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Light-cone structure in the cavity approximation to the bag theory
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It is shown that the imposition of boundary conditions does not change the light-cone singularity of the free
Dirac anticommutator function in three dimensions. A system of noninteracting quarks confined to a rigid
cavity therefore exhibits Bjorken scaling.

In a recent paper' the problem of the deep-in-
elastic scattering of leptons off of a "bag"' ' was
discussed in an approximation which ignores much
of the dynamical nature of the bag's boundaries.
The approximation, which was developed in Ref.
3, treats the bag as a (spherical) cavity of fixed
radius Ro nailed down at some point in space. The
quantum modes in the cavity are populated with
colored quarks so as to make possible construction
of hadrons with the correct quantum numbers. The
radius is not a free parameter but is fixed in terms
of the field excitation as described in Ref. 3. For
brevity we shall refer to this as the cavity approx-
imation. The structure functions of deep-inelastic
scattering were extracted by calculating highly
virtual forward Compton scattering off of the oc-
cupied modes in the cavity.

The problem we wish to discuss here arose in
that analysis but is probably also encountered in

a semiclassical treatment of inelastic Compton
scattering from any confined system. It arises
within the cavity approximation and sheds some
light on the validity of this approximation in the
general context of the bag model.

The analysis of (I) was carried out in coordinate
space, where a crucial role is played by the anti-
commutator function which carries the excitation
from the point (x„t, ), where the virtual photon is
absorbed, to the point (x„I, ), where it is emitted.
(Henceforth we shall refer to the anticommutator
function, somewhat loosely, as the propagator. )
The approximation dictates the use of the "cavity
propagator" —which, in particular, satisfies bound-
ary conditions at the cavity walls. In (I) the cavity
propagator, S,(x„I„;x„ t, ), was replaced by the
free-space propagator S(x„t, ; x„t, ). It was shown
that in one spatial dimension the two are equivalent
in the Bjorken limit; however, the replacement
was not justified for the realistic three-dimension-
al case.

Here we show under very general circumstances
and in three dimensions that the imposition of

boundary conditions does not change the light-cone
singularity of the free propagator, and that there-
fore the cavity and free propagators yield equiva-
lent structure functions in the Bjorken limit. The
discussion is based upon a multiple reflection ex-
pansion for the cavity propagator, which express-
es the propagation from x, to x, as a sum over
successive reflections from the boundaries. Only
the direct, lightlike propagation from x, to x, con-
tributes in the Bjorken limit.

The situation is somewhat analogous to the ca-
nonical light-cone expansions for conventional in-
teracting field theory developed some years ago. '
In the cavity approximation the boundary acts like
an external c-number field. The interactions of
the quarks with the boundary are "soft" in the
sense that they do not modify the leading light-
cone singularity. The same conclusion was
reached for certain conventional field theories in
Refs. 5 provided the effects of fluctuations (renor-
malizations) are ignored. Fluctuations induced by
the dynamics of the bag's boundary are the "re-
normalizations" which we are forced to ignore.
The bag model deviates from the analogy because
the wave function of the target (e.g. , proton) is
known in terms of the fields being studied —there-
fore the structure functions can be explicitly cal-
culated in this model. '

Although we work in three spatial dimensions
with Dirac fields and a spherical cavity, it will be
obvious to the reader that our conclusions pertain
to Bose fields as well, to other numbers of di-
mensions, and to any cavity in which it is permis-
sible to take (q')'~' (the virtual photon mass) larger
than the principal curvatures everywhere on the
cavity boundary.

Another system which may be studied with these
methods is the "cavity approximation" to the SLAC
confinement model. ' There, quark fields are con-
fined to a (nearly} two-dimensional closed surface
in three-dimensional space. In a "cavity approxi-
mation" the surface would be treated as a fixed
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c-number function. Because the quarks are ex-
cluded from the interior of this shell there are no
lightlike paths between points on the surface and
the propagator of this model in fact vanishes on
the light cone. Therefore Bjorken sealing will not

emerge from a "cavity approximation" to this
model.

We now return to the bag. The spin-averaged
structure functions for electroproduction off of
a cavity containing quark radiation are given by'

IVY dt d xy d x2$ xy t xp 0; q
bag bag

x (T
~ q(x„ t)y„QS, (x„ t; x„0)),q(x„0) —q(x„0)y, QS,(x„0;x„t)) „Qq(x„ t) ~ T) .

Q is the quark charge matrix. 4(x„ t; x„0;q) is
a familiar phase:

P(» f .x I .q)
— ea((tl 2)(--( l'(xl-x2)

q(x, t) is the cavity quark field and S,(x„t„'x„t, ) is
the antieommutator function constructed from
q(x, t):

S,(x„t„x„t, }=- J(q(x„ t), q(x„ f,)j.
Other structure functions, e.g. for neutrino pro-
duction, have similar expressions.

Important regions of coordinate space are de-
termined by the phase f which modulates the cur-
rent correlation function in Eq. (I), and by the
condition that the anticommutator is causal,

where P(x„~x, —x, ~;x„0;q) is the stationary phase
which multiplies light-cone contributions,

g(x» ~x, —x, ~;x»0;q)=e '"') "~ "2( . (8)

Consider, now, an experimental measurement of
8'„„with a percentage resolution of 6 in q'which
we take to be Gaussian. The experimental struc-
ture function (W„„) is a weighted average of the
one we calculate:

2 2()2
(

o t) e-(e -a'0)2/52e~gg
(

io t)avm

Contributions like E(I. (7) are damped by a factor

e -( aqor ))2 I 4

In the Bjorken limit, the virtual photon's energy
becomes infinite (qo- ~) with

f(I[ =q'+Mt,

$-=-q'/2P q.
If (x, —x, ) is nearly parallel (I and if t is nearly
equal to

~ x, -x,
~

then the phase (() (x„t„x„t„q)'
remains stationary in the limit. Singularities in

S, along the light cone in directions tangent to the
vector q therefore contribute to the structure func-
tion in the limit.

In the case specifically of interest to us the

propagator will also receive singular contributions
on surfaces within the light cone but isolated a
fixed distance, T, away from the light cone:

to fx, —x, f+T. (6)

g(x„ t;x„0;q}=e" g(x„~x,—x ~;x~, 0;q), (7)

It is necessary to review arguments that the light-
cone behavior of 8, is dominant in the Bjorken limit
even in the presence of singularities elsewhere in

coordinate space. '
Contributions to S, which satisfy Eq. (6) are

multiplied by a phase which is not less oscillatory
than

in the Bjorken limit. Only values of T ~ 1/q are
important. In this sense the light cone dominates
the Bjorken limit.

We proceed now to construct an expansion of the
cavity propagator about the light cone. The con-
struction imitates Huygens's principle for the

propagation of light. If a disturbance occurs at
a point (x„(,) in the cavity it can propagate to the
point x, in a time ht = (t, —(, )

= (x, —x, (. This
propagation is indistinguishable from propagation
in free space. Modifications due to confinement
occur with successive reflections of the distur-
bance from the cavity walls. This is shown sche-
matically in Fig. 1, where Path I is the lightlike
path and Path II is the shortest path via reflection.
For fixed x, and x, no reflection arrives sooner
than some fixed time T(x„x,) after the direct ray,
so they all satisfy Eq. (6) with T =T(x„x,). The
remainder of this section is concerned with making
this simple argument quantitative and dispensing
with the dependence of T(x„x,) or x, and x, .

The framework for this discussion is a multiple
reflection expansion for the cavity propagator.
We consider (massive) Dirac fields in three spatial
dimensions, obeying bag boundary conditions. '
Other fields or other boundary conditions are to
be treated similarly. The propagation function of
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interest is the anticommutator function defined by
Eq. (3). It satisfies the following boundary condi-
tions:

S,(x„i;x„t)=y'5'(x, -x,),
(in, ~ y —1)S,(x„t„x„t, ) = 0

if x, is on the cavity boundary.

(10)

Here n, is the interior unit normal at the point x,
on the boundary. Of course S,(x„t, ;x„t, ) obeys
the Dirac equation inside the cavity

(ifi, m-)S, (x„t„x„i, ) = S,(x„t„x„t,)(-iy, —m) = 0
(12)

and possesses the symmetry property

S,(x» t» x» t, ) —S,(x2, i2, x» t,) .

The cavity propagator obeys an integral equation

relating its values interior to the cavity to its
boundary values. The kernel is the free-space
Dirac anticommutator function S(x„i,;x„t, ) which
obeys Eqs. (10), (12), and (13) but not Eq. (11):

iS,(x„ t, ; x„t, )

= iS(x„ t, ; x„i, )

d7 d'$S x» t» ~")S~(~, Tyx»t ). 14

Here $ is a point on the cavity boundary. The (
integral covers the bag boundary at each time v.
This equation is continuous as x, approaches a
point on the boundary. Equation (14) is valid only
for I, ) I For .t, (t„S,(x„t, ;x„t, ) may be defined
from Eq. (13). Equation (14) may be iterated to
obtain the multiple-reflection expansion for
S,(x» t» x» t, )

iS,(x„i»x» t, ) =iS(x„t, ;x„t,)+ dT d ]S(x„t» $, 7')S($, 7", x„t, )
t2

7'

dT dT' d'( d'('S x„t„(,~)S $, 7; &', 7')S(&', 7'; x, ) t, )+

The physical interpretation of Eq. (15} is simple
and important: The influence of an event at x,
and t, upon a point x, at time /, proceeds by suc-
cessive reflections from the boundary. The terms
in Eq. (15) represent successively zero, one, two,
etc. reflections. For a massless field the free-
space anticommutators are 5 functions on the ap-
propriate light cone and the intuitive picture of
propagation by specular reflection is exact. For
a massive field dispersion complicates the intuitive
picture but not the proof of light-cone dominance.

To proceed we note from Eq. (15) that
S,(x„I„x„t2)—S(x„'i, ;x„f,) vanishes unless there
are points (f, r) on the bag's surface which are both
in the backward light cone of (x„t,) and in the for-
ward light cone of (x„t,}. Figure 2 shows the re-
gion (for one spatial dimension, higher dimensions
being entirely analogous but harder to draw} for

fixed x„ inside of which S,(x, ty x2 t2) and
S(x„t„x„t,) are identical. For all points (x„t,)
inside the rectangle ABCD the propagators are
identical. In the Bjorken limit only points tangent
to the light cone about (x„i, ), parallel to q, and
at distances of order I/q about the light cone will
contribute. In Fig. 2 this is the region bounded by
the line IIII' above, the section of the lines AB and
AC below, and the cavity boundary LL' elsewhere.
Throughout this region, except for the small region
near the cavity boundary, the cavity and free-space

x,A X

FIG. 1. Lightlike path {Q and shortest path involving
reflection {IQ bebveen two points x~ and x2 in a spherical
cavity.

FIG. 2. Space-time domain in two dimensions within
which cavity and free-space propagators are identical.
If (x, t) is within the rectangle ABCD the anticommutator
~, (x, t;x2t&) is identical to the free-space anticommuta-
tor function.
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propagators are identical. To complete the proof
that S,(x„t„x„t, ) may be replaced by S(x„i„'x„i, )

in the Bjorken limit it is necessary to show that
the contribution of the small region where a re-
flection is important (bounded by the line BD be-
low, by HH' above, and by the cavity boundary LL'
at the side) vanishes in the Bjorken limit.

Consider some large (fixed) value of qo(-q ) and
define a sphere within the cavity by the relation

(0)

r & R(e) = (1 —e)RO . (16)

The integrals of Eq. (1) may be divided into three
regions: (1) ]x, (&R(e), )x, )&R(e); (2) Ix, l&R(e),
x, ~

&R(e) or vice versa; and (2) x, &R(e), x, &R(e).
Consider region (1): All paths from x, to x, via
reflection from the boundaries satisfy

Ii, —i I& Ix, —x, I+2«.

/

/

/

/

y

(b)

The arguments regarding light-cone dominance
presented above indicate that only (x, —x,)'a 1/q'
will contribute to 8'„, . We therefore choose
4e'R, ' &1/q'. No reflection is close enough to the
light cone to contribute; by Eq. (15) S,(x„i,; x„f,)
and S(x„t„x„i, ) are identical for region (1).

If we let q'- ~, taking E' to zero subsequently,
R(e)- R, and all points in the cavity satisfy the
conditions for region (1). However, we must ex-
amine the possibility that the other regions [(2)
and (2)] contribute so singularly to the structure
function that they do not become unimportant even
as e- 0. This is excluded if the first reflection in

the multiple-reflection expansion is no more singu-
lar than the free-space anticommutator function.
Since the free-space anticommutator contributes
a finite term to the structure function, the reQec-
tions will contribute finite terms multiplied by the
volume over which reflection remains important
and this vanishes as e-0.

This argument employs the method of images.
For region (2) both x, and x, are very near the
cavity boundary. For case (2) one coordinate,
say x„ is near the boundary. Only points of re-
flection nearby x, yield nearly lightlike paths from
x, to x, . This is illustrated in Fig. 3. In both
cases for small e the distance from the points to
the boundary is small compared to the radius of
curvature of the boundary (here R,) and we may re-
place the boundary by the appropriate tangent
plane (see Fig. 3). A rigorous justification of this
approximation is beyond the scope of this paper.
It is discussed for the scalar wave equation by
Balian and Bloch, ' and should be familiar to the
reader as the consequence of standing very close
to a nonplanar mirror. In this approximation the

FIG. 3. (a) Method-of-images construction when one
point is near the boundary. (b) Method-of-images con-
struction when both points are near the boundary.

cavity propagator is given by

C( |l lt 2s 2) ( lt I! 2s i2)

+ idS(x„ l„' y, t, ), (17)

where y is the image of x, through the tangent plane
and n is the unit normal to the tangent plane. '
Equation (17) may be obtained from Eq. (15) by
replacement of the boundary by the tangent plane.

Clearly the modification of the free-space prop-
agator induced by the cavity boundary is as singu-
lar as but no more singular than the free-space
propagator. The contribution of points in regions
(2) and (2) therefore remains bounded and goes
to zero in the Bjorken limit as e - 0.

This completes the discussion of the equivalence
of the free-space and cavity propagators in the
Bjorken limit.
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