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Starting from a two-dimensional free spinor Lagrangian we arrive at a theory describing Goldstone bosons.
Then, using a theorem by Coleman and the Higgs effect, it is shown that two-dimensional quantum
electrodynamics is essentially a theory of massive scalar bosons.

Recently Willemsen' has advanced a simple
argument to demonstrate that electrodynamics in
two dimensions is essentially a theory of massive
spin-zero bosons. In this note we shall place
another simple model to elucidate this interesting
feature of two-dimensional electrodynamics. Let
us assume the existence of a free two-dimensional
fermion theory given by the Lagrangian

L=-9v,0%p, (Y
with
{UL0), V50 up = g0, = 9,) - (2)

The Lagrangian given by Eq. (1) is invariant under
the constant-phase transformation

p-e'ty, (3)
yielding the conserved current
Ju=ir,.¥. (4)

If now the current is defined in the following limit-
ing way:

ju=lim HP(x + €)Y, Plx - 3€) : (5)
and

Judy=lim:j (e + 260,00 -2€) 1, (6)
then we can define? a Sugawara theory given by

[io6,),720 )y, = =125, 8081 = 3,) (72)

and a stress tensor
1 . s
euv=2_'cl:(]u]y"']u]u_guv])]h):’ (7b)

where ¢ is a positive number which fixes the nor-
malization of j.

At this stage we can demand the existence of a
massless boson in the theory.® From Egs. (7) we
have

9% ,=0 (8)
and also
all-jv=alljl-l’ (9)

which demands

juz\/—(j‘—au(P. (10)

Here ¢ is a scalar field, and recalling Egs. (7)
and (8) we construct the theory of a massless
boson given by

[(»b(xl)’ ‘P(yl)],0=y0=—i5(x1—y1) 3 (11)

0,,=2(0,08,0+8,09,0) -g,,0,¢¢, (12)
and

Op=0. (13)

At this stage the theory given by Eqgs. (11)-(13)
leads to an uncomfortable situation owing to a
theorem by Coleman® which we shall discuss later.
However, to understand in what sense the mass-
less scalar boson field given by Eq. (13) exists in
two dimensions let us believe with Coleman® that
we still define a particle as a normalizable eigen-
state of P, P* which are the states of one fermion
and one antifermion (both in normalizable states
moving to the left and still an eigenstate of P P*").

In Willemsen’s demonstration® ¢ is a pseudosca-
lar particle, this choice being dictated by the use
of the Sommerfeld ansatz

8, ¥=i(n/2){j,+ 77", 4}.

The present theory is invariant under the constant-
phase transformation given by Eq. (3), which guar-
antees the existence of a conserved current j,,.

Let us consider that in our two-dimensional world
particles can be made to move to the left and to
the right separately, i.e., we can consider the for-
ward and backward light cone separately. We
therefore introduce hyperbolic coordinates

U=Xy+X,
and
V=Xo= Xy,

and then have

j+(u)=%[jo(u) +.71(u)] (14a)
= im[¥]( + 20, (u - 2€)
- W +3€)0, (- 3€))] (14b)
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and
i) =3[j,(v) -4, (v)] (15a)
=lim[¢}(v+2€)4,(0 - 2€)
- W@ + €)Y, (v - z€))], (15b)

where ¢, and ¥, are solutions of the model given
by Eq. (1), i.e.,

b, = (2m) V2 f dRO(k) (cye ™ +idlei®) | (16a)

3, = (2m)V2 f dRO(=F)(c,e™™ - idle=i*™) .  (16b)

Hence
9,=109,+3,
and
x= au - av ’
and also
8%j,=9,j.(v)+8,j,@)
=0, (17a)
€"8,j,=-8,j (v)+9,j,()
=0. (17p)

At this stage we have the Sugawara theory with
hyperbolic coordinates,

[7.,60),7.,")] = = i(2m)"8,6(u - u'), (18a)

[i-@),i-@"]==-i@2m)"8,6(v-v"), (18b)
and

[7,@),j.()]=0. (18c)
Since (=489, it follows easily that

0j,=0. (19)

Let us now see what happens if one attempts in
the present model to obtain a formal equivalence
between the two Hamiltonians of the fermion sys-
tem and the boson system respectively, i.e.,
when at least

Hboson =Zpa;ap (20)
>0
=Hormion =§k(020k+dldk) (21)

is obtained. In Eqgs. (20) and (21) we have con-
sidered for simplicity operators for particles
moving to the right. In writing down wave func-
tions explicitly we shall introduce box renormali-
zation (and remove zero-energy modes by hand)
which would be a means to get rid of the bad in-
frared behavior in the theory.! Thus

() =LY 0(k)(cpe™ +idle ) (22)
k

with the choice that 6(k)=1 when £=0 (for the c’s)
and 6(k) =0 when 2=0 (for the d’s). Then following
Freundlich® we can write the annihilation operator

a,=(=i)V2m (pL)™/? fdue""“jl(u)

= (<DVET (pL) V22 6(k)cle ., — didy,
k

—i0(p - Ry, ,
and then

Hboson=errmion_ WL-IQ(Q-I) ) (23)

where H, . and H,, . are given, respectively,
by Egs. (20) and (21), and @ = [ duj,(u) is the fer-
mion charge operator. Freundlich® demonstrated
that fermion states are Glauber coherent states of
bosons, the boson vacuum being the ground state
of the charge sector corresponding to the given
fermion state. The scalar boson is the Goldstone
particle and the degenerate vacua are the ground
states of various charge sectors.”

Let us now consider the two-point function®

©1690)0)= [ £ etex0:2)60k,)

= szlk;cje"'”ﬁ"‘l cos (k,x,) ,
which implies an infrared divergence forbidding
the presence of a two-dimensional momentum-
space 6-function singularity on the light cone.

This is reminiscent of the Coleman demonstra-
tion® that there is no Goldstone boson in two dimen-
sions.

Because of the Coleman theorem we are forced
to adopt one of the following two procedures:
either bring back zero-energy modes to our theo-
ry or introduce a coupling of some other massless
fields. For the first procedure to be operative one
needs extra boson operators which cannot be de-
fined in terms of bilinear products of the fermion
operators.® There is then complete operator
identity between fermions and bosons, and the
charge spectrum becomes continuous. However,
one then cannot infer the status of the physical
degrees of freedom in the theory. For the other
procedure, we introduce a minimal coupling of
photon fields in our theory. Let the Lagrangian
for the massless scalar boson be given by

£=-30%98,0. (24)

The theory is broken in the sense that under the
invariant transformation ¢ - ¢ + £ (where £ is a
constant) Eq. (24) yields a Noether current the
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generator of which vanishes owing to the presence
of the space integral. The transformation ¢~ @+ &
implements only the zero-energy modes of ¢
which cannot be regarded as canonical degrees of
freedom, in momentum space the support of the
constant £ being the single Lorentz-invariant
point &, =0.

We now introduce minimal coupling of photons
into our theory, i.e., we demand the invariance
of Eq. (24) under

e
Pe)~ o)+~ Ex)
and
A x)~A, (x)+8,E(x).
Then for Eq. (24) we have
L=- %<8u¢_%Au> <3u¢,_§Au> —3F,, F*,

(25)

where we have added the last term, the free pho-
ton Lagrangian. The above expression can be
simplified to the form

2
£=-iFl, F* - - 8,8", (26)
where
F:w = auq)u - auq’u

and

e
q)u:Au_Eauw'

Equation (26) is a Lagrangian for a massive scalar
photon with mass e¢/v¢ which is the result of a
very simple Higgs mechanism.
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