then
we must set the @'s equal:

h(12- J=O)h(34-J =0) =h(12- J= 1)h(34- J= 1) .

(1.16)

Thus the dynamics picks just that solution where
the (reduced) couplings are not split. The dynam-
ics therefore allows us to factor out the couplings
h and recover the original butterfly-shaped dia-
gram, Fig. 3(a).

The detailed investigation of our model in Sec.
III suggests the following answer to a question
raised earlier. [Which value of t in Eq. (1.8) gives
the most rapid superconvergence?]

(3) When Mx =
~

P., —X, ~

= 2, Eqs. (1.8) supercon-
verge most rapidly at the point t =(m, -m, )'.

We list this statement as one of our assumptions,
rather than a consequence of our model. It is pos-
sible to insert resonances having only a single
value of 2, pick (say) t = 0 in Eq. (1.8), and wind

up with equations which are internally consistent.
Thus SCR's do not force us to pick t =(m, -m, }'.
However, Eqs. (1.9) assume the simple form
(1.15) at this point [a remarkably simple form,
considering the complexity of the original equa-
tions (1.9)]. Furthermore, t=(m, —m )' is the only

point we have been able to find where the masses
can be left nondegenerate.

Our model also tells us which of the eleven he-
licity amplitudes superconverge rapidly —i.e.,
superconverge even when we insert only Z =0
resonances. We recall that the amplitudes (1.5)
arefreeof kinematic + singularities, but may still
possess kinematic t singularities. In particular,
they may possess singularities of the form
[t-(m, -m, )']" ', n=integer, since t=(m, —m, )'
is a pseudothreshold in the t channel. From the
discussion of kinematic t singularities given in
the references, six out of the eleven meson-mesor.
helicity amplitudes normally are constant at pseu-
dothreshold (n =0}, while the remaining five van-
ish as the square root (n=1). It is the first six
which superconverge even when saturated with
only one value: With the choice of couplings
suggested by Fig. 3(c) and Eq. {1.15), Eq. (1.10)
for each of these SCR's adds up to a function of t

which vanishes linearly at pseudothreshold. The

fz and f~ in the remaining five SCR's each contain
a factor [t —(m, -m, )'] 't', but of course this is a
kinematic singularity and must be divided out. The
sum that remains does not vanish linearly, and

presumably more than one & is needed to saturate
these five SCR's. Thus the six helicity amplitudes
which are "closest" to pseudothreshold [by one
factor of (t —(m, -m, }'}' '] are the ones which
superconverge most rapidly.

The foregoing rule continues to work even for
elastic reactions m, =m, when the pseudothreshold
singularities coalesce with the t =0 singularities:
Amplitudes which are normally finite at t = 0 super-
converge rapidly; those which vanish as t' ' do
not. The former amplitudes have gP. ; =even and
are the "Class I" amplitudes of Gilman and Harari;
the latter have QX; =odd and are their "Class II"
amplitudes. '

Away from t =0, the rule "QX; =even" no longer
characterizes the helicity amplitudes which super-
converge rapidly. When helicity amplitudes are
expanded in terms of M functions, the expansion
coefficients have singularities in masses as well
as in s and t; therefore, the expansion which works
for m, & m, breaks down for m, =m„and vice versa.
This circumstance explains why Hara et a/. find
one set of kinematical singularities for equal
masses, and another set for unequal masses, with
no smooth extrapolation connecting the two sets. '
It is not particularly surprising, therefore, that
the rule QX; =even for m, =m, does not extrapolate
to the m, &m, case. It is more surprising that any
simple rule extrapolates between the two cases.
Of course, the equations (1.10) for the couplings
also extrapolate smoothly in the masses, as they
should because they are derived using kinematic
singularity-free helicity amplitudes, rather than
the helicity amplitudes themselves.

Equation (1.15) leads to a generalization of the
Gilman-Kugler-Meshkov prescription for the mass
dependence of meson decay rates. " Given the
couplings defined in Eq. (1.9), we may calculate
decay rates from Fermi's golden rule:

I' (J- 12) = const x
) (X,'Xz

( H[ A 'J ) h (12 -J) [ 'P„/s

P» is the three-momentum in the final state.
From the results of Sec. V, the reduced couplings
defined in Eq. (1.15) preserve W spin:

(X,'&z' ~H~ X'J) h(12- J}= const x(W, &,
'

Wz —Q ~
W~&') .

(1.18}

Combining Eqs. (1.15), (1.17}, and (1.18}, we find
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& (&-12) = const &[s ~ —(m, +m)'] [s~ —(m, -m)']
l (w, a,' W, —x2 l

w ~a')
l

' P»/s~ . (l.19)

2 2 2=g q„rnid —4gp„, =0 (1.21}

(in their notation). We split our couplings into an

st plus su part, whereas AFFR do not. Neverthe-
less, Eq. (1.21) holds also in the present formal-
ism because the su isospin box does not contribute
to the I& =1 amplitude used to derive relation
(1.21).

In the present section we have described only
the st part of our couplings; in the next section
we indicate how to construct the su part given the
st part.

11. CONSTRUCTING THE su BOX

(In this section we will drop the primes on s-
channel helicities. All the helicities in this sec-
tion will be s-channel. )

Factorization and charge conjugation may be
used to generate the su box, given the st box. By
factorization, the st plus su amplitude must be a
product of a 12-J coupling

(»m, lH' ls~, m, s~, m)

times a corresponding 4-34 coupling [the m's are

In the limit that m, =m, «m„Eq. (1.19) becomes

I (J—12) = const

x (s —m, '}'
[ (w, ~,' w, —q l w, ~')

l

' z„/s, .

(1.20)

Equation (1.20) is just the prescription derived
for pion decays by Gilman, Kugler, and Meshkov
using the Melosh transformation, current algebra,
and partial conservation of axial-vector current
(PCAC). Equation (1.19) generalized their result
to the cases where m, is not small.

In their original paper on SCR's, de Alfaro,
Fubini, Furlan, and Rossetti (AFFH) derive the
relation'

SU(3) indices]:

H& =qBc (2.2)

where q is theproduct of the charge-conjugation
parities of SyS2J In the quark model, C parity
=(- 1) ', so for ground states (2 =0),

q=q, q, q~=( I)"'"-" (2.3)

In Fig. 4 we have deliberately omitted any clock-
wise or anticlockwise arrowheads on the quark
lines internal to the factors giving the helicity de-
pendence, in order to emphasize that the same
helicity tensor is used in both halves of the dia-
gram. Whatever order one chooses for the spin--,'

quark indices in the kets of the Clebsch-Gordan
coefficients making up this helicity tensor, one
should choose the same order and use the same
helicity tensor for both halves of Fig. 4. Because
of C invariance, the effect of switching from clock-
wise to anticlockwise spin-&- quarks is entirely
accounted for by the factor g. Now we construct
a similar clockwise and anticlockwise loop for
the final-state coupling 34- J, "star" it (which
changes G& into Gc), multiply it into the 12-J
coupling, include the usual d},„, and sum over
J, m~. If we take degenerate internal masses so
as to open the sums into the butterfly form, we
find

(»m~lB lS,k, mS, A, m, ) =G~ +G„ff„

The right-hand side of this equation is diagrammed
in Fig. 4. Gc = Gc(m,num~) is a clockwise SU(3)
quark loop, while G& is an anticlockwise quark
loop. If Gc gives the amplitude for S,S,-J, then
G& gives the amplitude for the antiparticle reac-
tion S,S, —J, since replacing clockwise quark by
anticlockwise quark amounts to replacing quark by
antiquark. By C invariance, then, 8& and Hc must
be identical, except for a phase, since C does not
affect spin dependence,

(~, m, x, m, elrfla, m, ~, m, ) =(M„+q,q, q, q, Xs„)(x,x, elIf„lx,z, )

+(q, q, ~,+q, q.~ ) g(- I)'(»ll&oils, ~,s.~.}dr„(8)(d,llaclls, qs, ~,&. (2.4)

3/I;, is the clockwise SUj3) loop of Fig. 1, 3I;, is
the corresponding anticlockwise loop, H„ is the
butterfly diagram of Fig. 3(a), and Hc is the lower
half of thisbutterfly, as in Eq. (2.1) and Fig. 4.

We may identify the H„ term in Eq. (2.4) with the
st part. We now need to show that the remaining

terms in Eq. (2.4} have the crucial property ex-
pected of an su part, namely that they supercon-
verge rapidly at u—= 0 if the st part supercon-
verges rapidly at t =0. To establish this property,
we first show that the remaining terms in Eq. (2.4)
add up to give the H„ term except for a relabeling
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(- I)'dx„(8.) =(- I) 'dx-„(8.) . (2.6)

To complete the interchange of 3 —4, we change
the signs of the azimuthal quantum numbers in
each of the four Clebsch-Gordan coefficients mak-
ing up &z in Fig. 4, using the identity

(j,m, j,m ljm) =(-1)~&+~2 ~&j, —m, j, -m, lj-m)
(2.7)

repeatedly. This multiplies II& by an over-all
phase (-1) "" ' and ensures that helicity A.„
rather than ~„now carries the minus sign. We
next reverse the coupling order at the quark plus
antiquark -J vertex in H~, resulting in a further
phase change:

&-'m -'m4IJ-»=(-I)' '&2m 2m, lJ-» .

(2 8)

This coupling-order reversal ensures that, when
the J sum in Eq. (2.4) is carried out and the cou-
plings are opened up into a butterfly shape, the
vertical quark lines will crisscross the diagram
(rather than run perpendicula, rly upward); com-
pare the M,„box in Fig. 1 (after the bottom half
of the diagram has been twisted through 180 so
a.s to put particle I on the left). Now we relabel
the dummy index —p. —p, collect all the phases
[keeping in mind (- I) = —I], and carry out the
sum over J in Eq. (2.4). We find that the M,„and
M, „ terms in Eq. (2.4) add up to give the H„butter-
fly-shaped diagram except for an interchange
3 4.

supart =(M,„+q,q, q, q, M,„)&X,K8, lH„l X,X, ) (- I)

(2.9)

The factor of (- I) might make one uncomfortable
at first, but in fact it is required for two reasons:
(a) It ensures that the sum of st plus su parts
obeys Bose symmetry when S, -=S,. (b) It ensures
that the su part superconverges at u=0. The
-to-u helicity crossing matrix differs from the
s to tone by a ph-as-e (- I) and a relabeling 3 —4.
(For details, see the Appendix. ) Hence the (- I}

3 —4 everywhere, i.e., except for t —u. Let us
introduce a new angular variable:

(2.5)

(9, is the scattering angle if we take u =0 rather
than t = 0 as the "forward" direction: cos0, = P, P „
while cos&, =P, P, Al.so, if 8, =f(s, t, m„m, },
then 8, =f(s, u, m„m, ). We switch to this new vari-
able via the identity

mg

FIG. 4. Right-hand side of Eq. (2.1). The phase g is
explained in the text.

in Eq. (2.9) just cancels a phase in the s-to-u
crossing matrix, leaving one with a u-channel
u =0 amplitude which is the t-channel t =0 ampli-
tude except for a relabeling 3 —4 everywhere.
Hence the su part superconverges rapidly at u =—0
if the &I, part superconverges rapidly at I, =—0,
Q.E.D. In conclusion, expression (2.9) has all the
desirable properties required of the su part. We
remark that result (2.9) holds even when the in-
ternal resonances have Z &0.

III. SUPERCONVERGENCE AT t = (m I -m3 )'
In this section we verify rapid superconvergence

in detail, using nondegenerate ma, sses and the cou-
plings of Fig. 3(c).

We first write out the S,S, —J vertices [lower
half of Fig. 3(c)] in Eqs. (3.4)-(3.7}. Next we
multiply the S,S,-J vertex by an S,S,-J vertex
(obtained from the S,S, —Jvertex by a simple relabel-
ing), include a d~(8), and cross to the t channel using
Eq. (1.1). We specialize to the superconverging
case X, =+1, &, = —I while keeping A, and X, arbi-
trary. (There is another helicity choice which
yields lk, —x, l=Mx=2, namely x, = —I, A„=+I,
but it gives no new information because of parity
conservation. } We obtain thereby the contribution
of each direct-channel J to the crossed channel
amplitudes &A, = + I I, = —1 8, lH, l A4A, ) [see Eqs.
(3.8)-(3.12)]. We evaluate these contributions for
the six choices of A, ~, which superconverge
rapidly and remove kinematic singularities (Secs.
IIIA-III F). We then find in each case that Eqs.
(1.15) and (i.16) hold at t =(m, m,)'-

In order to obtain spin superconvergence, we
must have Mx=2; therefore, we set S, =S, =1 and
let (S„S,) take on the values (0, 0}, (0, 1), and

(I, I} in turn. SCR's for (S„S,) =(1, 0) are identical
to those for (S„S,) =(0, 1) because of time-rever-
sal invariance in the direct channel; similarly,
SCR's for S, =S, =1 and (S„S,) arbitrary yield no
new information because of time-reversal invari-
ance in the crossed channel.

We define factorized couplings &S,S, lHl J) in the
sharp-resonance limit,

Im&h'P. ,' 8, lH l
A.,'I') = gv6(s —s~) d~ ~ (8) (s, I' s, x,'lHl Ju') h(34 —J) (s, x,'s, A'lHl JA') h(12 —J), (3.1}
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where the h's are reduced matrix elements, and (S,S, ~H~ J'& (we suppress the helicity dependence for sim-
plicity) is the SU(2) tensor given by the lower half of Fig. 3(c):

&S,S, IHI&&= g &S, y,'Ilm, lm,'&&S, y—,'ll mam, '&«yllm, lm, &&I,olkmllm, '&. (3 2)

By the preceding discussion, we can take S, = 1 without loss of generality. For S, = 1 and J= 0 Eq. (3.2)
becomes

&11 IHI o &
= g [6(y,', I) 6(m„m') 6{m„2)+ 6(y,', —1) 6(m„m') 6(m„—2) + 6(X,', 0) 6(m„-m')/v 2 ]

x[m, -m„m,'-m,', y,'- —X2] [6(m„-m, ) (-1) ~ ' '/M&] [6(m,', -m,')/v 2] . (3 3)

We use the notation 6(m, m') for a Kronecker delta implying m=m'. Carrying out the sums in Eq. (3.3}, we
get

2 &» IHI 0 &
= 6(X,', 1)6(- y,', —1) - 6(X,', -1)6(- y,', 1} .

Calculations of the remaining vertices proceed similarly:

2 (11]H( 1) = [6(X,', 1)6(- y,', —1) +6(y,', —1)6(- X2, 1) + 6(yi', 0) 6(X', 0)] 6(X', 0)

+ [6(y,', 1}6(y,', 0) +6(yi', 0) 6(- X,', 1)]6(X', 1)

+[6(y,', —1) 6(P.', 0) +6(y,', 0) 6(- X', —1)]6(y', —1),
2&10~H~0&= 6(X„0),
2 (10~H) 1) = [6(y,', 1) —6(y,', —1)]6(X,', y') .

(3 4)

(3.5)

(3.6)

(3.7)

The (S,S, (H(Z& vertices in Eq. (3.1) follow from Eqs. (3.4)-(3.7) by a relabeling 1-3, 2-4, X'- p, '. Now

suppose we multiply together the quantities occurring in the 4th term of Eq. (3.1), drop the delta function
[because it goes away anyway at Eq. (1.8)], and cross to the t channel, as in Eq. (1.1). What we get are
the following quantities:

c$

&y, y, I(~=1- 0) IS.X,S,X, &
-=g d, , (ygd', , (~.) &S.qS.X.'IHI~~ &h(34- J)&S,X,'S,X,'(H(~y'&h(12-~)

1=1

(3.8)

Equation (3.8) is just the contribution from direct-channel resonance J= 1 or 0 to the SCR with the indi-
cated t-channel helicity values (except that we have not removed some kinematical singularities yet). In
detail, the quantities (3.8) are

(3.9)

4&+1, li(g= 1)
~
ly, lk, & =h(12- V)h(34- V)

x j6(y', 0) d+, (y, —y, ) + 6(y', 1) [—'((1 + cosy, ) d i, (y ) + sinX, d, i,(X2)/V 2 ]
+6(y', —1) [~ (1 —cosy, )doi (y, }+siny, d, i(X2)/v 2])dz'p'(6 )

x(6(ti', 0) d„,(X, —y, ) + 6( ti', 1}[-,' (1 —cosy, ) d, i,(y, }+ (- siny, /v 2 ) d, i (X4)]

+6(ti', —1) [—'(1+cosX ) d i (X ) +(- siny, /~2)d, i,(y,)]), (3.10)

8&+1, —1((J=0) ) Iy IA., & =h(12-II)h(34-II) [(1+cosy,) d, i (y}—(1-cosX,) d-, i (X2)]

x[(1 —cosy, }d, z (y, }—(1+cosy, ) d-, x (X4)] .

A superscript S, is understood on all d's involving y;. Also all (J=0) contributions are evaluated at s =so,
a.nd all (J = 1}contributions are evaluated at s =&,:

8 &+1, —1 ~(4=0) ( ly400& =h(12-lI)h(34-II) (- siny, /W2) [(1—cosy, ) d, i (y, }-(1+cosy,) d» (y.,)], (3.11)

8&+1, —1)(J=I) ~
ly, 00& =h(12- V}h(34- V} [(H cosy, ) 6(y', 1) —(1 —cosy. ,) 6(y', —1)]di „(8,)

x[6(ti', 0) d~, (y, —y, ) +6(ti', 1) [~ (1 —cosy, ) d, i (y~}+(-siny, /v 2 ) d, i (X4}]

+6{ted', —1) [-'(1 —cosy, }d i (y,}+{-siny, /v 2) d, i (X )]], (3.12)
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8(+1, —1~(J=O}~0000)=h(12 II)h(34-II)(-siny, siny, },
16(+1, —1

~
(J=1)~0000) =h(12- V) h(34- V} [(1+cosy,) 6(X', 1) —(1 —cosy, }6(&', —1)]d& „(8,)

X[(I -cosy, ) &(p, ', 1) -(1+cosX,) 6(0', —1)] .

We have used the rotation matrix

(3.13)

(3.14)

~ (1+cosy} —(sinX)/v 2 —,(1 —cosX)

d'(X) = (slnX}/vY

2 (1 —cosy)

cosX

(sinX)/v 2

—(sinX)/u 2

& (1+cosy}

(3.15)

We need expressions for the sines and cosines of the crossing and scattering angles as functions of s and t.
We use the same angles as Wang (except siny; ——siny&, because we are crossing s to t whereas she is
crossing t to s)

cosy; =[+(s+m;'-m~')(t+m;' m, ')-—2m, '(m'-m, '+m, '-m, ')] (S;&g'&,) ',
sinX; = —2m; p'~'/S;, f;, ,

cos 8, = [2 s t + s' —s g m; ' + (m,
' —m, ') (m,

' —m, '}]/S»S„,
sin8, =2(sf}'t'/S»S„,
cos8, =[2st+t' —t Qm;'+(m»2-m ')(m, '-m, ')]/y'» v',

» .

(3.16}

(3.17)

(3.18)

(3.19)

(3.20)

The upper sign in Eq. (3.16) goes with the particles which cross (i =1 and 4). S» and S„contain the thresh-
old singularities in the initial and final states of the s channel, and similarly for 9» and &24, e.g.,

S„,' = [s —(m, +m, )'] [s —(m, —m, )'] —=S'„S.. .
q;,'=[t (m, +m-, }'][t-(m, —m, )']=V &.. . etc. (3.21)

Therefore, the indices j, h in Eqs. (3.16) and (3.17) are determined unambiguously by the index i /is.
Kibble's polynomial

P = stKm —s —t) —s(m, ' —m»')(m, ' —m, ') —t(m, ' —m, '}(m~ —m» }

2 2 2 2 2 2 2 2—(m, m, —m, m,
'

) (m, + m, —m, —m, ) . (3.22)

It is convenient to introduce some abbreviations for the polynomials occurring in the numerators of the
cosines, Eqs. (3.16)-(3.20}:

i j ikcosXi ~

P, =-S»8,4cos8, ,

P, =- F,3V'24cos8, .
(3.23)

We now consider each of the six rapidly superconvergent cases in turn (parts A through E immediately
following). In each case we will not only verify superconvergence, we will also verify explicitly that each
J =0 and 1 contribution is free of kinematic singularities in t, as well as mixed s and t kinematic singular-
ities coming from nonintegral or negative powers of the Kibble polynomial fgj). Sometimes our final expres-
sion for the J=0 and 1 contributions will have apparent kinematic s singularities (factors of 8;,. or v s);
but these are canceled by corresponding singularities implicit in the reduced s-channel helicity couplings
h.

Where extensive algebra is required to get from one equation to the next, we have grouped terms so as
to clarify which terms in the first equation lead to which terms in the next equation.

A. S2 =S4 =0

The J=O and 1 contributions to this SCR follow from Eqs. (3.13) and (3.14). We can suppress the bra and
ket enclosing the (J=0) and (J =1}in those equations, and we absorb some threshold factors into the h's as
in Eq. (1.15):
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(J = 0) =h(12 II)h(34- II)(-2m,m, )(P/4'T„'),

(J = 1)=h(12- V)h(34- V}[P,—P,P,/&»']/6

=h(12- V)h(34- V)(m, '+m, ' —t)(P/4f;~') .

(3.24)

(3.25)

The final parentheses in Eqs. (3.24) and (3.25) cancel out when the kinematic singularities are removed;
the J=0 and 1 contributions then sum to give a quantity which vanishes at t = (m, —m, )', provided we as-
sume Eq. (1.16), Q. E. D.

B. S2 = 0, S4 = 1, X4 = + 1

From Eqs . (3.11) and (3.12),

(+ 1, —1
~
(J = 0)

~
1+100) =h(12- II)h(34- II)(costi, —cosy ) sing, /6 W2,

(+ 1, -1
~
(J= 1)

~
1+ 100)= h(12- V)h (34- V}

x
L
—sin 8,[1 —cos(y, —It,)]+ —,'[cosy, + cos 6, ][sing, —sing, —sin( y, —y, )]
+ —,'[cosX, —cos 6,][stunt, —sing, + sin(y4 —y, }]j.

(3.26)

(3.27)

The J=0 and 1 contributions for X4= -1 are identical to the above, except that we must replace cosy~ and

sinX4 by their negatives everywhere.
Now consider the linear combinations

(+1,-1( (J)
~

1+ 100)/(sin-,'8, )'(cos-,'8, ) + (1, -1( (J) ] 1 —100}/(sin-,'6, )(cos-,'8, )'

= [(1,-I [ (J) ( 1+100) -,'(I +cos 6) + (1, —1
~
(J)( 1 —100) -,'(1 —cos 6 )]/( —,

' sin 8 }'. (3.28)

The half-angles in Eq. (3.26} are just right to remove the kinematical singularities in s, but kinematical
singularities in t have not been removed yet. The linear combination with the upper sign in Eq. (3.26) van-
ishes as the square root at pseudothreshold, hence does not superconverge rapidly, by the rule given in

the Introduction. The J=0 and 1 contributions to the other linear combination are

(J= 0) =h (12-II)h(34- II)(2m, v P /v 2 'T„f;4 sin'8, )[P,—P,P,/'7»']

=h(12- II}h(34- II)m, (t+ m, ' —m, ')(4p"'/W2 y'»'6;4 sin'6, ),
(J = 1) =h (12- V)h (34 - V)

x (sin 8,[cos( Z, —Z, ) —cos 8, ] + cosZ, sin&, —cos 8, sin( Z, —Z, ) —cos 8, sinX, cos&,}/(v 2 sin'8, )

= h (12- V}h (34- V)

x(sin6, [s —(m, —m, }']2//S, 'f;,6;,

(3.29)

+ (p'"/V'» f;~S»S,4) [-2m4P, + (2m, /S, ~')P, P~ —(2m, /S, ~')P, P, + (2m J i »')P, P, ])/(csin'8, )

=h(12- V)h(34- V)

x{sin8, term+(p"'/'E»f'24S»S, 4)(-2m4P, + (2m4/S, ~')[S,4'P, —2$(s+m, ' —m~'}]

—(2m, /S, ~') [S,~'P, + 2$(s+ m, ' —m, ')]+ (2m, /f'»') [f'»'P, + 2$(t+m, ' —m, ') ] ) j/(csin'8, )

=h(12- V)h(34- V)

x(v s8'„'[s —(m, —m, )']/S„'+8'»'m, —f'»'[ni, (s+m, ' —m, ')+m, (s+m, ' —m4')]/S, 4'

+ 2m, m, (m, —m, )](4$'I'/W2 9'»'f;4 sin'8, ) . (3.30)

The final parentheses in Eqs. (3.29) and (3.30) cancel out when kinematic t singularities are removed.
Every term in the curly bracket, Eq. (3.30), is proportional to &»' and therefore vanishes at the super-
convergence point, except the last term. This term is just right to cancel the (J =0} contribution, Q. E. D.

Note that the equations for h would have been far more complex had we chosen t=0 rather than
t =(m, —m, )' as the superconvergence point.

The (s)'+ term in Eq. (3.30) comes entirely from the sin8, contribution to (J= 1). sin8, terms do not
contribute at the superconvergence point, even though in the unequal mass case, t= (m, —m, )' no longer
coincides with sin0, =0. In fact in all six of the SCR's we will investigate here, the terms proportional to
sin6}, vanish at t= (m, -m, )'. Vfe will need this result in the next section.
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C. S2 = S~ = 1, X, = X4 = 0

From Eqs. (3.9) and (3.10),

(J =0) =h(12- II)h(34- II) sing, sing /8

=h(12- II)h(34- II)(2m, m 5»')(41/49;, 'y'„') . (3.31}

This contribution superconverges by itself: The final. parenthesis cancels out when kinematical s and t
singularities are removed, leaving a quantity which vanishes at t=(m, —m, } . Similarly, the (J=1) contri-
bution will superconverge by itself:

(8= 1}=h(12- V)h(34- V)

x(- cos e [sin(y, —y2} sin(X, —y ) +cos(X, —y ) cos(y3 —y4) —1]+[cosy2 cosx4 —cos 8, ]

+st». [-»n(X, —X,) cos(X. —X3)+»n(X, —X.) cos(X, —X.)])/8
=h(12- V)h(34- V)

x(P,[- ( 2m, P,-+ 2m, P,)(-2m,P, + 2m4P3)41(y» 124S»S34)2

—(P,P, +4m, m, 41)(P,P, +4m, m p)/(K„K„S S„)'+1]
+ [ —P, + P,P,/ 124']+ 2 Ws Q [(2m, P, —2m, P,)(P,P, + 4m, m, 41)

—(2m, P, —2m, P,}(P,P, +4 mm, y)]/(&„&„S»S)'j/8. (3.32)

Let us denote the first, second, and third square brackets in Eq. (3.52} by B„B„and B„respectively:

(y'» y'246»634)'B, = [-4m, m, PP, —4m, m, PP, + 4(m, P, —m, P, ) (m, P, —m4P2)]Q —16m,m2m3m441'

—(p,p, )(p,p, ) + (y'„y'„S„S„}'

={-4m2m4[V»2P, —2(m', '+m, ' —t)Q] — 4mm [3;y4P2, —2(m, '+m, ' —t)1']

+41'» [m, (s+m, ' - m4') +m, {s+m,' -m2')]y;4[m4(s+m2' —m, '}+m,(s —m32+m42)])p

—16m m 1m 2m 3@'4—[ 'yP13, —2(m, +m, ' —t)41][7~4'P, —2(m, '+m4' —t)@]

(~13~24612 34}

&»'P, y'24 —-f24'P, 9;,+ 4 y'1
3 V;,[m, (s + m 3' —m, ') +m, (s +m, ' —m, ') ]

x[m„(s+m, ' —m, ')+m, (s —m, '+m, ')j)41 —4y' y', 412+(y»y', }2(S»26„2 p, ').

[9",'3=—t —(m, am, }', as at Eq. (3.21).] The last parenthesis equals 4sp, so that we can take out a factor
V,,Q from each term and define

B,=—2y', 3@f,(s, t)/(y'»V'24S»S34)', (3 33)

where f, is a kinematic-singularity-free, finite polynomial at pseudothreshold. As for B, and B„we have

B, = 2(t —m, ' —m4')Q/'T24',

B, = [(2m, P, —2m, P,)(P P, +4m2m441)+(2m4P, — 2m2P)4(P, P+34m, m3)4]1

= [(2m, P3 —2m3P, )(1„2P,+2%'24/}]+ (2m4P, —2 Pm)(29' 4P,»+227'»p)]

= V'13V'24][m, (s+m3'- m, ')+m, (s+m, ' — )m][12P, 2+42@]

+ [m,(s+m, ' —m, ') +m, (s+m4' —m3')][q'13P, +241]j
r;,f, (s, t). -

(3.34)

(3.35}

Inserting Eqs. (3.33)-(3.35) into the (J= 1) contribution, we get

(J=1)= K(12- V)K(34- V)

xi&„Pf (s, I)/(S, ,S„)'+&»'(I-m2'-m, ')+ &„s"'f(s, I)/(6„, 6„)')(@/4&„'&„'), (3.36)
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where the f's are finite polynomials at pseudothreshold. The final parenthesis in Eq. (3.36) cancels out
when the kinematical singularities are removed, leaving a quantity which vanishes at the superconvergence
point, Q. E. D.

This particular SCR puts no constraints on the h' s, since the 4=0 and 1 contributions vanish indepen-
dently.

D. $2 =S~ =1, X2 =X~ =+1

Consider the quantities

(+ I, —11(J)I
I+ 11+ 1)+(+ 1, -I ~

(J)
~

1 —I I —I). (3.37)

The linear combination with the lower sign in Eq. (3.37) vanishes as the square root at pseudothreshold,
hence does not superconverge, by the rule given in the Introduction. The J=O and 1 contributions to the
other linear combination are

(J= 0) = h(12- II)h(34- II)(- cosy, cosX, + cosy, cosX )/8

= h(12- II)K(34- II) [(m, '+ m,
' —t )7'„' —(m, '+ m, ' —t ) l»'] (Q/4&»'7'„'), (3.38)

(J= 1) = h(12- V)h(34- V)

&&(- cos8, [sin(X, —X,)sin(X, —X4) + cos(X~ —X2)cos(X~ —y4) —1]

+ sin8, [-sin(X, —X,)cos(~ —X3) + sin(X3 X4)cos(X, —X2)]

+ sin X, sina, —sing, sing, ) /8 . (3.39)

The two square brackets in Eq. (3.39) are identical to the first and third square brackets in Eq. (3.32).
Hence we can eliminate the square brackets immediately, using results (3.33) and (3.35) of part C:

(J'=1)=K(12- V)K(34- V)

&]&»Pf (s, t)/(S„S„)'+I»s'"f'(s, t)/(S»S„)'+ (2m, m, K»' —2m, m, 7'24')] (p/47'»'K„') . (3.40)

The final parentheses in Eqs. (3.38) and (3.40) cancel out when kinematical singularities are removed.
Since the f's are well behaved, finite polynomials, every term in the (J= 1) contribution, Eq. (3.40),
vanishes at pseudothreshold, except a term which just cancels the (J=O) contribution, Eq. (3.38), Q. E. D.

The linear combinations

E. S2 =S4 = 1, ) 2 =-X~ =+ 1

(+ 1, —1~ (J) ~
1+ 11—I)/(cos8, /2)'+ (+ 1, —I I(J) I I —11+ 1}/(sin8, /2)'

=4[(+ 1, —1((J))1+11-1)(1—cos8, )'+(+ 1, —1[(J))1—11+ 1) (1+ cos8, )']/(sin8, )» (3.41)

are free of kinematic s singularities. The linear combination with the lower sign in Eq. (3.41) has a square
root singularity at t= (m, —m, )', hence does not superconverge rapidly there. The J=O contribution to
the other linear combination is

(J= 0) = —h(12- II)h(34- II)

&& [(cosX,cosy, + cosX, cosX,)(1+ cos'8, ) —2 cos8, (cosy, cosy, + cosX, cosX)]/2(sin8, }'

= —Ti(12 —II)K(34-II)[(P P/f, '+P, P/'f ')(27', '7', ' —4tp) —2P, (P P + P P }](7, '0', '/32t'Q').

We rewrite the 2&»' S,4' terms inside the square bracket in a number of ways and leave the other terms
alone for the moment:
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( J=0) = —K(12- II)X(34- II)

x([P,P, + 2$ (t + rn, ' —m~')] P, + [P~ P, —2$(t + m, ' —m, ')]P,

+ [P P, + 2$(t + m3' —m, ')]P, + (P, P, —2$(t + m, ' —m ')] P~

—2P, (P P, + PP~)+ [P P /'7„'+ P P4/y'24') (-4t Q)j (0„'0;4'/32t'Q')
= —K(12- II )h(34- II)

xot+ m, '-m, ')P, —(t+ m, ' —m, '}P,+ (t+m, '-m, ')P, —(t+ m, '-m, ')P4

+[P, —(m, '+m, ' —t)P/V„' —'(m, '+m, '- t)&P /&„'] (-4t)}(V'„'f;,'/16t'Q)

= —T(12-11)h(34- 11)

x]4+[—(m, '+m, ' —t)/W„'- (m, '+m, ' —t)/f;4'] (-4t)]9;,'f;,'/16t'.

The J 1 contribution to the linear combination in Eq. (3.41) with the upper sign is

(Z= 1) = h(12- V)h(34- V)

(3.42)

x((I + cos 8, )[cos8, (1+ cos(X, —X,)cos(X, —X,) + sin(X, —X,)sin(X, —X,))- sinX, sinX, —sinX, sina, ]
—cos&, [cos&,(cos(X, —X,) + cos(X3 —X,})—sing, sing, —sing, sina]
+ sin&. [(I + cos'&

& }(cos(X,—X.)stn(X, —X ) - c»(X.—X,)»n(X, —X,))

—2 cos 8, (sin(X4 —X,)- sin(X2 —Xi))] ]'/2 sin'8, . (3.43}

We analyze Eq. (3.43) in two steps. First we show that the sin&, terms in Eq. (3.40}vanish at pseudo-
thresholds; then we show that the remaining terms in Eq. (3.43) cancel the (Z=O) contribution, Eq. (3.42):

sin&, terms =h(12- V)h(34- V)sin&,

x(9',~
'

&24 ~(29,s2 9,~ —4tg)[(PiP, + 4m, m Q)(-2m4P~+ 2m P4)

—(P, P, + 4m m~P)( 2m, P, +-2m, P, )]

—2P, [S»'( 2m4P, +-2m, P)4- S34(-2m, P, + 2m, P, )]]
x (i',3 f'„)'/32t'(S„S„)'4i

= Z(12- V)K(34- V)s'i'

x [2[4m, m, 4i(- 2 m4 P, + 2 m P4) —4m m44i(- 2 m P, + 2 m, P )]

+ 2 [(P P, —S»'P, )(- 2 m, P, + 2 m, P ) —(P P, —S„'P,)(- 2 m, P, + 2 m, P )]

+ 0'„"l, '(-4t P)[(Pi P, + 4m, m, g)(-2m4P, + 2m P~)

—(P, P~+ 4m, m~g)(-2m, P, + m2, P)]]

"«is &24)'/I«'(Su'S~') 4
=Ti(12 V)X(34 V)s'~'

x]2/[4m, m, (-2m, P, + 2m P) —4m, m, (-2m, P, + 2m, P, )]

+ 2/[2(s -m, ' —m, ')(-2m, P~+ 2m P~) —(s —m '-m ')(-2m P, + 2m, P )]
+ &„'&„'(-4t y) [--&;,f-(s, t )]](r„v'„)'/16t'(S„S„)'y.

(3.44)

(3.45)

Here we compared the last square bracket in Eq. (3.44) with the corresponding bracket in Eq. (3.32),
noticed they were equal except for a sign, and used Eq. (3.35). The Q singularity in the denominator now

cancels out. The t' singularity cancels when we remove kinematical t singularities, but the over-all fac-
tor of (l„T„)'remains. Hence the sin&, terms, Eq. (3.45), do not contribute at I» =0. [In fact they do
not contribute at either pseudothreshold. Since the SCR now under consideration has both ~X, —x, ~

=2 and

~ &, —X, ~
=2, we expect it to superconverge both at 0',s=0 and at 'E,, =O, and it will. Note that there is a

factor of f24 implicit in f,(s', t ).]
Now let us return to Eq. (3.43) and check out the non-sin&, terms:
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(2=1)=X(12- V)X(34- V)

x]&„'W„'(29„'f;,'-4tp)[P, +P(PP+4mm, p)(P, P, + 4m, m, p)/(I„f'„S»S„)'
+ P, (- 2 m, P, + 2 m, P )(- 2m~ P, + 2 m P )p/(y'» l ~ S»S„)'
—(4m, m, /i'»'+ 4m, m, /9'„')y]

—2P [P, (P P, + 4m, m, p)/S»'+ P, (P P, + 4m, m~p}/S„' —(4m, m, + 4m, m~)p/(f» 9;,)']}
x (f'» v'„)4/32t'P'+ sine, terms . (3.46)

Comparing the first square brackets in Eqs. (3.46) and (3.32), we see we can use Eq. (3.33) to simplify
the (-4tg) term in Eq. (3.46). We do not use Eq. (3.33) on the 2&»'9;~' terms, but rather regroup the
latter with the remaining terms in Eq. (3.46):

(J=1)=1i(12-V)X(34- V)

x ((- 4f p) [2P, —2P, W„f (s, f )p/(&„&„S»S„)'—(4m, m, /v'„'+ 4m, m /9;, ')p] (S„S„)'
+ 2P, [(f» 9 ASS»~~)' + (P, P, )(P~ P~) + (P, P~)(P~ P~) —(P, P2)(P~ P~) —P, S3~' P, P, —P, S,2'P, P~]

+ 2QP, [4m, m, (P, P, —S„'P,}+4m, m~(P, P, -S„'P, )+ 16m, m, m m~Q]

+ 2y[4m, m, (P, P, P, —f„'S„'S„')+4m, m, (P, P, P, —&»'S»'S„")

—4m, m (P, P, P —P, S 'S ') —4m, m (P, P, P, —P, S„'S, ')])
x (1',~ 1',~)'/(S»S, ~)'32t'@'+ sin8, terms . (3.47)

The f, term in the first square bracket vanishes at pseudothreshold and is free of kinematic P poles, while
the last parenthesis in this bracket is just right to cancel the nonsuperconvergent part of the (J=O) con-
tribution, Eq. (3.42). For the moment, then, we can ignore these terms and the sin&, terms, indicating
them by dots ( ) in what follows. We take the remaining (2P, ) term in the first square bracket and put
it into the second square bracket:

(8= 1)=h(12- V)K(34- V)

x] ~ + 2P, [-4tPS»'S„' + (f»„i„'SS}' (+P, P2)(S~'P, + 2(s -m, ' -m, ')P)

+ (S„'P,+ 2(s -m, ' m, ')P)(P—SP) —(S„'P,+ 2(s-m, '-m, ')P)(S„'P, + 2(s —m,
' —m, ')P)

+ 2QP [4m, m, (s —m, '-m~')(2P) + 4m m~(s —m, ' —m, ')(2$) + 16m, m, m, m, g]
+ 2/[4m, m (2$(t —m, ' —m~')P, +9;,'P, '-9',~'S»'S~')+ 4m, m~(2$(t —m, ' —m, ')P, + 9„'P, ' —1'„'S»'S,~')

—4m, m (2(s + m, ' —m, ')P, + 2(s, -m, ' —m~')S»')p+ 4m, m~(2(s + m, ')P, —2(s —m, ' —m~')S»')P] j
x (7» v;,)'/(S»S„)'32t'P'

=R(12- V)X(34- V)

xj ~ ~ + 2P [8»'S3~'(0»'v, ~' —4tp —'P, ')+ 2(s-m, '-m2')$(P3P~ —P)S~g )+ 2(s —&g ™g)4(PiPa —S&2

—4(s —m, ' —m, ')(s —m, ' —m, ')P']

p 16y'P, [m, m, S,, + S,,m, m, ]

+ 8$' [m, m (2(t —m, ' —m '}P,—4, y;, ') + m2 m (2(& —m, ' —~')P, —4, &»') —m2 W(2(s + m,™2'}P~
+ 2(s —m ' —m ')S„'}+m, m~(2(s+ m ' —m, ')P, —2(s —m ' —m~')S»')]] ('l» E ~)'/(S»S, ~)'32t'&P' .

{3.48)

The S»'83~' term in the first square bracket vanishes; the terms linear in (t} inside this bracket turn out to
be equal, and add so as to just cancel the Q' term in the bracket. The first square bracket vanishes en-
tirely, therefore. The remaining two brackets are both multiplied by a Q' which cancels the P' pole in the

denominator of Eq. (3.48). Vfhen kinematic t singularities are removed, the t' in the denominator goes
away, but the over-all factors of (E»f;,)' remain so that the surviving brackets do not contribute at pseudo-



1396 DONALD E. NE VILLE 12

threshold. To summarize, the (J= 1) contribution is of the form

(J I) = —Ti(12-V)K(34- V)([2m m, /Wis'+ 2m, m4/y'ag'] (-4t))(~» i'-)'/I«', (3.49)

plus the sin&, terms of Eq. (3.45), plus the f, terms of Eq. (3.47), plus the terms in the last two square
brackets, Eq. (3.48). Only the (J= 1) terms shown explicitly in Eq. (3.49) survive at pseudothreshold, and
they just cancel the (J'= 0) contribution at pseudothreshold, Eq. (3.42), Q. E.D.

F. S2 =Sg =1,X2 =+ 1, X„=O

The quantities

[(+ 1, —1[(J))1+110) —,'(1 —cos&, )+(+ 1, —l)(J) [ I —110)—,'(1+ cos&, )] (-,' sin&, ) ' (3.50)

are free of kinematical s singularities, and the linear combination with the lower sign is the one which
does not superconverge, by the rule given in the Introduction. The J=O contribution to the other linear
combination is

(J=O) =h(12-II)h(34-II)[(cosy, ,+ cosg, )(l —cos&, ) + (cosy. , —cosg, )(l + cos8, }](- sing, /2"' sin'8, )

= Tl(12- II )h(34- II )[P, —P,P,/V,','](9„A'4)'m4t 'I'/4&2 Q

=h(12- II )}i(34-II )2(t + m, ' -m ')f' m, t '"/4&2 . (3.51)

The (J= 1) contribution to Eq. (3.50) may be obtained from

(+ 1, —l~ (J~1)~1+ 110)=h(12 V)h(34 V)

x {-cos&, [1+cos(y, —X,)] sin(gs —g, ) + (siny, + sing, )cosg,

+ cos&, sin(g, —X,)cos(ga —X4)

+ sin8, [(1+cos(g, —
y.,)}(-cos(y, —X,)}—sin(g, —X,)»n(ga —y4)]]/8~2 (3 52)

The equation for (+ I, —I ( (J= 1) ( 1 —110) is identical to Eq. (3.52) except that sing, and cosy, are replaced
by their negatives everywhere. Substituting (+ 1, —11(J=1)11+110}into Eq. (3.50) and choosing the upper
sign, we get

(J= 1}=h(12- V)h(34- V)

x {sin&,[-cos(X3 —X4) + cos&, + cos&, (cos(y., —X,)cos(X~ —X4) + sin(y, , —X )sin(XB —ai) —1}]
—cos& sin(g —X4) + silly cosg4 —cos& slug cosg4

+ cos&, cos&, [cos(g, —X,)sin(g, —g, ) —sin(y, —X,)cos(g, —X,)]](J2 sin'8, ) '. (3.53)

We compare the two square brackets in Eq. (3.53}to the first and third square brackets of Eq. (3.32). We
then use the result (3.33), as well as the middle step in Eq. (3.53), to simplify Eq. (3.53):

(J= 1)= h(12- V)h(34- V)

x{sin&,[(-P,P, —4m, m, 41+ P, S„')/S„'+P, (-2f'i3 Qf,)/(f»'l„S»S34)']/(&2&»&24sin'8, )

+%(12-V)}i(34-V)[2m PP/8„' —2m, P, P,/8„' —2m, P, + 2m, P4Pi/0;, '] (f»f24S,S„)''
+ [(2 m, P, P, —2 m, P, P, )I'„'P,' + P, P, (2 m, P, —2 m, Pi)2 l,,41

+ (2m4P2P, —2m, P~P, )'ls'P, '+ P, P, (2m~P, —2m P~)2 f»$] j(41/'2)'i'/(f 3 la~ sin&, ) (S»8,4)'

=}j(12-V)Ti(34 V)2(s41)'~'[(- 2/8~)/$, 4' —2g'„P, 4if, /(f»1', 4S»Si4) ](1'»V',~)'/8VY(tf)

+ Ti(12- V)Ti(34- V)

x{[2m (S„'P,+ 2$(s+ m, '-m, '))/S„' —2 (Sm, 4P, 4—2$(s+ m, '-m, ')}/S„'—2m, P,

+ 2 m.(&,.'PB+ 24(t+ m.' -m ')}«2.'] «» i-S»SM)'

+ [2m(E, 'P —2$(t + m, ' —m, '}}—2 m,(&P, »+ 2&(t + m,
' -liL, ')}]f, '(8„'8„'—4s41)

+ [2m (O„'P, —2$(t + m', ' —m, '})—2 mm('f „'P,+ 2$(t + m, ' —m2'))] I„'(8„'8„'—4s 41)

+ P P, (2 m, P —2 m P )2'l~~ Q + Pi P, (2 m4 P, —2 na, P4)2 f,,$) /SW2 4i t "(8,283,)' . (3.54)
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The first square bracket in Eq. (3.54) contains the sin&, terms. These superconverge by themselves, be-
cause the factor of t'" cancels when kinematic t singularities are removed, but the factors of &» are left
untouched. Inside the curly bracket, Eq. (3.54}, the terms independent of P mutually cancel, leaving the
curly bracket linear in P and Eq. (3.54) free of kinematical P poles. We get

(4=1)= K(12- V)K(34- V)(sin6, terms —4[l «'(m, + m )f »+ f'»'(m, +m~)134] (S»'S~4' —4sg)
—4sl »' f'24'(2m, P, —2m P, + 2m, P, —2m, P, )

+P, P, [2f „(m,(s+m' —m~')+m (s+m, ' —m')) 2f,~

+ 2124(m, (s+m, ' —m, ')+m, (s+m, ' —m ')) 2f,,]'] /Sv2 t ~'(S»Ss4)'. (3.55)

The factors of t' ' cancel when kinematic singular-
ities are removed form the J=0 and 1 contribu-
tions, Eqs. (3.50) and (3.55), leaving expressions
which vanish at pseudothreshold, Q. E. D.

We have now completed our detailed proof that
six of the 11 meson-meson SCR's are satisfied by
Eq. (1.16) at t =(m, —m, ) .

IV. UNIQUENESS

The coupling scheme which we have just in-
vestigated in detail in preceding sections is not
unique, but is rather the simplest scheme which
will satisfy SCIt's at t=(m, -m, )'. We shall dem-
onstrate in this section that the SCR's are also
satisfied by three other schemes [Figs. 5(a}, 5(b)
and a modification of Fig. 5(a) to be described
later]; and there may exist further schemes which
we have not yet found.

Evidently the uniqueness of our couplings needs
some further investigation, but we can list some
reasons for optimism that uniqueness problems
will be minimal, and we will not be inundated with
alternative coupling choices. First of all, the
superconvergence property of couplings is not
preserved under linear superposition. Either
our original coupling, or the coupling of Fig. 5(a),
or the coupling of Fig. 5(b) will superconverge;
but a linear combination of these couplings will
not superconverge. The foregoing statement is
readily proved in the equal-mass limit. This limit
is especially simple becuase the helicity crossing
matrices reduce to v/2 rotations, and one can
work with the opened butterfly diagram without
projecting out the contributions from the indivi-
dual J's.

There is another reason why uniqueness prob-
lems may not be serious. We consider finite-en-
ergy sum rules and assume semilocal duality. "
Let us imagine that the 2 =0 couplings are crossed
to a t channel with I xI& 2 and are averaged over
some small region of the S variable. Then by
semilocal duality, what results is the t -channel
Regge residue, essentially. Now imagine the
2 =1, 2, . . . contributions similarly crossed to the

t channel and energy-averaged. These contribu-
tions must give the same Regge residue with the
same helicity dependence; presumably then, the
2 =0 and 2 & 0 coupling schemes cannot be too
different, or in other words uniqueness problems
will not be severe.

Now let us verify the superconvergence of the
"spin-one exchange" scheme of Fig. 5(a). The
first diagram of Fig. 5(a) represents our original
coupling; the second diagram differs from our
original coupling by the insertion of the following
two Clebsch-Gordan coefficients:

3 Q & 2 ~, II I a ~,') (- I)' & a m, I
—I I 2 ~) (4 I)

m,' and m,' are contracted with the quark lines
coupling to J in Fig. 5(a); m, and m, are contracted
with quark lines coming from S, and S„respec-
tively. The factor of 3 in Eq. (4.1) is just right
to give superconvergence. This can be proved
simply by studying the s-channel couplings: There
is no need to form the box or go through the
trouble of crossing to the t channel. Insertion
(4.1) amounts to a spin-one exchange between the
quark and antiquark forming the resonance J. This
exchange will exert different "forces" in channels
J=1 and 0. A relatively simple Clebsch-Gordan
calculation now shows that this new "force,"when
added to our original diagram, preserves the rel-
ative magnitude of the J=O and J=1 couplings, but
reverses their relative sign. Since the J=O and

/
5 x /

S) S~

(a) (b)

FIG. 5. Two superconvergent coupling schemes. (a)
The spin-1 exchange scheme. The dotted line represents
a spin-1 particle exchanged between the two quarks. (b)
The 3-L scheme. Each wiggly line represents an angular
momentum of 1.
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i= 1 couplings always occur squared in SCR's,
the relative sign will not affect superconvergence,
either in the equal mass or in the general mass
case, Q. E. D.

We have an immedip. te corollary to the above
for couplings to 2 & 0 mesons. A spin-one ex-
change between the quark lines in an 2 &0 cou-
pling will change the relative signs of all S =0
and 8 = 1 couplings, but again will not affect super-
convergence.

Now let us consider the coupling of Fig. 5(b),
which we dub the "3-L" coupling because of its
three orbital angular momentum lines. This cou-
pling differs from our original coupling by the
addition of a Clebsch-Gordan coefficient

(4.2)

to the vertical quark line from S, to J, and a sim-
ilar Clebsch-Gordan coefficient to the vertical
quark line from S, to J. The initial state now con-
tains three angular momenta L, = L, =L» =1. The
total angular momentum L of the initial state can
now reach the value L=3 as well as L=1. L is
obtained by recoupling L„L„and I„in all pos-
sible ways to obtain a total L: L =1@181=1or 3.
The Clebsch-Gordan coefficients do not allow L
= 2 or 0, so that parity is conserved.

Proof The pro. of is a lot easier using tensors
rather than Clebsch-Gordan coefficients. Let us
try to form various total L's from three unit vec-
tors z. (Since each L, has L„=O, L, =1, each L,
transforms like a unit vector z pointing along the
z axis. ) In order to obtain a resultant L of 0 or
2, one needs the cross product z~~, but this van-
ishes, Q. E. D. For 2 =0, L = 3 contributes only
when the external spins can add up to form a
resultant ~ 3, i.e., when S, = S, =J= 1.

The superconvergence properties of the 3-L
model may be deduced from the following theorem:
The 3 Lhelicity c-oupling for (S,X,)+ (S,X,)- (JX)
is identical to the corresponding 1-L coupling
except for (a) a factor of —,', and (b) a sign change
if ~=0.

Proof. Part (a) of the theorem is an obvious
consequence of the factors of (1/v 3) in Eq. (4.2).
As for part (b), notice that the Clebsch-Gordan
coefficient (4.2) would be just a Kronecker delta
acting on the quark line were it not for the phase
factor + 1 for m,'&~0. Now suppose ~=+ 1. Then

m,' =rn,' =+-,' necessarily, and the two Clebsch-
Gordan coefficients will contribute a net phase
(+1) (+1)=+1. Similarly for X= —1, the two
Clebsch-Gordan coefficients will contribute a net
phase (- 1)(-1)=+1. Only for X=0 will there be a
net phase change of (- 1), Q. E. D. Now let us
form an s-channel helicity amplitude by multiply-
ing together an S, + S,- (8, X) coupling, an S, + S~

- (J, p, ) coupling, and a (2J+ 1) dq„(6, ), and sum-
ming over J. If we do this for both 3-L and 1-L
couplings and compare the resulting expansions,
we find from the foregoing theorem that the d,',
and dip terms have opposite sign in the two ex-
pansions, whereas the remaining terms have the
same sign. The d,', and d'„rotation matrices are
the only ones involving sin6}, ~ Hence switching
from 1-L, to 3-L couplings merely changes the
sign in front of all sin&, terms. (We ignore the
over-all trivial renormalization by a factor of

3 .} From the discussion in the preceding section,
especially the remark at the end of part B, the
terms proportional to sin&, always vanish at the
superconvergence point t= (m, -m, )'. Hence the
3-L couplings superconverge, even in the general
mass case.

The 3-L coupling may be generalized readily
from J's with 8=0 to J's with Z&0. We take L,
= L, =1, and let permissible values of L» be
determined by L and parity (which imply L»
=Z s 1}. In the limit of degenerate internal masses
we can work with the butterfly form without pro-
jecting out the contributions from each J. We also
assume elastic scattering (m, =m„m, =m, ) so that
the superconvergence point is t = 6},=0 and all ro-
tation matrices d(8, ) on irternal lines reduce to
Kronecker deltas. Then the phase (s 1) associated
with the L,(L,} insertion will be canceled by the
phase (a 1) associated with the L,(L, ) insertion on
the same quark line. Hence the 3-L scheme super-
convergences for 2 & 0, at least in the special case
of degenerate internal masses and elastic scatter-
ing.

It is possible to combine features of the spin-
one exchange and 3-L schemes so as to obtain a
hybrid coupling scheme which also supercon-
verges. Suppose we attach an L = 1 line to each
side of each quark triangle in Fig. 5(a), just above
the points where the S, and S, lines join on to the
triangle. The first diagram will then look like
Fig. 5(b); the second diagram will look like Fig.
5(b) with a spin-one exchange line inserted above

L, and I, From the preceding discussion, the
hybrid scheme will be identical to the 3-L scheme
except for a reversal of the relative phase be-
tween couplings to J=O and J=1. Here as for the
spin-one exchange scheme discussed earlier, this
phase reversal will not affect superconvergence,
Q. E. D.

One coupling scheme which does not supercon-
verge is worth discussing, because it has been
used in a fit to Z = 1 meson decays carried out by
Colglazier and Rosner. " Motivated by a specific
model for the breaking of SU(6)~, they proposed
an (2 = 1 meson)- (2 =0 meson) + (2 =0 meson)
coupling which is a sum of three terms. In the
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degenerate internal masses limit, their first two
terms yield scattering amplitudes having the but-
terfly form, Fig, 2, with specific choices for the
interiors of the central blobs. Their third cou-
pling, however, yields boxlike diagrams with the
blobs attached to the vertical rather than hor-
izontal sides of the box. By studying the IIV-IIV
amplitude generated by this box, we have been
able to verify that the third coupling destroys
superconvergence (at least in the limit of elastic
scattering and degenerate internal masses. )

Colglazier and Rosner were able to discard this
coupling and still obtain a good fit. The data on
spin-dependence of Z =1 decays used in their fit
are still fragmentary, but this result is encourag-
ing.

V. W SPIN AND SU(3 }

In this section we will show how to exhibit ex-
plicitly the W-spin content of the several super-
convergent coupling schemes considered in Secs.
III and IV. We then discuss possible symmetries
of each scheme in the order SU(6)n and W spin,
chiral SU(3) x SU(3), and finally SU(3).

The 3 Lcoupling-s may be made SU(6)~ invar-
iant. "'7 In order to exhibit the W-spin content
of the 3 Lschem-e, Fig. 5(b), we form the vector
sum of each external spin with the orbital angular
momentum immediately adjacent to it as one goes
(say) clockwise around the quark loop. I.e., we
form JS „LSSL», S, SL,. [See Fig. 6(a).]
Call the three resultant vectors W~, W„W„because
as a matter of fact the resultants are just the usual
W spins of particles J,S„S, One easily verifies
that each W has the right magnitude and z compon-
ent to qualify as the W spin of its associated S
(or J). The z component is correct because each
L has zero azimuthal quantum number; hence W

and S have the same z component. As for the mag-
nitude, one can easily verify the usual "W-S flip. "
The magnitude of W can be only 0 or 1 because it
must couple to a quark loop. If S=0, then W=1,
since L=1. If S=1 and X=O, then W=O because
(we use a tensor notation, with e representing
S and z representing L) zxz =0 when A =0. If S
=1 and A. = a 1, then W=1 because e z =0. There-
fore, Whas both the correct magnitude and the
correct z component to be the W spin of S ~

With a bit more labor, one can verify that the
three S, SL, =W& Clebsch-Gordan coefficients in
Fig. 6(b) can be deleted. They are canceled by
the numbers which come in when one recouples
Fig. 5(b) to obtain Fig. 6(b). Hence the 3 L-
vertex equals a simple quark loop with three W-

spin legs attached. We conclude that the 3-L
scheme is consistent with SU(6)v invariance for
couplings.

We can only conclude that the 3-L scheme is
consistent with SU(6)v. The 3 Ls-cheme does not
require SU(6)~, because SCR's allow SU(6)n to be
broken by scale factors. SCR's are homogeneous
in the couplings VII- J and VV- J. Therefore,
we could multiply every VII -J coupling by a com-
mon scale factor. The SCR's would still be satis-
fied, but SU(6)v would be broken. It might be
possible to rule out such scale-broken SU(6)~ by
considering each external line as an internal line
in some diagram with ~ 5 legs, then writing an
SCR in the (mass)' of what used to be the external
line.

Our original "1-L"coupling, Fig. 3, can also
be recoupled so as to display manifest W-spin in-
variance [though not consistency with SU(6)~] .
First we insert two adjacent angular momentum
lines into the 1 Lvert-ex as in Fig. 6(b), where
L, = L, =1. This insertion changes nothing, be-
cause the two lines add zero total orbital momen-
tum to the diagram. [Proof: Recouple as in Fig.
6(c). The total added orbital angular momentum
can only be zero, as shown in Fig. 6(c), because
forming an orbital angular momentum of one is
analogous to forming z x z.] Now diagram 6 may
be recoupled so as to reveal the W-spin content,
in the same manner as diagram 5(b) was recou-
pled. One will obtain Fig. 6(a) with (L„L»,L, )

relabeled (L„L„L),and a change of coupling
order at the (W~W, J) vertex. Instead of
(WzA~ JXL, O) at this vertex we have (W~X~ L, 0JA) .
These two Clebsch-Gordan coefficients differ by
a phase factor (- 1)" ~ (the 1 coming from L~
=1). This phase is enough to destroy consistency
with SU(6)~, though W-spin invariance still holds.

The 1-L vertex is consistent with the weaker
symmetry chiral SU(3)x SU(3)."

Proof. The factor (-1)" ~ is (+ 1) for cou-
plings S,S,-II or V, and (- 1) for couplings S,S,
—V, . V„V,+II, and V, -II belong to different
irreducible representations of chiral SU(3)x SU(3).
Therefore, this symmetry does not relate the
S,S, —V, couplings to the S,S,-II or V, couplings,
Q. E. D.

The "spin-one exchange" vertex, Fig. 5(a), is
not consistent with chiral SU(3)x SU(3).

P~oof. Recall that the linear combinations
(V, + II) and (V, -II) belong to different irreducible
representations, and that the spin-one and 1-L
vertices have opposite relative phase between the
S,S,- V and S,S,-II couplings. Therefore, a
chiral-invariant 1 Lcoupling V, V —-(V, + II) be-
comes a chiral-noninvariant spin-one exchange
coupling V, V - (V, —II), Q. E. D.

Evidently, from the foregoing discussion, it
is not too hard to construct SCR schemes which
violate the higher symmetries SU(6)~ and chiral
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FIG. 6. (a) The 3-L vertex recoupled to reveal its 8'-spin content. (b) The 1-L vertex adjusted for conversion to
W-spin. (c) Figure (b) recoupled.

SU(3)x SU(3). W-spin symmetry, on the other
hand, seems almost impossible to avoid, in any
scheme where the external particles are attached
directly to a quark loop. The same remark can
be made about the generalization of W spin pro-
posed by Melosh for couplings to 2 & 0 mesons,
a generalization where the pion is allowed to have
~=*1as mell as W=O."'" Consider hom the
coupling of Fig. 5(b) should be modified to accom-
modate 7 &0. We must relabel the 8-line 8 (the
total quark spin of the intermediate resonance),
relabel the L„-line Se (say), and insert an 2
line. One end of the Z line couples to 8 to form
J; the other end couples to S+ to form L». By
parity conservation, 2 = L»+ 1, therefore Sz = 1.
Now suppose 8, is a pion. One may exhibit ex-
plicitly the 8'-spin content of the diagram by re-
coupling as for the 2 = 0 case, except now W,

=S, (SSz rather than S,8 LI2' Of cou~~e ~2
again, as for the Z =0 case, but@'„may now
take on the values + 1 as well as 0, because S,
may equal + 1 as well as 0. Hence we obtain the
generalization of pion W, suggested by Melosh,
Q. E. D. Of course the present approach also

generalizes 5'spin even when none of the external
particles is a pion. Also, the butterfly form,
Fig. 2, yields the selection rule

~ &2,
~

~ 1 pro-
posed by Melosh for decays of 2 ~ 1 mesons. The
quark-antiquark pair which scatter to form 8 can
carry at most one unit of helicity. Hence (2, j

~ 1,
which implies that

~
&Z,

~

~ 1, since S, and S, have
2 =0.

Now let us consider the constraints which SCR's
impose on the SU(3) structure of couplings. (The
same remarks will apply to all three schemes. )
Because of scale-breaking effects, SCR's relate
only couplings of mesons having the same hyper-
charge [Cf. the discussion of scale-broken SU(6)~
earlier in this section. SCR's are homogeneous
in the couplings S,S,- (Y= 1 meson) and S,S,- (1'=0 meson). Therefore, every S,S,—(Y
= 1 meson) coupling may be multiplied by the same
scale factor without violating any SCR; but SU(3)
is broken thereby. ] For example, SCR's relate
the couplings K*K-p, K*K-e, and K*K- Q, but
do not relate these couplings to the K~m-K*
coupling. The first three couplings are related
because they must emerge when one inserts a
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complete set of intermediate SU(3) states into the
SU(3) quark loop for (say) IC*I7-K"17. [Compare
the way in which a complete set of spin inter-
mediate states was inserted in Fig. 3(b}.] There-
fore, the first three couplings may be expressed
in terms of two parameters, an over-all scale
plus the Q-co mixing angle. " SCR's do not de-
termine the mixing angle, because for any mixing
angle Q, u&, and p constitute a complete set.

This completes our investigation of meson-
meson 2 =0 unequal mass SCR's, their unique-
ness, and the symmetries which they respect.
Further work now in progress mill extend the
approach of this paper to scattering amplitudes
involving external photons and fermions.
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APPENDIX: THE s- TO-u HELICITY CROSSING MATRIX

In this appendix we calculate the phase of the
s-to-u channel helicity crossing matrix. This
phase may be calculated from the corresponding
phase for s-to-t channel crossing, but the calcula-
tion involves something more than a simple re-
labeling.

According to Cohen-Tannoudji, Morel, and
Navelet (C-TMN), the s to tchannel -cro-ssing
matrix is'

C-TMN use helicity amplitudes which are defined
without the "particle 2" factors introduced by
Jacob and Wick. ~ If we indicate Jacob-Wick
amplitudes by omitting any subscript, we have

(As)

S~S2- S3S4 )

S4S2- S3S, )

(A4)

whereas we want the phase for a reaction with di-
rect and crossed channels

SiS2 S3S4 )

S,S4- S352 .
(A5)

Since S,S, are the particles which cross in reac-
tions (A4), whereas $,$~ are the particles which
cross in reactions (A5), we should interchange
labels 1 and 2 in Eqs. (Al) and (A2). Then
t=(p, —p, )' becomes u= (p, —p,)' and we get

and a similar formula for the t-channel ampli-
tudes. (We have been using Jacob-Wick ampli-
tudes throughout the body of this paper. ) When we
insert the additional phase coming from Eq. (A3)
into Eqs. (Al) and (A2), we find that the s to t--
crossing phase is independent of the A.,'. Hence
this phase will cancel out of the SCR, Eq. (1.8),
and me can ignore this phase, as we have done in
Eq. (1.1).

Now let us consider the phase for s-to-u cros-
sing. The C-TMN phase, Eq. (A2), is for a re-
action with direct and crossed channels

where

(A 1)

P = (o+2S2+2$~)+ (X2 —X3)+ (X3 —X3) + (X~ —X~) .

P' =cr'+2S, +2S4+Aj —&2+~3 A3+ ~4 ~4)

cr'=1 if S, and S4 are fermions; cr'=0 in all other
cases. The cu, follow from the y,- by interchang-
ing 1 and 2 everywhere; e.g. if

(A2) cosy, =f(m„m„s, t), (A8)
@=1 if S, and $4 are fermions; o =0 in all other
cases. The first two parentheses on the right in

Eq. (A2) come from C-TMN, Table Xl (except we
have replaced unprimed helicities by primed
helicities, because C-TMN use primes to denote
t-channel helicities). The last two parentheses
in Eq. (A2) come from a double use of the formula,

This double sign change is necessary because we
are using Wang's crossing angles x,. in Eq. (Al),
rather than C-TMN's, and the two differ by a
change of sign of X, and y4.

' The subscript C in

Eq. (Al} (short for C-TMN} reminded us that

then

cos~, =f(m„m„s, u), (A9)

@$,- $3$4 q

S~S, $382 .
(A10)

Note the differences in coupling order between
reactions (A5) and (A10}. The amplitudes

etc.
Equations (A6) and (A7) are still not what we

want, because these equations are for a reaction
with direct and crossed channels [we relabel
1—2 in Eqs. (A4)]
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x K)„~ (L,'e)M(A, ~ ~ A, ) . (A12)

The A, are spinor indices on M function M. e is
a rotation through m about the y axis, needed for
final-state particles. L; is a Lorentz transforma-
tion which maps the center-of-mass unit four-
vectors x, y, z, t into (respectively) x, a unit four-
vector along t), xp„ the unit four-vector
(~p;~/m;; y;P, ), and P;/m;. L,' is identi. cal to L, ,
except that L,'. maps y into p, ~P, =-py~P3 There-
fore, L, and L,' must be simply related, and to
determine that relationship we decompose L,.
following Moussa and Stora or C-TMN Eq. (II.5):"

L, =B;0;c'. (A13)

B, is a boost which maps i into p, /m, but leaves
Y alone. e' is a rotation by m about the Y axis
(for particles 2, 4 only) which cancels a corre-
sponding rotation in 0, but again leaves j alone.
The only factor which affects y is the pure rota-
tion 0, , which maps z onto p, and y onto a unit
vector along p, &&p, . In order to change 0,. into a
rotation mapping z onto t), and y onto a unit vector
along -py&p„we can simply preface 0,. with a
rotation by m around the z axis, and we get

L,'= B,A, exp(-in J,)e' . (A14)

Now we commute the new exp(-ivy, ) factor through
E and E, using

exp(-i', )(e or e') = (e or e') exp(+iv J,) . (A15)

Equation (A15), following from the fact that e and
c' are 180' rotations about the y axis, hence re-
verses the sign of every J, eigenvalue. One then
easily finds that S„,~ (L,') =&„,~ (L;)(-I)'
Hence from Eqs. (A11) and (A12),

&&,'&,'8(H,
( ~,'~2)c = &&,'&,'[H. l X&g) c(-I} ' ' '' 4

= (-1) " (X~A„'8'~ H, [ A28()c .

(A16)

I.e., the two amplitudes both equal the same
boosted M function, except for a phase. This is
the relation we need. If we have both amplitudes
in the form of a partial-wave series, then of

(gA.,'[H, ( X,'X,')c and (A,'A,'(H,
( I,'X,')c are not iden-

tical, even though there are no effects due to the
"particle 2" factors of Jacob and Wick. In fact
these two amplitudes are related to the same M
functions by two slightly different sets of boosts
and rotations. From C-TMN, Eq. (II-4), we have'

( s&4IH. t ~i%) c = &~,x;(Li)&~,q(L. )&~,q(Q&)

&&K)„gt(L~e)M(A, . A~), (All}

course the d 's on the right- and left-hand sides
of Eq. (A15) have the arguments 8'= v —8 and 8
respectively, as shown, because interchanging
X,' and A.,' changes the center-of-mass scattering

A A P

cosine from cos 6= p, ~ p, to cos 6' = p, p, = -p, p,
= cos(m —9). The distinction between 8 and 6}'

is not relevant to our present application (since
we do not want to partial-wave expand

&X tX,
' 8'

~ H, ~ X,'X', ) c, but merely want to eliminate
it from a crossing relation); but the distinction
does become relevant if one wishes to check that
Eq. (A16) gives the proper Bose or Fermi sym-
metry under interchange when S, =- S,.

Had we chosen to interchange final rather than
initial helicities, we would have had to map j
into p,. xp~ rather thanp, xp, . Since p, ~p, =p, xp4,
we have as an immediate corollary of Eq. (A16)

(A17)

i.e. , interchanging initial-state particles gives
the same phase change as interchanging final-
state particles.

Now we return to Eq. (A6), use Eq. (A16) to
interchange the initial-state particles in the s
and u channels, use Eq. (A3) to switch to a Jacob-
Wick "particle 2" convention everywhere, and get

&x,x, ( H„( x,x,) = II 2, , , (~,}(-I)'&~,'x,'[H, [ ~,'~,'),
(A18)

where q = 0'+ 2$, + 2S4+ p' —~. a' and-~, . are de-
fined in Eq. (A7),

In Sec. II we show that the su part of our direct
channel amplitude is [except for a phase (-1) ]
just the st part relabeled 3 —4. For the proof
that the su part superconverges, we would like
that part to remain just the st part relabeled
3—4, even after the crossing matrix is applied.
The crossing matrix in Eq. (A18), however, is
not just the st crossing matrix relabeled 3 —4.
[For one thing, we relabeled 1 —2 in Eqs. (A8)
and (A9), not 3 —4.] The latter matrix would be
(we drop phase factors which cancel out of SCR's
anyway)

(;)(-I)"'"'
i i

(-I)' " IId . .(;)(-1)'"
d g. ), .(~;)(-1)' ""

t
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(In the third line we used parity conservation to
relate two u-channel amplitudes having helicities
of opposite sign. ) Thus the actual crossing matrix,
Eq. (A18), differs from a 3 —4 permutation of
the st crossing matrix only by an extra term
A.

' —p. added to q. As mentioned following Eq.

(2.9), the A' just cancels the extra (-1) phase
of the direct channel su part; the p, multiplies the
crossed su part by an extra phase, but does not
affect its superconvergence. (In comparing this
appendix to Sec. II, note that we dropped the
primes on direct channel helicities in Sec. II.)
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