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The transition radiation detector for ultrarelativistic particles with a multifoil radiator is studied in the

following aspects: x-ray spectrum, y dependence, interference effects, saturation at high y, effects of
irregularities, and multiple scattering. The analysis is simplified by reducing the various parameters to
essentially three dimensionless quantities: a scaled Lorentz factor I, a scaled frequency v, and the ratio 7 =
foil spacing/foil thickness. Large threshold effects due to interference are predicted which can be used to build

a threshold detector or to measure the x-ray index of refraction of a material. Theoretical curves are given.

Photon statistics, optimization of the detector, and computational method are discussed briefly.

I. INTRODUCTION

Transition radiation is the electromagnetic ra-
diation that is emitted when a charged particle
traverses the boundary between two media of dif-
ferent dielectric or magnetic properties. ' Like
Cerenkov emission, this process depends on the
velocity of the particle and is a collective response
of the matter surrounding the trajectory. Like
bremsstrahlung, it is sharply peaked in the for-
ward direction if the particle is ultrarelativistic.
In this case, the major part of the radiated energy
is in x rays. The mean number of photons per
transition is small, of the order of the fine struc-
ture constant z. But its sizeable y dependence

(y =E/m is the Lorentz factor of the radiating par-
ticle) provides a widely discussed possibility of
designing a very high energy particle detector
which could distinguish particles of different mass-
es at a given momentum, or which could measure
the energy of particles of known mass when con-
ventional detectors become inoperative (e.g. , at
y ~ 1000).

The main object of this paper is to provide a
concise general formulation of the theoretically
predicted yields from a stack of foils, which can
be useful for the design of practical detectors,
and to clarify the vast amount of theoretical dis-
cussion found in the literature. ' 4 We write it as
"self contained" as possible. Special emphasis is
put on the interference effects, which can enhance
the y dependence. In particular, we stress the
importance of the thresholds, i.e., sudden jumps
in the curve for energy radiated versus y. These
thresholds may be used for a threshold detector,
but, anyway, cannot be ignored and are interest-

ing theoretically.
These thresholds could provide a determination

of the plasma frequency of the radiator material.
Also important are the saturation limits at very
high energy, which are due to the "formation-
zone" effect and to the nonzero gas density be-
tween the foils.

In Sec. II, we give the theoretical formulas for
transition radiation in the x-ray region from a
single surface, a single foil, and a stack of N
foils. These include absorption effects in the foil
and gaps.

In Sec. III, we give the qualitative features of the

yield integrated over angles in terms of the two

dimensionless variables v and I' and the parame-
ter y. For nonvacuum gaps, we give a simple
transformation on the quantities y and (dpi which

allows us to use the same yield function as in the
vacuum case.

II. GENERAL THEORETICAL FORMULA OF THE

DIFFERENTIAL Y IELD

A. Transition radiation at the boundary

of two semi-infinite media

When a charged particle passes the boundary be-
tween two media of different dielectric or magnetic
properties, radiation is emitted because the Cou-
lomb field of the particle has to readjust itself. '

Let IE,(r, t)i, H, (r, t)) be the equilibrium solution
of the inhomogeneous Maxwell equations in medium
1, i.e. , the Lorentz-transformed Coulomb field of
the particle, and (E» H, ) the same in medium 2.
(E„H,) and (E„H,) do not match at the boundary.
In order to satisfy the continuity equations, we
must add, in each medium, respectively, a solu-
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e (co}= 1 —Gd p /(d = 1 —( (2.1)

where ~p is the plasma frequency of the medium':

cup' = 4wan, /m, (2.2)

(n, =electron density, o. =+). A partial density p
of an element ~X" gives the contribution

~p' =4vo. ZA 'Kp/m, (X =Avogadro number)

= 2(Z/A)(p/g cm ')(21 eV)'. (2.2')

u is of the order of y~~. Thus, under the condi-
tions

y 1; $,', $,'«1; 8«1
(8 is the angle between the particle trajectory and

the direction of observation), the energy radiated
per unit solid angle, per unit frequency interval
can be approximated by'

tion of the homogeneous Maxwell equations. This
one is transition radiation. Let us denote it by

(Ez, Hz). With the Poynting vector we get the dif-
ferential energy flux. The complete expression is
rather complicated. But at high y, most of the en-
ergy is in x rays, and primarily emitted in the for-
ward direction. For these x rays, the material
medium can be considered as an electron gas, with

a dielectric "constant" given by

e ((u, 8)=
y

2 +82 +( 2
y

2 + 8 +
(2.5)

e '~ is the absorption factor in the mth layer and
the phase retardation due to the difference of

speeds of the particle and the wave in this layer:

we can say that the electromagnetic field in medi-
um i is the sum of PE„H;j (solution of the inhomo-
geneous Maxwell equations) and the IE~R, H~R)'s nec-
essary to match the fields at the different boundar-
ies. (E'„,H'„) is the radiation field that would be
emitted by the jth interface alone, modified, how-

ever, by all possible refractions and reflections
on the n boundaries, and also by the absorption in
the media.

In our case (&g» ep, y» 1) we can neglect (i)
backward emission, (ii) reflections on the bound-

aries, and (iii) change in 8 because of the refrac-
tions. Therefore, the amplitude of the radiation
which emerges from the last boundary is propor-
tional to

ff

E(, H)=pe'(, 6)e p(-P ~ ig ), i2.4I
f=a fft& j

e' is the single-surface amplitude. 6), of length 8,
is the difference between the unit vectors repre-
senting the photon and particle directions. Up to
a numerical factor

g~gg ~2 y 2+8~+( 2
y 2+82+$ = col /v —k ~ I„, (2.6)

We see from this expression that the radiation is
concentrated in a narrow cone, 8' being of an or-
der ranging from y + $y to y + $2 As long as
this cone is completely contained in the second
medium, there is no dependence on the angle of
incidence of the particle relative to the boundary

(Fig. 1).

k„=~ear= (1 —~$ ')~,
I/v= I+y /2,

k T =k I cos8=k I„(I--,'8'),
we get

(2.7)

(2.8)

(2.(

where k is the wave vector in medium m and l
the particle path in this layer. Using

B. Transition radiation emitted during the passage

through layers of different media &p =(y '+8'+( ')el /2. (2.10)

Let us consider the case of n parallel surfaces
separating n+ I different media (Fig. 2). We label
the surfaces 1, 2, . . . , n and the media 0, 1, . . . , n.
Using the same method as for one single boundary,

In writing (2.9), we have assumed that all the I 's
are collinear, i.e. , we neglect possible multiple
scattering of the particle. It will be useful to con-
sider y as the sum of a "space term"

electron
trajectory

0 electron
trajectory

FIG. 1, Angular distribution of the single-surface
intensity. FIG. 2. n-interface radiator.
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(y 2+82)oII /2 (2.11) III. PRACTICAL QUALITATIVE STUDY OF THE YIELD
INTEGRATED OVER ANGLE

I (dp /2@i ~ (2. 12)

which vary inversely with ~.
Let us introduce the "formation length"

z (8) =(y 2+82+$ ') '2/(o. (2.13)

If I «z (8}, the two boundaries of the mth medi-
um interfere in such a way that we can ignore the
mth layer. This will be called the "formation-
zone effect. "

and a "mass term" proportional to the mass thick-
ness [see Eq. (2.2')j, Preliminary remarks

Although it is possible to measure not oniy the
photon energy but also 0—which is very small in

our case of interest —we shall study here only the
flux integrated over angles, which is much easier
to measure (thus losing some information).

An interesting feature of the y dependence of
dW, /dry is that it is always increasing with y.' In-
trodu. cing x=y '+8', we have

dW a " z-y '
du& v „-2 (z+(,')'(z+(2')'

Application (a): Yield from one foil in a gas x (interference factors) . (3.I)
Here $, = $2 and e'(oI) = -~e(u&). Whence (neglect-

ing absorption}

SI~ n g e
~

0 I~

d'W

single t'oit

x4 sin2(Ip, /2). (2.14)
d ~ d ~ ~~ I

~ 2
l ~ ~

d W

single surtaee

Application (bJ: Yield from a stack of N foils
of constant thickness and spacing

Grouping first the amplitude 2 by 2 in foil ampli-
tudes and then adding coherently these N ampli-
tudes, we get ~l, = (~,2 ~,2)22, ~p, =0 (vacuum) (3.2)

The interference factors are functions of x only
(not of y and 8 separately) and are positive. The
above formula then clearly defines a monotonic
function of y. If one of the media is vacuum,
dW/d&u increases logarithmically with y when y

If +P, and up~2s 0, dW/d~ reaches a finite
1im it when y - ~ (satu ration).

In fact, in the general formulas for the yield,
(2.4), (2.5), and (2.10), y and the two plasma fre-
quencies appear only in the combinations y '+&,'
and y '+ $,'. Thus, we have the same yield with

the parameters v», ~», y as with vacuum and
the parameters

(
d'W d'W

xl
d(a) dQ g t'oit dM d~ single toil

(2.15) and

I'"' being the N-foil interference factor given by
-2 + 2/+2 )

-I/2 (3.3)

CN 2

1 —C

C =exp(ip, +fop, —m2„——,'o, ).

(2.16)

(2.17)

We always have y'&y and ~~, & ~», the yield in

gas is therefore expected to be smaller than the
yield in vacuum. More generally, we conjecture
from (3.1)

I'"' depends on 6} through y, and y, . Introducing
the total phase shift of one foil+one gap,

dW
— = dec reasing func tion of co» .

den
(3.4)

Ip»(8') —= Ip, +cp2 =(I, + f2)(y '+ 8')cu/2

+ (l,oIp,2 + I, (up2')/2&v, (2.I&)

The interference factors could overcompensate the
decrease of the single-surface integrand but this
circumstance will be shown to be unlikely. Any-
way, for ~»~0, the yield saturates when

and 0 =a, +o„ the absorption in one foil+one gap,
we can also write 'y + 'y (3 5)

f(I2) —I (N(~ )

I —N sin2(Ny»/2) +sinh'(No/4)
2 sin2(cp»/2}+ sinh'(o/4)

~

~ ~

(2.19)

In normal air (~P2 =0.7 eV) y„' -10' for 10 keV x
rays.

Let us now examine in detail the four cases
A. one single boundary, B. one single foil, C. one
single gap, and D. a stack of foils regularly
spaced.
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A. The "single-surface" yield

Integrating (2.3) over II, we get

dH' ~ $'+f'+2& '
v '+( '

which depends only on y&/~. Let us introduce

(3.6}

B. The single-foil yield

Here we have to weight formula (3.1) by the in-
terference factor

4 sin (/p, /2) =4 sin'[(y +0'+$,')u/I„/4]. (3.16)

By the way, let us remark that the integrand in

(3.1) is a decreasing function of (,'. This proves
(3.4) for the single-foil case.

'g = (d///CO

r =~p, /~p, (=p, , p,).2/ 2 /

(3.7)

(3.8)

dW/de = o./6vq'; (3.9)

(ii) IA//uIz„«y«a/mp» the yield increases log-
arithmically with y

As a function of y we can distinguish three regimes
(assuming r «1, for instance, a dense material
and a gas):

(i) y « ~!~p „ i .e. , /I » 1, a very low yield

i. The formation-zone effect

In the relevant region of integration over 9, y,
is of the order of ~ly(p +Fy )//2. Therefore, if
the thickness is much less than the quantity

Z, =(y '+(,') '2/u/=z, (8=-0), (3.17)

which is referred to as the "formation zone, " the
yield is strongly reduced by the interference ef-
fect (it varies as p, '). The formation zone can
also be understood as the minimum distance in-

dW/d(u= (Inq ' —I)2o/m; (3.10)

(iii) y» &u/&u»
——y„', i.e. , /I «r"2, the yield is

almost constant (saturation). In the general case,
the yield is a function of

—(~2 +r)1/2(1 &)- &/& (3.11)
3

r/W A

(
= —[(I +2/i") In(1+/I' ') —2]

single surt'ace

(
f
)

7T
(3.12)

The function G,„,.„n(/I) is plotted in Fig. 3. In the
following, r will be assumed to be small.

C ase (i) r esuits in a frequeney cutof f, whence
the necessary condition for having enough yield

4) + P(dp~ . (3.13)

Integrating over the spectrum, we get the mean
energy radiated in one medium vacuum transition'

W =2o. ye~/3. (3.14)

This linear response in y corresponds to an ideal
situation which is unfortunately not met by prac-
tical. detectors, as we shall see below.

The mean number of photons J dW/&u, propor-
tional to the area under the curve in Fig. 3, di-
verges in the soft x-ray region. But we have al-
ways some low-energy cutoff. The result is of the
order of a, for instance,

0.2

0.1 02
No. of photons (~&0.15yu/ )= 0.5o, (3.15)

whence the necessity of having a large number of
foils. FIG. 3. The single-surface yield in the vacuum case.
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side the foil required for the electromagnetic field
of the particle to reach its new equilibrium con-
figuration. From another point of view, transition
radiation is a macroscopic process, so that the
radiation yield tends to zero when the foil gets
more and more thin. The region of the (&o, y} plane
where the formation-zone effect occurs is shown
in Fig. 4. For y greater than the quantity

Experimentally, the formation-zone effect has
been observed by reducing the foil thickness to a
few microns. '

2. Introduction of sealed variables

For reasons which are apparent in Fig. 4, it is
convenient to replace y and co by the dimensionless
quantities

yi = 4~vi/2 i (3.18) (3.23)

y, -(ol,$,'/2 = l, &uv, '/2&v -1. (3.19)

The new condition to have enough yield is now

the frequency cutoff, instead of being ye@», as in
the single-surface case, is rather determined by
the formation-zone effect:

V = (d/(dg, (3.24)

y p dy 2 s in'

with y, and u&, defined by (3.18) and (3.21).
In terms of these new quantities, the intensity

is given by

(u( min(y(uv„a), ),
where

~i =4~&» /2 =yi~vx.

(3.20)

(3.21}
where

=—G, (3 25)
2&

jr

An important consequence is that, for y & y, and

vacuum, the mean radiated energy 8' ceases to
increase linearly with y but only logarithmically.
The coefficient of the logarithm is of the order of
Q(Oj.

For practical calculations, we have

a =vI' +rv ' =l, /g, , (3.26)

Z, being the formation zone in the external medium

(3.27)

and

y, =2.5(&up, /eV)(l, /micron)

and roughly

(&u, /ke V) = 10'(p, l,/g cm ') .

(3.18')

(3.21')

V = (I r) v '-= l,/Z, —1,/Z, .

The integration variable y is now

(3.28)

(3.29)

For a given x-ray detector, the condition (3.20)
implies a minimum surface density for the foil
which is independent of the material. Let ~ be
the mean detected frequency and let us require
(for reasons which will be explained below) u, -3Id.
Then

0= vl"
& (vacuum gaps),

V=v '
(3.30)

The yields from different kinds of foils are all giv-
en by a "universal" function of a and V. In the
case of vacuum gaps, we have

(p, l,/gcm ')-3x10 '(2/keV). (3.22) and it is more convenient to use v and I instead
of a and V as arguments of G:

G„„=G(v, I') . (3.31)

N
C0

For a foil in gas, if we transform the quantities
y, re~„up, according to the formulas (3.2} and

(3.3), we are left with the vacuum case. Thus

G„, =G(v', I"),
with

v' =v(1-r) ',
Zrl (F 2 +r v 2) |/2(] +)-1/2

(3.32)

(3.33)

(3.34}

FIG. 4. Different regions of the cu, y plane relevant
for the single-foil yield {in the vacuum ease).

The universal function G(v, I') given by (3.25)
and (3.30) is plotted in Fig. 5 for the range of in-
terest. An expression for 6 in terms of sine and
cosine integrals can also be found in Refs. 2a and
3.
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4a /3& y, & 2a. (3.37)

(d —(dg/v =

g(dpi'

/271 . (3.39)

The other ridges are much less interesting be-
cause their band width in & is smaller and there
is more absorption. The height of a ridge increas-
es logarithmically with F:

We have enhancement if cp, =-y +V is not far
from n, 3m, etc. , and reduction if y, = 0, 2w,

etc. For a«1, i.e. , r»v v, we have ~ = v ';
therefore, the function G(v, r) has ridges at v '
= v, 3v, etc. , and valleys at v '=2z, 4v, etc. (see
Fig. 5). We can take advantage of the ridge at the
"magic value"

(3.38)

for the optimization of the total yield. The foil
thickness and the central frequency & of the x-ray
detector must be such that

For a-l, i.e., r -v v, rp, depends also on I',
and the ridges and valleys are curves in the (v, I')
plane. This can increase the y dependence of the
yield (see the curve for u = I/z, Fig. 8, where we
pass from destructive interference for 0.35& I'
& 0.75 to constructive interference for I' & 0.8).

5. Saturation of the total energy radiated in the

nonvacuum case

The presence of a frequency cutoff at co = co„as
we have seen in Sec. IIIB1, changes the linear de-
pendence of W(y) into a logarithmic one when I'-1.
This is true as long as we can neglect (, in (3.1),
i.e. , for co & yuj, 2 or v& I'r'~', otherwise we have
saturation. As v is practically limited by 1, we
have a complete saturation of W when I'r' '~ 1.
In fact, the main contribution to W comes from
the region v-I/v; therefore the saturation is
rather given by

G(ridge) = ln(I /v') —3 —C

(C =0.577. . . ), while the valleys stay at

G(valley) = C —1 —inv.

(3.40)

(3.41)

r=r„«-r ''/s,
i.e. , (3.43)

To be complete, in the formation-zone "plain, "
we have

(The subscript d recalls that this saturation
comes from the nonzero gas density. )

G - v '[ln(I'/v) —C+ —,']/2. (3.42) C. The "single-gap" yield. Saturation phenomena

Before studying the N-foil case, it is instruc-
tive to study the yield produced by an isolated gap;
the N-foil yield shares some properties of the
single-foil yield and some of the single-gap yield.
Moreover, the yield from a foam also has these
properties.

The interference factor is now

4 sin'(y/2) =4 sin'[(y '+ 9'+],')&ul, /4]. (3.44)

Taking z =g as the integration variable, the yield
can be written, similarly to (3.25),

Single gaP

1 1
(z —b) dz —— 2 sin'(z/2)z+P,

= —G, (b, V2),
2Q

(3.45)

where

b=(y '+t, ')~f, /2=I, /Z, (3.46)

0.2
i I ilail

Q4 QSQ81
I i I il
2 3 456

r
FIG. 6. Compared semilog plots of G;„,~ and G(v =1/'r,

r).

and

I'. = (4' —h.')~f, /2 = I,/&, —I,/&, . (3.47)

The single-surface term in (3.45) has a peak at z
between 4b/3 and 2b [cf. (3.37)], of width b. It-
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has also a tail extending up to

b + V, = (y '+ g, ')(u l, /2 = l,/Z, . (3.48)

the saturation energy is not higher, because the
other source of saturation takes place; in fact,
G„, is a decreasing function of +». Let us write

From (3.45) we deduce the following features.
(i) We have G„,& 2G,.„„;therefore, if +» y+»,

i.e., q» 1, the yield is very low.
(ii} The yield is also negligible if

ysat mm(y sat, dr ysat, Fz ) ' (3.53)

(v) If b is large, the interference factor can be
averaged out; therefore

L &&Z . (3.49) l2» Z, ~G a
= G jnqo ~ (3.54)

y.. ~ =~/~p. . (3.50)

(iv) In the vacuum case, b goes to zero when

y ~ but Qg p remains finite. This saturation is
due to the formation-zone effect in the gap
(l, «Z, ). Let us define a "saturation energy"

Ysat, EZ by

G...(y="}=G;...(y=y, .„zz) . (3.51)

For large V, (which is the usual case), we find

ec+1/2(1 ~/2}1/2 2 2(1 ~/2)1/2

= 110(~/keV)'/'(1, /micron)' ' . (3.52)

In the nonvacuum case, although Z, is smaller,

This is a formation-zone effect in the gap [1,
«z, (8) in the relevant 8 range]. Note the lack of
symmetry between this condition and the condition
l, «Z, for the single-foil formation-zone suppres-
sion.

(iii) If y» u&/&o», then b does not depend any
more on y and we have the saturation predicted by
(3.5)

(vi) Contrary to the single-foil case, there is
no oscillation in the & spectrum; G„, is most
likely a monotonic decreasing function of +: For
co & @co», this can be proved by differentiating
(3.45); for &@&ye~„we can replace y by y„,
which brings us in a region where G is not very
different from G,.„„.

The different regions where the above pheno-
mena occur are shown in Fig. '?.

D. The stack of foils

The new feature which comes in when we add
many identical foils at regular spacing is the
presence of sharp peaks in the angular distribu-
tion of x rays because of N-foil interference. The
peaks are at angles which satisfy the "resonance
condition"

&p, + y = ~(l, + l, )/v —(b, I, +b, l, ) cos8 = 2Pv

(3.55)

(P integer). The spacing between the peaks is
given by

formation zone saturation
I

I f.z. dephtion

FIG. 7. Different regions of the ~, y plane relevant for the single-gap yield.
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&cos8= a/(It+ I,), (3.56)

which is a small quantity. Therefore it is diffi-
cult to separate them experimentally. Even if we
did it, their positions could not provide a precise
measurement of y. So we are again interested in
the flux integrated over angles.

X„,= (1 —e "'}/(1 —e ') . (3.57)

From now on, we shall consider only situations
where N, « is large, i.e., many foils and little
absorption in one foil. In this case, I "' can be
approximated by a sum of 5 functions:

I~"~(tp2, o) = 2ttN, „,Q 5(tp„—2ptt) . (3.58)
P

We can therefore replace the single-foil interfer-
ence factor 4 sin'(tp, /2) by 4 sin'(tp, /2}, thus having
a formal symmetry between foils and gaps.

1. Symmetric role played by the gap and the foil

Let us consider the N-foil interference factor
given by (2.16) or (2.19). Its average value, which
we call "effective number of foils" is

the gap has been confirmed by reducing the foil
spacing to some tenth of a millimeter. ' Satura-
tion phenomena have been observed also by other
groups, "' but they are also partly due to the gap
being air.

3. Analysis of the interference effect with the use

of the (pi, p2) plane

d
dQ' 2n

N ffG many ~

d(g)
(3.65)

The N-foil interference factor in G,„y depends
only on ~, = y, + g with g = y+ V and, from (2.10),
(3.29), and (3.59)

+=TP.
Instead of (3.25) we have now

(3.66)

G„,„„= (y —a) dy —— 2 sin' 2v
1 1 ' . , y+V

many ~ ~+ V

By means of (3.58), we can factorize the depen-
dence on the absorption parameters and on ¹

2. Saturation
x Q 6(~2 —2ptt) . (3.67}

In particular, the N-foil yield suffers the same
saturation as does the single-gap yield, and the
same ~ cutoff as does the single-foil yield. Let
us introduce the new dimensionless parameter

In the case of vacuum gaps, we can write

G,„„=G,„„(v,I', r)

and in the general case

(3.68)

7 = l, /I, . (3.59)

F ttt min(F tttt, ttt tttt, ttz) t (3.60}

r sat, d (3.61)

I' „,re = 2.2(rv)t~'. (3.62)

As the major part of the energy radiated 8'
comes from the region v-1jv, we have typically

-1./2 tI'„t =r /v, i.e., y„, =tv/std~,

rr =p, I,/p, l, & 1/15

and if rr&1/15

(3.63)

I „=I 2r't, i.e. ,. y „,~0.6(trav, (l, l, )t~2. (3.64)

Equations (3.53), (3.50), and (3.52) can be rewrit-
ten

(3.68')

oo 1 1
(1 —costp, )2tt

y AN AAf

x g 5(~+tpt —2pv),

when s~D denotes the distance between points C

and D. The coordinates {~,y, ) of P, Q, A, and M

are

(3.69)

G,„„=G,„(v', I",r),
where v' and I" have been defined by (3.33) and

(3.34). Thus the photon spectrum is essentially a
function of only three variables.

Equation (2.10) defines a semistraight line Ax
of slope r in the (tp„~) plane (Fig. 8). The posi-
tion of the running point M =(cp„tp, ) on this line

can be taken as the integration variable, instead
of y, and we get

The numerical coefficients appearing in these
formulas must not be taken too seriously; other
definitions of y„, may differ by factors of order
3. Furthermore, the coefficient 2.2 in (2.62) is
only an average on v.

Experimentally, the formation-zone effect in

V= {1-r)v-'
P

0,
(3.70)

(3.71)
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effect in the opposite case.
(ii} To increase r, i.e., the gas density, make

a translation of Ax upward. Most likely, this re-
duces the yield [cf. (3.4)].

(iii) Condition for neglecting the N-foil interfer-
ence effects: Suppose that 7 is large and s»a2m,
which implies ma= l, /Z, a 2w. Then neither the
single-foil interference factor nor the single-sur-
face amplitude changes appreciably between two
points. We conclude

l, a 2sZ, ~G,„y-—G(v, I'), (3.'76}

A~

0 P~ 2~ 3m

at least for big v. This last condition will be re-
laxed below.

(iv) Conditions for neglecting any interference
effect: Suppose that both projections of s» are
large:

FIG. 8. The path of integration of formula (3.69) in the

Q f 'p 2 plane . Da, rk segments indicate constructive
single-foil interference.

and

a= i,/Z, R 2w

ra=i, /Z, a 2w;

(3.'7'l)

(3.78)

t

'p+ a = v '+ vt' = l, /Z,
A

ra=rTv '+rvl' '= l2/Z2,
(3.72)

then the average value of 1 —cosy, over a length
equal to sv„/2 is not far from 1, As, over the
same length, the single-surface amplitude does
not vary too much, we can say

G,„y = G;„„(q)= G . (3.79)

(3.'l3)

Because of the 5 functions, the integration in

(3.69) is a summation of the single-foil amplitude

over the intersection points between Ax and the

lines y, +cp =2pm. The quantity

(3.'74)

A A„=
r~v ', (3.75)

then G - constant. We find again the two types of

saturation discussed in IIID2: formation-zone
effect if A„ lies below the line y, =1, gas-density

represents the single-surface intensity. It is
peaked at about s» -s» and has a significant
tail up to s» „;&-s~. The single-foil interference
factor 1-cosy, is greater than 1 on the dark seg-
ments and smaller than 1 on the thin segments. It
is not periodic in P but its average value is 1. The
whole PQ straight line does not depend on y. The

starting point A goes downward towards A„when
I' increases.

The most important qualitative features of the
N-foil yield can be deduced simply by looking at
the position of Ax. We state here the main results.

(i) When I

y„(A}-=v(1+ v}I',„'+(I +re)v-' =2pv, (3.80}

The relative size of this effect will be important
lf spy and sz& are small, and we can have a thresh-
old detector ba,sed on this effect. The best is to
choose the line y„=2n and to cross it at yy 17,

with A„close to P (low gas density). P must not
be too close to the origin (the yield vanishes if P
and Q are in 0), i.e. , vS 2/v, and r must not be
too big (for very large r, the other 5 functions
make an important background). Figure 9 shows
some examples of these thresholds.

(vi) For practical purposes, we have to inte-
grate the detected yield in v over the band width
of the x-ray detector. As I ~, depends on v, this
will wash out somewhat the threshold, unless I th,

is stationary in v. This is equivalent to saying
that q»(A) [Eq. (3.80] is stationary in v. Then
the "space term" is equal to the "mass term":

v(1+v')I' 2=(1+rv}v ' =pm, (3.81}

The case l, &2wZ„r sl is a special case of (3.7'7)

and (3.78). This relaxes the condition of r large in
(iii).

(v) Threshold effects. As y increases, A goes
through successive lines y, +y, =2pm. Each time
it occurs, a new ring appears in the angular dis-
tribution of the x rays, and this produces a break
in the slope of dW/d&g versus r. These "thresh-
olds" are given by
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T =1000
/

/~. t = 65ifi j
i/

old )

I

05 1

F/6 9 The function 6 y(1 0 3 2 v) for different val ues of ~. We use a logarithmic seal e for I' and a square—
root scale for G. Only the p =1 and p =2 thresholds [Eq. (3.80)] are apparent on these curves.

v = (1 +r r)/p w = v „„
1"=(1+7)' '(1+rr)' '/Pr =r

(3.82)

(3.83)

usta = 1

I',~= (1+r)'i'/s
(3.84)

(3.85)

Figure 1Q shows the stationarity of I'~, .
Let us assume rv (~gap mass/foil mass) «1,

then the p =1 stationary threshold is given by

v, &, happens to have the "magic value" introduced
in IIIB4. We see that this stationary threshold is
not an exceptional case. In fact, most experiments
are made around v-1/w, and if r is not too big,
the threshold is within the experimental range of
1'. This is the case, for instance, in Ref. 4.

We point out that the condition to have a large
threshold effect, established in V, and the con-
dition for stationarity are compatible and, in fact,
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2
thr.

2% 7r

build a threshold detector, analogous to Cerenkov
threshold detectors, but working at higher y. It
could discriminate pions from kaons or (perhaps)
kaons from protons in a beam of given energy.
One single detector could not discriminate simul-
taneously pions, kaons, and protons: We have
only one important threshold per radiator, and
soon above this threshold, we have saturation;
comparison of (3.46) and (3.85), or Fig. 11 indi-
cates

FIG. 10. P =1 threshold position, as a function of ~, in
the vicinity of & =1/7t {in the vacuum ease) . a-(3+1)y (3.89)

are simultaneously satisfied if v is neither too low
(let us say 7a 3) nor too large. But we must also
verify that the ratio

rv = gap mass/foil massal . (3.90)

The gas-density effect strongly reduces the thresh-
old effect if

I'/v = y&uv, /(u = I/q, (3.86)

which governs the single-surface yield, is not too
low at F=F,j,„ let us say I'&1 whence va 8.

For larger v. , the height of the step stays about
the same but the background is higher (see Fig.
9). Figure ll(b) shows the stationary threshold
effect expected from a radiator of 1000 Berylium
foils, 1 mil (25 pm) in thickness, including ab-
sorption. The x-ray detector is supposed to have
an efficiency equal to 1 in the range 10 to 24 keV
and zero elsewhere (&o,jw = 14 keV). We see that

Indeed, with r~=1, there is no more p=1 thresh-
old for v = I/v [Eq. (3.80)]. There is still a station-
ary threshold at v = 2jv, I'- (2v}'i'/v but it is not
far from the saturation region.

(vii} As in the single-foil case, we expect oscil-
lations in v governed by the y, of M . These
are apparent in Fig. 12. The oscillations are very
rapid when v ' » 1 (which implies I, » Z, ).

Integrating over a wide enough frequency range
where

3&Ts8 (3.87) (3.91)

are good values for observing the stationary
threshold effect.

From a theoretical point of view, the threshold
would be the clearest manifestation of the N-foil
interference effect" (formation-zone effect in the

gap is only a manifestation of the "single-gap" in-
terference effect and could be observed in non-
periodic medium, such as sytrofoam, as well).
The position of the threshold is not affected by
absorption or by the imperfect x-ray detection.
The agreement between the experimental value
of the threshold and formula. (3.83) or (3.85)
would constitute a relatively precise test of the
formula

e ((u) = 1 —4vnn, /m, (u', (3.88)

which results from (2.1) and (2.2). Returning to
the usual quantities w and y, (3.82) and (3.83) be-
come

=3X10~(p, l, +p, l, ) keV/gcm ~, (3.82')

y,~ = (I, + I,)'~'(l, (u~, ' + I,(op, ')'~'/2m . (3.83')

This test does not need a precise determination
of the x-ray frequency, because the threshold is
stationary with respect to &.

For the applications, we have the possibility to

gives us the single gap yield (inste-ad of the single-
surface yield as in Sec. III 83).

(viii) There are also breaks in the x-ray spec-
trum at fixed y, when, while scanning in +, v

reaches a, root of Eq. (3.80), a new ring appears
in the angular distribution, thus producing a
break. Then, the opening angle 28 of the ring
grows, reaches a maximum when v= v„,. [Eq.
(3.82)], and goes back to zero at the other root of
Eq. (3.80), giving another break. The angle 8 is
given by

(3.92)

If one wants to observe the ring, it is best to
choose v- v„, (because of the stationarity).

These breaks in the co spectrum cannot be very
spectacular: Let us take p =1, to have a good
yield, and r =0. If I' is just above I'„„, the two
breaks are very close together and the contribu-
tion of the P =1 ring has no time to get large be-
tween them. Qn the other hand, if I'»I' 3&, the
breaks are at v = I/2w and v =~, and the P =1 con-
tribution vanishes at these points. Figure 12
shows that, indeed, the N-foil spectrum does not
look very different from the single-foil spectrum
(except for saturation). Furthermore, the breaks
can be washed out by the finite width of the x-ray
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2.56
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56.25

(b)

1000 foib Be, 1 mif

10&~&24 keV

r']
/ I

/ Ir'
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56 25—

(c)

1000 foih Be, 1mit

24 &(a& 57.6 keV

]8(
r/

/r'/'
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25

6.25

r =o.5 y=

FIG. 11. Yield integrated with the absorption factor N, « in three different band widths, from 1000 beryllium foils
1 mil thick and four values of &. The intermediate band width contains the stationary frequency ~(/1t ~ 14.4 keV. r =y/y)
with y~ =1680. A logarithmic scale is used for I' and a square-root scale for W.

detector. These facts could explain wi)y they have
not been observed yet.

(ix) Magnitude of the n-foil enhancement. Al-
though the N-foil interference effect can greatly
modify the slope of 4V/des versus y, it cannot en-
hance Q~ „by more than a factor boo relative to
G,.„„:Enhancement occurs when a 5 function coin-
cides with the peak of the single-surface term in

(3.69). If A. is far from the y, axis, this peak is
too broad and we get the single-foil yield; if A
is close to the q, axis, the peak can be narrow,
hut the sin'(ip, /2) factor kills it.

To conclude, the N-foil yield shares properties
of the single-surface yield (cutoff frequency y&u»,
gas saturation at y = a/uj, ,), of the single-foil
yield (formation-zone depletion when v&1, oscil-



1302 X. ARTRU, G. B. YODH, AND G. MENNESSIER 12

lations, biggest contribution of v-1/m), and of
the single-gap yield (formation-zone saturation).
In addition, it has singularities in the form of
thresholds, which constitute a typical N-foil in-

terference effect, and affects strongly the y de-
pendence for v - 1/m.

Let us recall also the condition for neglecting
some of the interference effects:

l, & 2mZ2~- single foil,

l1 + 2 7/'Z1 + integration in +~- single gap

l, & 2vZ„ l, & 2vZ, + integration in v, or
I

l and l &2mZ
I

~ -single surface,
1 2 2

and the two meaningful values of r
r, = min(1. 2v'?', y-'"/v)

r, = (1 + v )'?'/a (for r = 0) .

&y, = &l, (up, 2/2(o = v&l, /f, ,

whence

N „=(l,/hl, )2/4.

(4.4)

(4.5)

IV. CONCLUSIONS AND MISCELLANEOUS PROBLEMS

1 1

Ni) =Q 0'm ~ (4.1)

Coherence is lost when the fluctuations

&gg) 2 w/2 . (4.2)

In the case where the foil thickness has fluctua-
tions - l,E, we have (assuming rv«1 and station-
arity, v=1/a)

&y;, =- (j —i }' ' n (p, , (4.3}

This study has shown that for a practical radia-
tor, N-foil interference effects cannot be neg-
lected, and even can be used to improve the sen-
sitivity to y. Formation-zone effect in the foils
fix a lower limit to their weight [Eq. (3.22)] and
formation-zone saturation in the gap imposes a
minimum spacing, according to (3.52) or (3.64).
The gas density has always a negative effect and
must not exceed a certain value, fixed by (3.43).
The single-foil interference is mainly seen in the
~ spectrum (oscillations), while the N-foil inter-
ference is mainly seen in the y dependence, in the
form of thresholds.

Some important problems have not been treated.
Let us discuss them briefly.

Irregularities in the foil spacing or thickness

If l, or l, is not constant but continuously vary-
ing between the front and the bottom of the radia-
tor, the threshold [Eq. (3.83')] can be smeared out.
out. But if they have only short-range fluctuations,
the destruction of coherence is not too important.

Let us define N„„(~N, «) as the maximum num-
ber of consecutive foils that can interfere coher-
ently in the forward direction and g;& the phase
shift between the ith and the jth at 8 =0

In the case where the spacing has fluctuations
-4l„we get a similar result if these fluctuations
are uncorrelated. But this is not the usual case:
More likely, the random errors are in the posi-
tions of the foils with respect to their ideal posi-
tions. Then ng;& =&ay 4(l;+ ~ ~ ~ +l&, ) does not
grow with j —i and N„„ is N ff.

To calculate the yield, we can group the foils
in packets of N„„(perhaps 2N, »?) foils and neglect
the interference effects between different packets.
The peaks of the N-foil interference factor
Ii"'»'(y») have then a finite width

6y» =2v/N„„. (4.6)

This induces a finite width for the rings of the
angular distribution and a spread of y,„, given by
[see (3.80)]

v(1+T}4(r, ') =6@„;
using (3.81), we get

nr„jr, =Ay„/y„=l/N, .„
(perhaps 1/2N»'?). Finally,

ny, r~ jy,rg -4(»J4}'.

(4.8)

(4.9)

We see that the loss of coherence is a second-or-
der effect in nl, . A radiator with 4l, /l, -3/100
has Ay„„/y, ~ -1/100 only.

Multiple scattering

The fact that the charged particle does not fol-
low a straight-line trajectory, because of Coulomb
scattering by the nuclei, may destroy the N-foil
interference for two reasons:

(i) the peaks of the angular distributions from
the mth foil and the nth foil do not overlap for
large )m —n(; and

(ii) the phase difference between these two
foils is increased by random quantity because be-
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many

19—
8—

FIG. 12. The function 6,„„(&,I', v =8) for different values of I'. Same scales as in Fig. 5. En dotted lines are
plotted the quantities G,„(&,I;h„7), where I"~, are given by (3.80). They represent the breaks of the G, v, I surface.

P~ =+Ps. ~ (4.10)

tween them, the particle is retarded with respect
to a rectilinear motion.

As in the preceeding problem, we have to evalu-
ate N,.h. Let us call I3 the deflection of the par-
ticle resulting from multiple scattering and P„a
single scattering angle:

The overlap condition (i) is

P s y-'

and the phase condition (ii) is

(o()ls w/2 .

(4.11)

(4.12)

5/ is the elongation of the particle trajectory be-
tween the two foils considered. To estimate it,
one can assume that only one single scattering
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angle is important in the sum (4.10). Then

5 l - l P~'/8;
condition (4.12) becomes

(4.13)

section. We shall take (4.23) (which gives p
-0.8(P) in a wide range of z}.

From (4.17)-(4.19)

&„,= «(2Za/E p,„)' = 4«m, 'Z'l' . (4.2'l)

(m n}(u-(l, + l, )p (4.14) This gives, for a quantity Lp of traversed matter

&(1, + l, )y,
' = 2«;

whence the second limitation

(m -n } p '~ 2y-',

(4.15)

(4.16)

which is stronger than (4.11).
The problem is to estimate P . For single

scattering, the differential cross section is well
represented by"

=(2Za/E)'d'P(P'+P, '}-', p& p,
=o, P&P.,„.

(4.17)

But we are interested in the stationary thresh-
old case, where [cf. (3.81)]

zP;„' = «LpXA '(2Za/E}'

=ZzE 2m L(g) 2

=0 6Z'A. '(pL/g cm ')m'/E' (4.28)

[the second expression comes from (2.2')], and

z = 4«Z4~'~-2p51 L/A

=Z'l'L(up'(am )
'

=2Z l'A '(pL/g cm ')x 58000.

Neglecting the gas contribution we have

L~p' =lm -nI 1,(op, '=2}m n}(o, -

(4.29)

(4.30)

and condition (4.16) can be written as

N„„'Zae, m, m '[1+0.75ln( 2N„„co, Z'~'/ am, )]=1,

P„,„rg PrN== 1/E, (4.18)

P,„ is the cutoff due to the screening by the atom-
ic electrons, and I3,„ is the one due to the finite
nuclear size:

or, for electrons,

ZN„„'+, 1n(2N„„Z'~'&u, /keV) = 10' keV .

(4.31)

(4.31')

with

r.-' = m, aZ'~',

r„=1.2 Fermi~A' '.
(4.19)

(4.20)

For the multiple scattering angle after z colli-
sions, we have at our disposal the following for-
mulas:

(p ')=zp. ,„'»(p...'/ep.
,
„'),

(P ) = z' 'P,„]1.45+0.8[in(z/6)]' '},
and a semiempirical formula"

(4.21)

(4.22}

P '=zP;„'(1+0.751nz),

where P denotes the mode of the P distribution:

(4.23)

prob(P ~ P (4.24)

o„,„-«(2Zar„P, (4.26)

Formulas (4.22) and (4.23) are valid as long as

zP,„'/P, „' - mean number of hard collisions «1 .

(4.25)
For our problem, the typical value of P is given
by (4.22) or (4.23) rather than (4.21). This is be-
cause a hard collision (P- P„g is very improbable
(although it contributes to (P')). In fact, the
cross section for a hard collision is only

For instance, with 25-micron-thick lithium foils
(m, =11 keV) N„„=21, 4y, ~/y, ~

—5% (perhaps
2.5%?). For the sharpness of the threshold, lithi-
um is the best material. For particles heavier
than the electron, one can ignore multiple scatter-
ing.

Multiple scattering also modifies the single-sur-
face yield'~ "and is the source of bremsstrah-
lung. An interesting and open question is whether
the total yield (modified transition radiation
+bremsstrahlung) is affected by the N-foil inter-
ference, or only the transition radiation part.

Photon statistics

The differential yield dW/d&u dQ has been calcu-
lated classically. This is justified by the fact that
the trajectory of the particle is not perturbed by
the emission (&o«E, unlike in hard bremmstrah-
lung}, and the medium reacts coherently (is not
heated) as in the Mossbaiier or Cerenkov effect.
Thus we could consider the system particle plus
radiator as a classical electromagnetic source.
But the electromagnetic field must remain quan-
tized because the number of photons is not very
large (-aN, «}. W is only the average energy
radiated when many particles of the same y cross
the radiator, and the number of emitted (also
detected) photons follows a Poisson distribution:

which is much less than a typical nuclear cross prob(np„) = exp(- (n~„)) (np„) "P"/'nph l, (4.32)
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whose fluctuation is

n.n p„=(n„„)'/' . (4.33)

If the photon frequency does not differ too much

from ~, we have

W =~(n,„),
n W=W~„&u=(W&u)'/'

g (Wl/2 } ~1/2/2

(4.34)

(4.35)

(4.36)

Because of the fact that 4(W' '} and not &W is con-
stant, it is convenient to take a square-root scale
for W in the curve for Q' versus y, in order to
compare the y resolution at different y's. This
has been done in Figs. 9 and 11.

W„,(y) = — ds) G,„y (v, I', 7')N„,((o)e((u),
2+

(4.37)

where e(&u) is the detector efficiency. If one is
interested in the discrimination of two species of

particles A. and B of one given momentum, a
threshold detector with W~„(y„) small and Wd„(ys)
large is convenient, and one might use the thresh-
old effect. If one wants to measure y over a range

as large as possible, the threshold and saturation
effects must be avoided by taking ~ sufficiently

large. In both cases, the optimization problem in-

volves many parameters, but the choice has been

greatly reduced by the above study. For instance,
most of the radiated energy comes from the v

- I/s peak; the output starts to be important at
I'-1; saturation occurs at I' Wr and-v might be

fixed by a threshold requirement. Nevertheless, -

it would be too long to treat here the choice of the

x-ray detector, of the foil material, of the gas,
and of the repartition of foils and detectors. This
deserves a further publication.

Optimization of a detector

Many x-ray detectors are proportional counters,
which have a linear response to the total energy
deposited (except for fluorescent escape of x rays).
The mean contribution of transition radiation is

the contributions of the lowest integers p. Be-
sides, when y is very large, the sin' factor can
be replaced by —,', i.e., we can use the single-
surface integrand. Therefore we must divide the
semistraight line Px (or the y & 0, y, & 0 quadrant)
in three regions:

a "6" region, let us say rp, ~ 4v, where (3.69)
must be integrated exactly;

a "single-foil" region, y, &4m, y ~ y,„„,where
we use (3.67) without the N-foil interference fac-
tor 2m+6( ~ }. y,.„„must be such that the sin'
factor is maximum or minimum, for instance,

y,.„„+V =2w integer(3+ V/2v) . (4.38)

ent

To integrate the y-2a peak correctly, it is suffi-
cient to take the integration points y; in a geome-
trical progression, such that 4y& -1 near y-y, „,.;

an "incoherent" region, where all interference
factors are neglected in (3.67), and whose con-
tribution can be calculated analytically.

The regions are shown in Fig. 13. The pre-
cision obtained is expected to be 5 or 10%, and
can be improved by increasing y,„„and enlarging
the 5 region.

A big economy of computing time can be made in
the case where we have to calculate 0 for many
values of I' (for instance, when we want to draw
a curve versus I'). We split F(a, V, 7) in two func-
tions

Computational prescriptions

To get the predicted W„„we have to calculate
G „(v, I', r) or G,„„(v',I", r') for several values
of v and I'. We rewrite it as E(a, V, v), with a
and V given by (3.26) and (3.28). E is given by
(3.67) or (3.69). For large r, it is clear that the

number of 5 functions to sum over is very big and

that the single-foil formula is valid, except for
FIG. 13. The different domains vrhere one can neglect

one, bvo, or no interference factor in (3.69).
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F=F, —aF, , (4.39) integrate (4.40) between a» and a„, instead of

a +, and infinity.

F, 2=+ X
' '3+7) 'd

a

x (interference factors) . (4.40)

When changing I' (I' - I'„„&f' ), we need only to

ACKNOWLEDGMENTS

One of us (X.A. ) wishes to thank the Aspen Cen-
ter for Physics, where part of this work has been
done, and C. W. Fabjan for discussions.

*Work supported in part by the National Science Foun-
dation.

)Laboratory associated with CNRS.
~V. L. Ginzburg and I. M. Frank, Zh. Eksp. Teor. Fiz.

16, 15 (1946).
2For extensive reviews, see for instance the following:

a. G. M. Garibyan, Yerevan report E@-27, 1973
(unpublished); b. M. L. Ter Mikaelyan, Nucl. Phys.
24, 43 (1961);c. M. L. Ter Mikaelyan, High Energy
Electromagnetic Processes in Condensed Media (Wiley-
Interscience, New York, 1972); d. F. G. Bass and
V, M. Yakovenko, Usp. Fiz. Nauk 86, 189 (1965) [Sov.
Phys. —Usp. 8, 420 (1965)].

3A paper in the same spirit has been written recently
by Loyal Durand III, Phys. Rev. D 11, 89 (1975) .

4See also M. L. Cherry, G. Hartmann, D. Muller, and
T. A. Prince, Phys. Rev. D 10, 3594 (1974).

56. M. Garibyan, Adventures in Experimental Physics
(World Science Education, Princeton, 1972), p.120.

6In this paper we take units such that & =c =1. We shall
often use the relation eV x micron =5.

7G. M. Garibyan, Zh. Eksp. Teor. Fiz. 37, 527 (1959)
[Sov. Phys. —JETP 10, 372 (1960)].

L. C. L. Yuan, C. L. Wang, H. Uto, and S. Prunster,
Phys. Rev. Lett ~ 25, 1513 (1970).

We disagree with the formula y, - ~~&l2/4~ of Ref. 4
(our y, is lower).

R. Ellsworth, J.MacFall, G. Yodh, F. Harris,
T. Katsura, S. Parker, V. Peterson, L. Shiraishi,
V. Stenger, J. Mulvey, B.Brooks, and J. Cobb, in
Proceedings of the Thirteenth International Conference
on Cosmic Rays, Denver, 1973 (Colorado Associated
U. P. , Boulder, 1973) Vol. IV, p. 2819.
The stationary thresholds are, in fact, those mentioned
in Refs. 2b [Eq. (2.10)], 2c [Eq. (28.90)], and 2d [Eq.
(6.19)]. They have recently been observed [C. W.
Fabjan and W. Struczinski, Phys. Lett. 57B, 483 (1975)].

2See, for instance, B. Rossi, High Energy Particles
(Prentice Hall, New York, 1952).
The coefficient 0.75 has been obtained by fitting numer-
ical results of H. S. Snyder and W. T. Scott, Phys. Rev.
76, 220 (1949), shown in Fig. 3 of their paper. They
give the probability distribution for the projected angle
p„or p, , and we assume p =WSjf„, which is true for
most bell-shaped distributions.

46. M. Garibyan and I. Ya. Pomeranchuk, Zh. Eksp.
Teor. Fiz. 37, 1828 (1959);G. M. Garibyan, Zh. Eksp.
Teor. Fiz. 39, 332 (1960) [Sov. Phys. —JETP 12, 237
(1961)] .
V. E. Pafomov, Zh. Eksp. Teor. Fiz. 47, 530 (1964)
[Sov. Phys. —JETP 20, 353 (1965)]. Dokl, Akad. Nauk
SSSR 133, 1315 (1960) [Sov. Phys. —Dokl. 5, 850 (1960)].

~6I. I. Goldman, Zh. Eksp. Teor. Fiz. 38, 1866 (1960)
[Sov. Phys. —JETP 11, 1341 (1960)].


