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We use convariant harmonic-oscillator wave functions to describe quark-model hadrons in Glauber's model of
diffractive scattering. It is shown that the Glauber model can be constructed in the center-of-mass system in
terms of fully covariant quantities. For elastic scattering, the covariant model gives the same result as that
using nonrelativistic harmonic-oscillator wave functions. For the transition from the n = 0 to n = 2 states,
which includes the diffractive excitations to the N(1470) and N(1690) resonances, the relativistic effect is
simply a multiplication of the nonrelativistic amplitude by the factor (1—a ), a being the velocity difference
between the incoming nucleon and the final-state resonance. We discuss the effects of these results on the existing
nonrelativistic calculations.

I. INTRODUCTION

In our previous paper' we discussed a covariant
harmonic-oscillator wave function which contains
all the required properties of the nonrelativistic
bound-state wave function and which contains also
the relativistic retardation effect that is consistent
with the observed behavior of the nucleon elastic
form factor. This wave function satisfies a Lo-
rentz-invariant differential equation and is a nor-
mal- coordinate solution of that differential equa-
tion. This differential equation allows us to add a
gauge-invariant electromagnetic interaction while
preserving all the desirable properties.

Our wave function, however, differs from all
the wave functions used extensively in the litera-
ture for calculating decay rates, "form factors, 4 '
and high-energy production cross sections. " It is
certainly different from the nonrelativistic wave
function. Its ground-state wave function is the
same as that used by Fujimura et al.' and by
Lipes. e The unique feature of our harmonic-
oscillator wave function is that the space-like
independent variables in which the harmonic os-
cillator is excited are unambiguously defined.
They satisfy the O(3) requirement. 'o Also the
excited- state wave functions in these variables
satisfy the above-mentioned Lorentz-invariant
diff erential equation.

While the measurement-theoretic aspect of the
covariant bound-state wave function is still an un-
solved problem, we take the view that the present
high- energy experiments will play an important
role in a possible future reexamination of the
quantum superposition principle. " The purpose of
the present investigation is to look for experimen-

tal evidence for the existence of harmonic-oscil-
13tor excitations in the covariant variables intro-
duced earlier. '

Our covariant wave function grew out of a study
of the baryonic mass spectrum and of the nucleon
elastic form factor. Our next experimental con-
cern should be with decay rates, production pro-
cesses, and other high-energy reactions where
the spatial wave function plays an important role.
The baryonic spectrum indicates the existence of
static oscillator-like excitations. " The form-
factor behavior of the nucleon confirms the Lo-
rentz-contraction property of the ground-state
oscillator. Our next theoretical concern should
naturally be to combine the effects of Lorentz
contraction and radial exc tation.

In order to study covariant radial excitations,
we have to look into production processes where
excited-state resonances are produced. We can
divide all the observed production processes into
two groups. The first group consists of production
processes induced by y rays. The second group
includes all the processes caused by pion and K-
meson beams. We can treat the first group by
using the gauge-invariant electromagnetic inter-
action, which can be added to the covariant oscil-
lator differential equation. ' For the meson-in-
duced reactions, however, we have to resort to
various models. There are many relativistic
models where nonrelativistic wave functions are
used to describe hadrons in the quark model. "
The covariant bound-state wave functions may al-
low us to make these models completely relativis-
tic .

In this paper we study the role of our covariant
wave functions in diffractive excitations. We are
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particularly interested in the Glauber model of
diffractive scattering by composite hadrons. " In
the Glauber model, single-particle scattering can
be represented by the two-dimensional impact-
parameter space. The compositeness of the par-
ticle can be described by the transverse proba-
bility function. " One of the major difficulties in
the past has been the lack of wave functions for
fast-moving hadrons. The use of our covariant
harmonic-oscillator wave function will completely
eliminate this difficulty.

By simply replacing the nonrelativistic wave
functions by the covariant wave functions in the
center-of-mass system, we derive a result which
differs from the nonrelativistic amplitude by the
factor (i -o.')'~', ct being the velocity difference
between the incoming nucleon and the final-state
resonance, for the transitions from the n=0 to
n = 2 states. The transitions to the n = 4 or higher
states may exhibit nontrivial Lorentz-contraction
effects.

In Sec. II we discuss those properties of our co-
variant wave functions which are relevant to the
present work. In Sec. III we study the kinematics
in the center-of-mass system. It is pointed out
that the longitudinal and time-like momentum
transfers vanish in the high-energy limit. In Sec.
IV the Glauber diffractive scattering amplitude is
written in terms of purely covariant quantities.
We carry out explicit calculations to derive the
above-mentioned results. In Sec. V we discuss
the implications of our results on the existing cal-
culations.

II, PROPERTIES OF THE COVARIANT NAVE FUNCTION

The present work is an application of the covari-
ant harmonic-oscillator wave function which we
discussed in Ref. 1. In this section we discuss in
detail the properties of the wave function which
are particularly relevant to production reactions
and diff ractive scattering.

Our covariant harmonic-oscillator wave func-
tions satisfy the following conditions:

(1) The oscillator must produce the nonrela-
tivistic mass spectrum in its rest system, and
the mass operator should be Lorentz-invariant
and should produce Lorentz-invariant eigenvalues
when it is boosted.

(2) When the wave function is boosted, it should
have an acceptable Lorentz-contraction property,
preferably of the type exhibited by the Bethe-
Salpeter wave function. Furthermore, there must
be experimental evidence to support this property.

(3) The wave function should satisfy a Lorentz-
invariant differential equation, and this should

allow us to add a gauge-invariant electromagnetic
interaction.

(4) The wave function, under appropriate condi-
tions, should accept the probability interpretation
of nonrelativistic quantum mechanics. Since this
is a relativistic wave function, it contains more
information than is available from Schrodinger
quantum mechanics. The properties of the rela-
tivistic wave function which cannot be explained in
conventional quantum mechanics should be clearly
separated from those that admit a nonrelativistic
interpretation. The former may be subjected to a
possiMe new measurement theory.

There is at present enough experimental data to
confirm the Lorentz-contraction property' ' and
the existence of harmonic-oscillator-like radial
excitations. " Our covariant harmonic oscillator
can simultaneously explain these two important
high-energy phenomena. As is illustrated in Fig.
1, we can now use this wave function to calculate
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FIG. 1. Two-dimensional plot indicating the applica-
bility of the covariant harmonic-oscillator wave function.
The horizontal axis represents bound-state quantum
mechanics, and the vertical axis corresponds to rela-
tivity. The covariant harmonic-oscillator wave function
can thus serve as a simple model in tackling the old and
persisting problem of combining the bound-state physics
with relativity {see Refs. 11 and 27). This wave function
accommodates simuItaneously the Lorentz contraction
and the radial. excitation which is responsible for the
discreteness of the mass spectrum. This covariant wave
function can be used for calcul. ating decay rates, pro-
duction processes, and other high-energy processes
where bound-state wave functions play important roles.



Y. S. KIM AND MARILYN E. NGZ 12

decay rates, production cross sections, and other
high- energy quantities.

In spite of the above-mentioned far-reaching re-
quirements and consequences, the mathematics of
our harmonic oscillator is amazingly simple. It is
a matter of solving a harmonic-oscillator differ-
ential equation using a normal-coordinate method.
We start with the invariant differential equation

-X x—xtx [(x) t]II)(x,-p)=XII'(x, )'),1

where x and t are the relative space and time sepa-
rations between the two bound quarks. This equa-
tion was studied first by Yukawa" in connection
with Born's reciprocity relation, but extensive use
of it was made only after the appearance of the
quark model. The equation was a starting point for
infinite- component theories, ' relativistic quark
models, ' ' dual resonance and string models. "
Since this equation serves this many useful pur-
poses, it is worthwhile, in our opinion, to look
into a possible deeper physical meaning of the
wave function which satisfies Eq. (1).

The physics of the x separation is well known in
nonrelativistic quantum mechanics. The time
separation t cannot be explained in the convention-
al quantum theory, and there is at present no mea-
surement theory to give proper quantum-mechani-
cal interpretation to this quantity. We believe
that this "interpretation, " if meaningful, should
come from laboratory observations.

In an attempt to find the physical meaning of the
wave function, the present authors compared the
properties of this wave function with those of the
bound-state Bethe-Salpeter wave function. ' " The
basic advantage the harmonic oscillator offers is
its mathematical simplicity. The differential equa-
tion is soluble. In solving the differential equa-
tion, we note that Eq. (1) is completely separable
in the x, t variables. It is also separable in the
homogeneous Lorentz transforms of the variables

where P is the speed variable. The velocity of the
hadron is assumed to be in the z direction-. If we
solve the differential equation by using the y vari-
ables, we obtain the Lorentz-contraction factor

(d
exp — $~ +$2 +/3 +go

which was extensively discussed in the litera-
1~8, 9

We can construct excited-state wave functions by
multiplying the above factor by Hermite polynomi-
als in the y variables. The wave functions so con-
structed satisfy the differential equation of Eq. (1)
with harmonic-oscillator eigenvalues.

It was noted in Ref. 1 that the parameter P de-
fines a space-like hyperplane, and that this hyper-
plane can be regarded as the Lorentz transform of
the rest system. We saw there that the orthonor-
mality relation of the harmonic-oscillator wave
function is preserved within a given hyperplane.
The inner product of two wave functions belonging
to different hyperplanes is expected to show a
probability reduction whose concept does not exist
in nonrelativistic quantum mechanics.

Thus far, the mathematics of the oscillator was
quite simple. The first difficulty we have to face
is, however, the fact that the observed mass of
the hadron is quite different from the harmonic-
oscillator eigenvalue X of Eq. (1). The mass dif-
ferences are caused by the SU(6) symmetry-
breaking effects. By observing the fact that the
mass value in Eq. (3) need not be related to the
eigenvalue and also the fact that P is purely a
velocity parameter, we can circumvent (do not
necessarily solve) this difficulty. Without chang-
ing the value of X, we can adjust the velocity pa-
rameter to conserve energy and momentum. Since
this velocity is determined from the mass-energy
relation, the wave function will contain, through
the observed velocity, the effect of the SU(6) sym-
metry-breaking interactions.

III. KINEMATICS

We are considering the near-forward scattering
of two hadrons in which a projectile of mass p, is
scattered by a target hadron of mass ~. We re-
strict ourselves to the case where the mass of the
projectile is not changed while the target mass is
increased from m to M. Since most experimental
studies of diffractive scattering are done in terms
of the familiar s, t variables, and since these
variables take their most convenient form in the
center-of-mass system, "we shall formulate our
problem ln the cexlter-of-mass frame.

We are studying the process where the projectile
and target particles come in with their respective
four-momenta q and P, and then go out with q' and
P'. In the center-of-mass system,

p+q=p +q =0~

and the variables s and t are
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s = (P+q)'= (p'+q')',
f = - (P P'-)' = (q -q'-)'

variables are defined in Eq. (2). The out-going
target is in an excited state, and

The target particle initially comes in with the en-
ergy and momentum,

S + Pl —P,

2vs

and

g,„„=H„(y,')H„(y,')H„(y,')

where

„y,= „y,'= (1-P") ' '(x, —p'x()),

(12)

s —m2 y ps)2 -4s p2 ~/2

The energy of the incoming projectile is

(5)

(6)

y, = (1 —P") '~'(x, -P'x, ) .
The H„(y) are Hermite polynomials. Naturally

8$ + SQ + $23 Pl (13)

Its momentum is of course equal in magnitude and
opposite in sign to that of the incoming target. We
can obtain the final-state energies and momenta by
simply replacing m' by M' in the above formulas.

In the center-of-mass frame, we can define a
Cartesian coordinate in which the projectile moves
along the z direction. Because of the m-M mass
difference, the four-momentum transfer

where n determines the energy level. In Sec. IV
we shall study the cases where n=0, n=2, and
n = 4 or higher.

IV. DIFFRACTIVE EXCITATIONS

According to the Qlauber model, the amplitude
for high-energy small-angle scattering takes the
form

has nonzero longitudinal and time-like components, f(q q )-2' (14)

M2-m' where b is a two-component vector perpendicular
to q, and the "eikonal")t(b) is defined by

for large s. Both k, and k, vanish in the high-
energy limit. Since we are interested only in the
high-energy diffractive scattering, we can ignore
these quantities and assume that the momentum
transfer is purely transverse.

In the following sections we shall assume that
the projectile is a point particle and that the tar-
get is a bound state of two quarks. Generaliza-
tions to more complicated and realistic cases are
trivial. The target particle comes in along the z
direction with its velocity parameter

p= Ip I&f. , - (9)

and goes out along the x direction (in the small-
angle approximation) with the outgoing velocity

p'=- Ip'I/u, '. (10)

The incoming target is in the ground state, and
its wave function takes the form

4,„(x)= exp —
2 (y, '+y, '+y.'+y.')

with proper normalization constant. (d is the well-
known spring constant in the quark model. The y

(15)X(b) = - (
l'(b+q4)d4.

fqt g„
V(b+q$) is the Schrodinger potential.

By summing up a set of Feynman diagrams and
by making suitable approximations, Levy and
Sucher derived the covariant form for the scatter-
ing amplitude,

f(s, t)= J d'xe-"'*a (x)( ),
where g is a purely field-theoretic quantity. The
above covariant form can be made like the impact-
parameter representation of Eq. (14) in the kine-
matical frame where the longitudinal and time-
like components of the four-vector A vanish.

As in the case of all field-theoretic models, the
Levy-Sucher formula serves only limited pur-
poses. It was not designed to produce experimen-
tally observed numbers. It is still unknown wheth-
er their approximation preserves causality. Their
formula, however, is manifestly covariant.

Although there are good reasons to believe that
the forces between the quarks inside the hadron
are like that of the harmonic oscillator, "there
are no theories governing the scattering of a quark
by a quark. For this reason, the quark-quark
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scattering amplitude has to be a purely pheno-
menological quantity. What we have in mind is
to replace the field-theoretic quantities in the
Levy-Sucher formula by a covariant but pheno-
menological formula, which will produce the ob-
served data in high-energy diffractive reactions.

The most commonly used nonrelativistic quark-
quark scattering amplitude for small angle is of
the form"

0
sxp ——(&(-&)')'I

2

in the region where the amplitude is not sensitive
to the total energy. It is not difficult to find a co-
variant quantity which can reproduce the above
form when it replaces the integrand of Eq. (16).
Let us consider the covariant form

G(x, d) =d exp I- -, [-x"x„sP(x t't)'/tt'[I,

(18)

where K is a time-like four-vector. We can choose
K to be (p+q} or (q+q') in order to arrive at the
desired result. The latter choice for K will ex-
hibit a Lorentz contraction of the interaction
range.

If we replace the integrand of Eq. (16) by the
above phenomenological quantity,

f (S f)= —d4 d'f/ d' '"'" " '"""'"P( )
2m

(22)

and the double scattering term can be written as

/(s t)= —d'f d't&fd ss''"' e "t"'»' -'
2m

Xe -&I/2(t )(be S)2 p(~&}

(23)

In the above expressions the relativistic effects
come from the p(s} function. I.et us go back to
Eq. (21). The initial wave function g;(x) is that of
the ground state. The final-state wave function

g&(x) is in either a ground or an excited state. It
was noted in Ref. 1 that the normalization con-
stants for these harmonic-oscillator wave functions
do not depend on the parameter P. This will allow
us to ignore the normalization constants in the
foQowing discussions. We shall first consider the
transition from the n = 0 to n = 0 state. Now the

p(b) function takes the form

p„()&) e&'&'" f d=» dt exp
I

— [y, '+y,"+y,'+y,")I .

(24)

We can perform this integral easily if we use the
new variables

/(s, t)=f dxe '»'*G(x Zl (19) z+t g —tg=~ andy=~,
the integration can be performed trivially, and
this will produce the phenomenological amplitude
of Eq. (17). In the kinematical frame which we
discussed in Sec. III, the above form can be put
into an impact-parameter representation,

and the net effect is

p ()&)=((—e')' 's " '"fdsdtexp[ &s(t'ss')), -
(25)

(s f) g d2b ei)(~ )ye [»/2GP

2r (20}
where a is the velocity difference between P and
Pt .21

The constant A absorbs the trivial kinematical
factors.

This impact-parameter representation together
with the transverse probability distribution of the
quarks in the target hadron makes it possible to
construct diffractive scattering by composite par-
ticles."

We now construct the transverse probability
function p(b) using the covariant harmonic-oscil-
lator wave functions. We can calculate this quan-
tity by integrating the probability density over the
longitudinal and time-like directions

S(P)= f«l( ds) t( x)Px (21)

Then the Glauber single scattering amplitude takes
the form

(26)

In the high-energy small-angle scattering,

{27)

Equation (22) indicates that the over-all rela-
tivistic effect is simply a multiplication of the non-
relativistic calculation by the factor (1 —a')~'.
This simple result will also hoM in the transitions
from the n=0 to n=1 states.

The most interesting case is the transition to
the n= 2 states which include the N(1470) and
X(1690) resonances. In this case, the z fintegral-
wiQ contain Hermite polynomials of order 1 or 2.
The nonzero contribution to p(b) will come from
the integral of the form
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p, (b) =e ""' drdt[E(x, y)+z'] exp~
——(z'+t'+ (1 —n') '[(z —at)'+(f —c[z)']) ~, (28)

where E(x,y) does not depend on z. We can again
use the variables f and q to evaluate the above
integral, and

p, (b) = (1 —n')"'e- ' fdz dt[E(x, y)+z']

xexp[- &o(z'+ t')] . (29)

Here again the relativistic effect is the over-all
(1 —a')' ' factor. This simple result comes from
the following cancellation. If we change the vari-
ables x and y to $ and i), the exponent becomes
completely separable. The z' term in the inte-
grand becomes in effect (g'+rP))/2 In ad.dition to
the over-all (1 —o.')' ' factor, the g' integral re-
ceives the (1 —a) correction, and the q' integral
receives (1+n) The.se corrections cancel out,
and the net result is the over-all multiplication
factor (1 —a')'/'. We do not expect this type of
cancellation for the transitions to the n= 4 or
higher states.

We shall discuss the physical implications of
the above calculations in the following section.

V. PHYSICAL IMPLICATIONS

In this paper, we started with the covariant har-
monic-oscillator wave function and discussed its
applicability in the high-energy diffractive scatter-
ing. We noted in Eq. (25) that the I orentz con-
traction of the ground-state wave function results
in the reduction of the probability by the factor

&2))/2

This covariant wave function was used to com-
pute the transverse probability distribution which
is needed in diffractive scattering by the composite
target particle. The most interesting diffractive
processes are of course nucleon elastic scatter-
ing and production of the N(1470) and N(1690)
resonances. These resonances are assumed to
have the same SU(6) structure as the nucleon.
They have different spatial wave functions. The
N(1470) resonance is rega. rded as the L =0 mem-
ber of the n = 2 state while the N(1690) resonance
is assumed to have I = 2 in the same n state. In
studying these resonances, we can ignore the
SU(6) structure and concentrate on the spatial
wave functions.

For these production processes, there are nu-
merous calculations in the literature"'"'". How-
ever, none of them can be regarded as satisfactory

because wave functions used are not covariant. In
this paper we used completely covariant wave func-
tions. Our calculation for the transitions to the
n=2 states shows that the use of the relativistic
wave functions leads to the over-all contraction
factor (1 —a ) which multiplies the nonrelativistic
amplitude. 23

Although the values of e are 0.41 and 0.52 for
the N(1470) and N(1690) resonances, respectively,
the (1 —n') factor is still very close to unity. For
this reason, this effect cannot be detected from
the present experimental data. Therefore, the use
of nonrelativistic wave functions was a sound ap-
proach from the numerical point of view, and our
work removes the well-known internal inconsis-
tencies in the nonrelativistic calculation.

Because of the orthogonality between the v = 0
and n = 2 wave functions, the nonrelativistic cal-
culation gives an unwanted forward dip for the
N(1690) amplitude. '" Since our result repro-
duces this orthogonality, the Lorentz contraction
alone does not remove this dip." The experiment-
al absence of this dip may indicate that there is a
configuration mixing between these excited states
and the ground state. However, the present ex-
perimental situation does not compel us to calcu-
late this configuration mixing. "

In Sec. II we stated that the covariant harmonic
oscillator plays important underlying roles in con-
structing many theoretical models. Of equal im-
portance is its role in understanding experimental
data. We noted in Sec. I that it produces the ob-
served mass spectra and elastic form factors. In
addition, the use of the covariant wave functions
gives quite encouraging results for electropro-
duction' and large-angle nucleon scattering where
the form factor plays the decisive role." We note
further that the relativistic approach to decay rate
calculation, using a harmonic-oscillator model,
has been successful. ' In this paper we observed
first that the Gaussian contraction factor gives the
(1 —[).')'/' reduction in probability, which is quite
compatible with our concept of space contraction.
We then showed that the relativistic treatment of
diffractive scattering gives numerically the same
result as that of the nonrelativistic treatment,
which is quite consistent with the present experi-
mental data. The covariant harmonic oscillator
may not be a perfect model, but it certainly pro-
vides a framework for many important aspects of
both the conceptual and phenomenological ap-
proaches to a possible new physics. "
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Note added in Proof. The result of this paper
strongly indicates an orthogonality relation for the
wave functions having different velocity parame-
ters. After this work was submitted for publica-

tion, Ruiz ' proved the orthogonality relation for
the harmonic-oscillator wave functions which we
introduced in Ref. 1 and which we use in this paper
and also in the following paper.
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