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An intimate connection exists between the vanishing of the self-stress of a particle (at rest), as required by
Lorentz covariance, and a unique normalization of a universal function of relevant coupling constants in the
theory in modern renormalization-group equations. This connection leads, unambiguously, to a correct
version of the classic Pais-Epstein result for the self-stress in a self-consistent manner.

In this note we consider the old and fundamental
problem associated with the self-stress of a par-
ticle in the language of the modern renormaliza-
tion-group approach which carefully takes into
consideration the breaking of scale invariance, in
general, in relativistic quantum field theory. We
have in mind the renormalization-group equations
in the form of those of Callan and Symanzik.! The
vanishing of the self-stress of a particle (at rest),
as a requirement of Lorentz covariance, and its
apparent and immediately connected difficulty in
quantum field theory are well known and go back
to an early classic work of Pais and Epstein.? The
apparent and immediate difficulty resulted when
the lowest-order expression for the self-mass of
the electron, in quantum electrodynamics, was
substituted in the Pais-Epstein result for the self-
stress, which yielded a nonvanishing result for
the latter. The reason for this apparent inconsis-
tency was clarified long ago by Rohrlich,® who
emphasized that regulators are to be introduced
initially into the theory for self-consistency (thus
breaking scale invariance); in this manner he ob-
tained the unambiguous result that the self-stress
of the electron does indeed vanish (even to lowest
order in perturbation theory).? Here we discuss
this problem from the renormalization-group ap-
proach.! An intimate connection exists between
the vanishing of the self-stress of a particle and
a unique normalization of a universal function of
the relevant coupling constants in the theory in
the renormalization-group equations. This leads,
unambiguously, to a correct version of the Pais-
Epstein expression in a self-consistent manner.

The self-stress of a particle (at rest) is formally
defined? * in a standard notation:

. 1
oo ()
= (pl€,"(0)Ip), - M

- lim (VI—T> o<p If(dx)euu(x)

fdaxe““(x)

p),-M
o

-,
(1)

12

where in the second and third lines we have made
use of translational invariance inthe limit of (space)
V-~ and (space-time) VT ~ =, respectively. The
state |p), denotes a state of a particle at rest with
(renormalized) mass M. 6”“ denotes the trace of
a conserved, symmetrized, and possibly improved
energy-momentum tensor in the theory to formally
define a dilation current.’'¢ The first expression
on the right-hand side of (1) is understood to de-
note the connected part of the matrix element. For
concreteness we consider M to denote the mass of
a fermion in a theorv governed by the interaction
Lagrangian density: G ¥y, ¥¢ - (7,/4)¢*?, where
the symbols have their usual meanings. A very
convenient starting point for our purposes is the
derivation of the Callan-Symanzik equations! in
Ref. 5. Let M, and u, denote the unrenormalized
masses of the fermion and the boson, respectively.
From the reduction formula, we obtain from the
work of Ref. 5 that the first term on the right-
hand side of (1) is given by
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where S(p) is the unrenormalized fermion propaga-
tor; Z and Z' are (over-all) properly chosen re-
normalization constants to make the resulting ex-
pression (2) cutoff-independent. The unique nor-
malization condition we have mentioned above will
now follow. By using the chain rule® and substitut-
ing the renormalized fermion propagator S(p) for
S(p), etc., one immediately obtains for (2) at ar-
bitrary p, with the definition
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From the mass-shell condition S™(p)~ (y+p+M)
for the renormalized propagator with unit ampli-
tude, and the vanishing of (s(0)) in (1), we obtain
the unique normalization condition from (3) (see
also Ref. 7)
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The above normalization condition is usually
chosen in the literature either for simplicity or
for convenience. The important point, here, is
that it is fixed by the vanishing of (s(0)) (i.e., by
the requirement of Lorentz covariance) and the
proper (re)normalization of S(p) near the mass
shell. To determine the constant Z, for example,
we apply the total differential operator [M(d/aM)
+u?(d/du?)] to $Y(p) while keeping G,, A,, and an
ultraviolet cutoff A (introduced in some convenient
manner) fixed,® and we pass to the mass-shell
condition S"Y(p)~ (y +p +M):
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We then obtain, for example,
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etc. Let us solve M, in terms of M and renormal-
ized quantities with an ultraviolet cutoff kept fixed:
M,=MZ,. Upon substituting this expression into
the left-hand side of (1) [and equivalently into the
left-hand side of (4)], using the expressions (2),
(5), and (6), and in turn using the normalization
condition (4) self-consistently, we obtain for the
expression in question
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We have also applied the chain rule on the right-
hand side of (5) and equated the coefficients of the
various derivatives in (5). In a self-consistent
manner we finally obtain for (1)
M,
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which vanishes identically, since its right-hand
side is the Callan-Symanzik equation for In(M /M)
and it contains the anomalous term 6,(G, A).

lowest order, for example,
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and hence
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Clearly this result is true in any renormalizable
field theory. It rests on the unique normalization
condition (4) followed by a self-consistent analysis.
Needless to say, the derivatives with respect to
the couplings G and A appear in (8) in spite of the
fact that the latter are dimensionless.

'C. G. Callan, Phys. Rev. D 2, 1541 (1970); K. Symanzik,

Commun. Math. Phys. 18, 227 (1970).

?A. Pais and S. T. Epstein, Rev. Mod. Phys. 21, 445
(1949).

3F. Rohrlich, Phys. Rev. 77, 357 (1950).

4For some other early references see F. Villars, Phys.
Rev. 79, 122 (1950); S. Borowitz and W. Kohn, ibid.
86, 985 (1952); Y. Takahashi and H. Umezawa, Prog.
Theor. Phys. 11, 251 (1952); J. M. Jauch and
F. Rohrlich, The Theory of Photons and Electrons
(Addison-Wesley, Reading, Mass., 1955); S. S.
Schweber, Relativistic Quantum Field Theory (Row,
Peterson, New York, 1961).

°S. Coleman and R. Jackiw, Ann. Phys. (N. Y.) 67, 552

(1971).

61t is not the purpose of this note to construct improved
energy-momentum tensors. For a recent thorough
study of this see, for example, D. Z. Freedman and
E. J. Weinberg, Ann. Phys. (N. Y.) 87, 354 (1974) and
further references therein.

"Compare also, for example, with P. Carruthers, Phys.
Rev. D 2, 2265 (1970).

8See, for example, S. L. Adler and W. A. Bardeen,
Phys. Rev. D 4, 3045 (1971); 6, 734(E) (1972); S. L.
Adler, Phys. Rev. D 5, 3021 (1972); 7, 1948(E) (1973)
for all details. We are implicitly assuming the validity
of such a cutoff procedure in this work.



