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An intimate connection exists between the vanishing of the self-stress of a particle (at rest), as required by
Lorentz covariance, and a unique normalization of a universal function of relevant coupling constants in the
theory in modern renormalization-group equations. This connection leads, unambiguously, to a correct
version of the classic Pais-Epstein result for the self-stress in a self-consistent manner.

In this note we consider the old and fundamental
problem associated with the self-stress of a par-
ticle in the language of the modern renormaliza-
tion-group approach which carefully takes into
consideration the breaking of scale invariance, in
general, in relativistic quantum field theory. We
have in mind the renormalization-group equations
in the form of those of Callan and Symanzik. ' The
vanishing of the self-stress of a particle (at rest),
as a requirement of Iorentz covariance, and its
apparent and immediately connected difficulty in
quantum field theory are well known and go back
to an early classic work of Pais and Epstein. ' The
apparent and immediate difficulty resulted when
the lowest-order expression for the self-mass of
the electron, in quantum electrodynamics, was
substituted in the Pais-Epstein result for the self-
stress, which yielded a nonvanishing result for
the latter. The reason for this apparent inconsis-
tency was clarified long ago by Rohrlich, ' who
emphasized that regulators are to be introduced
initially into the theory for self-consistency (thus
breaking scale invariance); in this manner he ob-
tained the unambiguous result that the self-stress
of the electron does indeed vanish (even to lowest
order in perturbation theory). ' Her~; we discuss
this problem from the renormalization-group ap-
proach. ' An intimate connection exists between
the vanishing of the self-stress of a particle and
a unique normalization of a universal function of
the relevant coupling constants in the theory in
the renormalization-group equations. This leads,
unambiguously, to a correct version of the Pais-
Epstein expression in a self-consistent manner.

The self-stress of a particle (at rest) is formally
defined' ' in a, standard notation:
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where in the second and third lines we have made
use of translational invariance in the limit of (space)
V- ~ and (space-time) VT —~, respectively
state Ip}o denotes a state of a particle at rest with
(renormalized) mass M. 6„"denotes the trace of
a conserved, symmetrized, and possibly improved
energy-momentum tensor in the theory to formally
define a dilation current. " The first expression
on the right-hand side of (1) is understood to de-
note the connected part of the matrix element. For
concreteness we consider M to denote the mass of
a fermion in a theorv governed bv the interaction
Lagrangian density: G,@yP P )—(A,/4) P', where
the symbols have their usual meanings. A very
convenient starting point for our purposes is the
derivation of the Callan-Symanzik equations' in
Ref. 5. Let I, and p, 0 denote the unrenormalized
masses of the fermion and the boson, respectively.
From the reduction formula, we obtain from the
work of Ref. 5 that the first term on the right-
hand side of (1) is given by
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where S(p) is the unrenormalized fermion propaga-
tor; Z and Z' are (over-all) properly chosen re-
normalization constants to make the resulting ex-
pression (2) cutoff-independent. The unique nor-
rnalization condition we have mentioned above will
now follow. By using the chain rule' and substitut-
ing the renormalized fermion propagator S(P) for
S(P), etc. , one immediately obtains for (2) at ar-
bitrary P, with the definition
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From the mass-shell condition 8 '(P}- (y P+M}
for the renormalized propagator with unit ampli-
tude, and the vanishing of (s(0)} in (1}, we obtain
the unique normalization condition from (3) (see
also Ref. 7)
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The above normalization condition is usually
chosen in the literature either for simplicity or
for convenience. The important point, here, is
that it is fixed by the vanishing of ( s(0)) (i.e. , by
the requirement of Lorentz covariance) and the
proper (re)normalization of S(p) near the mass
shell. To determine the constant Z, for example,
we apply the total differential operator [M(d/dM)
+ p'(d/dp')] to S '(P) while keeping G„AO, and an
ultraviolet cutoff A (introduced in some convenient
manner) fixed, ' and we pass to the mass-shell
condition S '(P) -

(y P +M ):
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etc. Let us solve M, in terms of M and renormal-
ized quantities with an ultraviolet cutoff kept fixed:I,=34Zo. Upon substituting this expression into
the left-hand side of (1} [and equivalently into the
left-hand side of (4)], using the expressions (2),
(5), and (5), and in turn using the normalization
condition (4) self-consistently, we obtain for the
expression in questions, s a s——M —+ p', + P —+P — ' +M(1+5 ).M 8M ep. 'K 'N. g M 1

('l )

We have also applied the chain rule on the right-
hand side of (5) and equated the coefficients of the
various derivatives in (5). ln a self-consistent
manner we finally obtain for (1)s, e 8 8 M,3(s(0)}= -M M —+ p,

' + p —+ p —In
QpQ 1 QG 2

—(1 + 5i) -M, (8)

which vanishes identically, since its right-hand
side is the Callan-Symanzik equation for ln(M, /M}
and it contains the anomalous term 5,(G, A.). To
lowest order, for example,
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where

P, (G, ~) = cf--- +p, 2 A, .

and hence

G2 G2
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%e then obtain, for example,

Z=Z, M + p,
' —,lnM,

=Z,(1+5,(G, X)), (8)

Clearly this result is true in any renormalizable
field theory. It rests on the unique normalization
condition (4) followed by a self-consistent analysis.
Needless to say, the derivatives with respect to
the couplings G and A, appear in (8) in spite of the
fact that the latter are dimensionless.
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