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%e calculate the leading contribution to the e6'ective potential, V(P), under the assumptions that there is a
deep bound state and the corresponding pole dominates the one-particle irreducible vertices for spin-zero field

theories. We find that V has a $ -power branch point in the $ plane on the real axis. We show that the -rs

power is due to the fact that V = d V/d$ satisfies an algebraic equation quadratic and cubic in V for the
cases considered. In the domain of fIt for which V is real, the leading pole contribution is negative, allowing for
the possibility of an instability in the normal vacuum.

I. INTRODUCTION

There is a recent revival of interest in the effec-
tive potential function in field theories. ' ' The ef-
fective potential is a c-number function of c-num-
ber fields V(p, ) defined to all orders in pertur-
bation theory, the minimum of which determines
the vacuum expectation value of the quantum fields.
For theories with internal symmetries, spontane-
ous symmetry breaking may result when the min-
imum occurs for nonzero t(i. Hence, V(Q) may be
useful in searching for instabilities of the normal
vacuum, especially when they occur beyond the
tree -level approximation.

The function V(p,. ) is, in fact, the generating
function for n -line one-particle-irreducible ver-
tices (vertices for short) with all momenta zero. '

For the case of a single scalar field o, V(o) is gi-
ven by the formula

V(o) = -g —1'"'(0),

generated state a.nd that a corresponding pole dom-
inates 1't"'(0). The idea is to investigate the pro-
perties of V(P) that can be traced to the existence
of a deeply bound state. We give some examples
for which Eq. (1.1) can be summed and find two
general features for all cases considered. First is
that the bound-state contribution to V(Q) is nega-
tive, making an instability in the normal vacuum
possible. A reliable determination of the true min-
imum is hampered by limitations in our approach.
Second is that V(Q) has a branch point in tti at a
position Q„determined by pole parameters. The
behavior of V(tb) in the neighborhood of the branch
point is

V(4)"(0 —0b, )"'
The & power can be understood mathematically
by the following circumstance. We are able to
show that V' -=dV/dP satisfies an algebraic equa-
tion. , quadratic and cubic in V' for the cases exam-
ined, of the form

where E(V', c re) = 0, (1.4)

1& &(0) 1& i(P P )} „ (1.2)

An n-line Feynman graph is included in F'"' if it is
connected and, further, does not become discon-
nected as a result of cutting a single line. This
means, in particular, that there are no propagators
on external lines.

There have been a number of papers investigating

V(Q) in the loop expansion. " ' The importance of
the loop expansion lies in the fact that it is an ex-
pansion in a parameter that multiplies the whole

Lagrangian and is not dependent on a particular se-
paration of free field part and interacting part. In

other words, it does not commit one to an a priori
choice of the vacuum. One can then survey V(ft)),
find the minimum, make a separation into free field
and interactions, and do perturbation theory as us-
ual.

In this paper we calculate V(P) under the assump-
tion that the theory in question ha.s a dynamically

where c is a quantity depending on pole parame-
ters. V' has square-root branch points at the turn-
ing points of F. Integrating to get V gives the 2

power.
There is an interesting similarity between these

results and those in the paper by Coleman, Jackiw,
and Politzer (CJP).s They studied spin-zero theo-
ries with O()tt) invariance for large N and showed

that it is possible to obtain the 1/N expansion as a
loop expansion involving an auxiliary field. For the

case of 4-dimensional space-time, they found (i) a
branch pointin V(ili) for real

gati
andthatitwas of the

(gati
—Q, )' ' type [the a power is not stated but fol

lowe from their Eqs. (2.8) and (2.11)], and (ii) that
the theory ha, s a dynamica, lly generated state. Un-

fortunately, the state is a tachyon which signals
something is wrong with the theory or approxima-
tion. If we give our a,nalysis the same difficulty
by blindly letting the mass of the bound state be
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pure imaginary the branch point in V is still pre-
sent. That is, a pole in the vertices can control
the singularity structure of V regardless of the
viability of the theory or approximation. Hence,
we suggest that the CJP results (i) and (ii) are not
unrelated but that the branch point in V is a man-
ifestation of the dynamical pole. It would, of
course, be desirable from our point of view to have
an example for which a dynamical state is found

for real positive mass. "
Feynman perturbation theory cannot generate

bound states when carried to a finite order. In-
finite subsets of graphs can. However, it would

be a formidable problem to find an approximation
that would generate poles in all appropriate chan-
nels of I"'"'(P„.. . , P„). The standard Bethe-Salpeter
equation in the ladder approximation would be of no

use. It generates an amplitude that violates cros-
sing. This shortcoming can be overcome, ' but at
the cost of a formidable set of coupled equations
even for the 4-line amplitude. Further, these
crossing-symmetric equations are not based on a
loop expansion.

Our approach here is to ignore this problem and

try to learn about V(P, ) from the general properties
that follow from the existence of a bound state. In
this paper we only look at spin-zero fields and a
spin-zero bound state. %'e leave out internal sym-
metries but allow for a multiplicative quantum
number that can be thought of as parity and is thus
denoted in this paper. The simplest case is that of
pseudoscalar fields and a scalar bound state which
is treated in Sec. II. In Sec. III we include a scalar
field to this case. In Sec. IV we treat the case Of

scalar and pseudoscalar fields with a pseudoscalar
bound state.

The basis for our approximation is the assump-
tion that poles dominate the I'"'(0) for a sufficiently
deep bound state. To calculate V(P, ) we need fac-
torization at the pole. For one of the cases in this
paper —Sec. II—the pole in question is a pole of the
vertices and Green's functions and hence is a par-
ticle state. Factorization for this case is in the
domain of common lore. In the remaining sections,
the poles in vertices are not poles of Green's func-
tions and hence do not correspond to particles. For
these cases there is a particle corresponding to a
field that couples to the vertex pole and mixes with
it, giving a "dynamical particle" in Green's func-
tions at a shifted mass. Factorization still holds
for the vertex pole. %'e feel that this is sufficiently
unfamiliar to the interested reader towairant a ped-
agogicalappendix(Appendix A) on how this all works.

In the vast majority of stability equations in phys-
ics, it is far easier to determine whether a system
is stable or not than to determine the detailed con-
sequences of an instability. Loop expansion studies

II. PSEUDOSCALAR FIELD, SCALAR BOUND STATE

%'e first consider the case
2

7 = —,'(gP)' —~ g' fg'+counte—rterms.
2

(2.1)

The only properties of Z we require for this dis-
cussion are that 2 have a mass term and an inter-
action even in the field (and hence we call P pseu-
doscalar). This Lagrangian is the only such re-
normalizable theory involving one spin-zero field.
In order to calculate V(Q) we must assume that for
some value of f there is an S-wave bound state of
2ps (hence, the bound state is scalar). We wish
to sidestep the question of the possible existence
of the state for this particular theory. This is the
simplest model that illustrates the pole assumption
and the combinatorics needed to calculate V(g).
The argument generalizes to the interaction 2,„,
f ~, Q, P&Q„Q. In this case, the required assump-

tion is that there is a bound state in one internal-
symmetry channel of 2Q's.

It is well known that n-line amplitudes A'"' have
poles at the mass of physical particles in every
channel that communicates and that the residue of
the pole factors into two amplitudes A'"~' and A'"2',
where n, + n, =n +2. In perturbation expansions of
Lagra, ngian theories this is automatic if the physi-
cal state corresponds to a field. These properties
also hold for bound states in the theory for which
there is no corresponding f ield and it is this case
that we are interested in. The vertices I'"' by

of simple field theories are an exception; if a nor-
mal vacuum is unstable, a stable vacuum can often
be found and the theory solved at the true minimum.
Our approach in this paper is not an exception. %'e

do not know how to determine the detailed conse-
quences of an instability we may find.

This analysis can be generalized to more rele-
vant field theories. If the criteria for stability can
be firmed up this may have useful applications in
the quark model where the physical particles are
postulated to be bound states. Another area is the
further study of spontaneous breaking of gauge
theories in which an instability in the normal vacu-
um follows from dynamical considerations rather
than being put in via a Higgs field. '

Questions of determining stability aside, we feel
the singularities of V(Q) may have some interest.
Since their positions depend on bound-state param-
eters we speculate that it may be possible toformu-
late the bound-state problem in terms of criteria
based on the singularities of V(P). It is far easier
to calculate vertices at momenta zero than for
finite momenta, and hence we can envisage real
advantages if this approach can be developed.
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definition have no poles corresponding to fields but
they do have poles if there is a bound state. For
the theory at hand the scalar pole position in I'"'
is at the physical mass of the bound state, denoted
ms. (This is not true for the cases that follow in
the next sections. ) Ne will show in this section
that there is a well-defined contribution to 1"("'(0)
with ms dependence, I'"'(0)cc(]/ms')" ' (n &4), with
corrections down by a factor of ~~', and hence, this
is the leading term in the expansion in ms (adimen-
sionless variable will be defined below). These
leading contributions to the I'""s are easily
summable to give the effective potential in this
approximation.

We start by reviewing the various n-line func-
tions occurring in field theory. Let us denote the
connected momentum-space Green's function by G:

and renormalized vertices
F(n') gn'/aF(n') r 4 2

If we further define

G(")= Z"~'G(")
B~

(2.3)

(2.4)

then the renormalized quantities are finite. (It is
understood that the 5p' and 5f counterterms can-
cel the appropriate divergences in I"~ and 6„.)
The above statement expressing G in terms of
I' and 4 can be equally well made for the renor-
malized quantities.

Going one step further, we can divide out the
propagators h„on the external lines and thereby

FIG. 1. Example of a one-particle analysis of a
Green's function G. The lines on the right denote full
propagators, I's are one-particle-irreducible vertices
(vertices for short). The factor 10 indicates there are 10
different structures corresponding to different external
labels.

= 8:(0IT(4 (,) ~ ~ ~ 0( „))I0)I,.„„„...,

where F denotes Fourier transform. It is possible
to express G" in terms of I"" and unrenormalized
full propagators 6 as shown, for example, in Fig.
1. The general result is that G" is expressible
as the sum of all possible tree structures in which
the n'-line couplings are I"" (n' ~ n} and the inter-
nal and external lines are 5,.' The poles in the
propagators have residue Z which is divergent in
perturbation theory. Define a renormalized prop-
agator 6„:

A=Z 6 Z (2.2)

define an off-mass-shell amplitude A&"' (see Ref.
7)

A"=G"(6 (P)'''d, (P)) ' (2.5)

Taking A. "' on-shell gives the 8-matrix element.
The one-particle analysis of A" now has propaga-
tors only on internal lines, and is of the form, all
variables suppressed,

A(ll) ~ F(lip). . .F(ll/l(/ )mR B R (2.6)

where the sum goes over all independent tree
structures. The indices satisfy the constraints

P

Q n&=n+2m, P= m+1. (2.7)

What we do now is apply the factorization prop-
erty of physical states of amplitudes at the bound-
state mass ms to extract the leading term of A "(0}
in our expansion in m~'. %'e will then show that
this is, in fact, the leading term for F"„(0).

Consider the amplitude A~"~(P„. . . , P„) as shown
in Fig. 2(a). Choose momenta in pairs such that
(P, +P,)' —me'. Extract the residue of these poles
as implied by Fig. 2(a). Then take pairs of pairs
totheir correspondingpoles, (p, +p&+p~+p, )' -ms'.
Continue until the freedom in choosing external
momenta is exhausted. This procedure generates
structures that look like tree graphs (not to be con-
fused with tree graphs), with the rules shown in
the first column of Fig. 3. These rules have the
proviso that P lines are only external and bound-
state lines are only internal. All the momentum
dependence is in the pole denominators and the
external line couplings. A" will then have the
factors

n/2 (P, P, bound state} vertices: P(P,', P,', ms'},

n —3 pole factors: —(P -ms') ',

,'n —2 (3 bou—nd state) vertices: y(ms', ms', ms'},

If we now take the external momenta to zero, this
contribution gives (n &4)

A "(0)= ~ P" 'y'"'-' (I/I ')"-' (2.8)

where P=P(0, 0, ms ), y= y(ms, ms', ms'), and N„
is a combinatoric factor that counts the number
of such graphs. 1V„will be given later. Nonleading
contributions to A" come from the higher terms in
the Laurent expansion of the amplitude at each
pole. These contributions will have at least one
less power of I/ms'. To see this in more detail,
suppose we picked up the finite part of the ampli-
tude instead of t;he pole piece at one of the poles;
then it is easy to see that the ratio of this to Eq.
(2.8) would give either ms'A, z/P', or
ms'A» 2b, /py, or ms'A4b, /y', where the A's are
4-line nonpole amplitudes composed of Q and
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(a)
~ ~ ~ ~

~ ~ ~

~ ~ 0

FIG. 2. The factorized residue structure at dynamical poles in vertices for the three cases (a), (b), and (c) corre-
sponding to Secs. II, III, and IV in this paper. Wiggly lines represent dynamical poles; dots are couplings involving
poles and external lines representing fields. Dashed lines are scalar fields; solid lines are pseudoscalar fields.

bound-state lines as indicated. These A's are
dimensionless and we assume they are of order 1.
Hence, for the first term in our expansion in m~'
to be good we must have

m, 'iP' «I,
(2.9)

m~ /Y && 1.
Next we show that our At"~(0), Eq. (2.8), is, in

fact, the desired expression for I'i/i(0). The point

is this: The completely factored structure implied
by Fig. 2 cannot be cut in two by cutting an inter-
nal P line. If, for example, y(me', me', me') con-
tained a one-particle-reducible graph, then there
would be a direct coupling between a Q line (pseu-
doscalar) and bound-state line (scalar). Hence,
Eq. (2.8) is obtained from the subset of graphs of
A(" that are one-particle-irreducible. A further
check on this can be made by assuming the leading

pseudoscolor field pseudoscolor and scolor fields

scalor bound stote scalar bound state pseudoscolar bound stote

fA
B

W VV V'~ 2 2
N

D

y

FIG. 3. Rules to find the residue of a dynamical pole. Factorized residues are tree structures composed of these
elements. The wiggly lines —dynamical states —are internal only, the solid and dashed lines —pseudoscalar and scalar
fields —are external only. The three columns correspond to the three sections of this paper, Secs. II, III, and IV.
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term of I ")~ (1/ms')" ' and noting that the individ-
ual terms in the sum Eq. (2.6) have the behavior
(I/ms')" ' . Hence, the terms with the number of
propagators, m, greater than zero are nonleading.

We need to know N„ in Eq. (2.8). It is the num-
ber of independent tree structures in the sense of
Fig. 2(a), e.g. , N, =3, N6=15. It is convenient to
write N, =N„XNq@, where Ngi is the number of
labeled bound-state tree structures that are
stripped of the external pair of P lines (see Fig.
2). The subscript n/2 denotes the number of
"external" bound-state lines. Nq, is derived in
Appendix a, Eq. (a2),

(,) (n —4)!
N'2 2(n-4) /2[( 4)/27(' ' (2.10)

N„('"' is just the number of ways of attaching n Q
lines to n/2 identical bound-state lines:

~(pair)
n 2b/R(n/2) )

The formula for V(Q) can be written

(2.11)

where

ms' », ~ (2i)!~ 22(+mi!(( +2) )
!tao

(2.12')

Pr ~„-
mg

Now F Sn)(0) = a„(0) '. Since there is no bound state
in the channel, we have nothing to say about
ibn(0) '. In the absence of a mechanism to fliP the
sign of F ), and thereby induce an instability, we
take I„)(0)=-mi,'&0.

In Appendix a we have defined the function en-
tering in Eq. (2.12'):

(2.13)

yg-x/2)n
V(y}= —P „, [&" 'F" (0)]. (1.1')

The quantity in square brackets is F))'(0) for which
we take A~" in Eq. (2.8). We drop the Z ~' mul-
tiplying Q and just remember that V(P} is the
generating function for the renormalized vertices
r„")(0}. Equation (1.1') becomes

(n-4)!n) P' Py "('-2y"
~ 2" '[(n —4)/2]!(n/2}! ms' ms' n! '

(2.12)

Converting to a more useful index, i=n/2 —2 gives

1 m 2

Py
(2.15)

W(Q'/2) =b~(3$'+2[(1 —P )~' —1]j. (2.16)

The physical domain of P is bounded by 0 ~ Q' 1

since V(())) has a branch point at (I) =+1. The
first term in Eq. (2.15}is positive, the second
negative. Hence there is a possibility of an insta-
bility. We list some elementary properties of
this function:

(a) (j) = 0 is a local minimum of V(Q).
(b) The minimum of V(P) in the domain [-1, + 1]

occurs either at $ =0 or»t) = +1. The minimum
occurs at /=0 if

m~ P
[-A '(o)I y

(2.1'!)

(c) If inequality (2.1'!) is not satisfied, then at
the minimum (P = s 1), d V/dQ a 0.

(d) For tj)'& I, V(Q) is complex. For p -~,
- IfflRfl'

R V(~)
1 —an '(0) me'

e~
(2. 18)

if our requirement for stability is that 0'(0) is
the minimum im the physical domain, then the
condition for stability is Eq. (2.17). If we further
require that the minimum of Re P(())) for all P
occur at P =0, then Eq. (2.18) gives a stronger
condition:

m~'P

[ ~,-'(0)ly (2.19)

Our conclusion then is that for ma'-O', P/y/0,
the theory is stable. Returning to the original
variable ft), the branch point is at

4b, '= ms'/Py

(ii) Py&0. Define P = —» = —(Py/me')Q' Now.
(2.20)

Hence,
6

V(e)=-kd. -'(0)e'- '.[3»-2+2(1- »)'('].
y2

(2.14)

What does this potential look like~ The sign of
» is fixed in Eq. (2.13) by the sign of Py. Let us
consider the two cases separately.

(i) Py&0. Define a dimensionless field P'= »
= (Py/me'}Q'. Further, define a dimensionless
potential V= V/ms'

(2i)!»'
+(»/ }= » P 22~+Iii(i ~ 2) I

=—, [3» —2 + 2 (1 —»P~'].

(a3')

(a6')

IV(- P/2) =!(- i'3[+( 2+01'}" I]). -(2.21)

Now the domain of f3[) is unbounded, and ~&0 in
the entire domain. For ft) -,
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21
y' 3 (2.22)

III. SCALAR AND PSEUDOSCALAR FIELDS,

SCALAR BOUND STATE

We now investigate what happens if we add a
massive scalar field e to the case just described.
That is, we assume again that there is a scalar
bound state but we now have two fields, P and 0',

that interact via terms:

». =a++g.&*&+f,q'++f.4'+f.+.
The effective potential for this case is

(3 I)

Hence, V has no lower bound and the theory is un-
stable.

We remind the reader that these conclusions
are based on our keeping the leading term in the
expansion in m~'. What have we left out& In terms
of V, corrections will be of the form'

; ( &.
' i,(4(+ &' f.(4(~; f.(4))

Property (i) is needed in order to calculate the
effective potential in our approach. It is not ob-
vious since these vertex poles do not correspond
to particles. It is outside the scope of this paper
to give a detailed proof of property (i). We will,
though, show that property (ii) is a consequence of
property (i). It is instructive to see how the can-
cellation of vertex poles occurs in constructing
Green's functions.

A. Cancellation in two-body amplitudes

We show how the vertex pole cancels out of the
amplitude for the simplest case of pseudoscalar-
pseudoscalar scattering. ' The general case is
discussed in Appendix A. Figure 4(a) shows the
one-particle analysis of A "~, where

A(4 ')= Iis4 "+[Pea')A,„(s)I'„")+(t+uParts)]. (3.3)

Also shown are relations between the vertices and
the self-energy in Figs. 4(b) and 4(c). The o prop-
agator is given by

A,„'(s)= —I'(„")(s)

= s-m, ' —[Z(s) —Z(m, ') —(s-m, ')Z'(m, ')].
I( (y o) Q +m. (()(Pi

ml pg f '
4

(S.2) (3.4)

where Fs '")(P„.. . , P ~ q„.. . , q„) is the vertex
for m pseudoscalars and n scalars. Again, we
find the contribution to I"a '"(0}that dominates
when there is a deep bound state.

There is an added complication that occurs when
there is a field 0 with the same quantum numbers
as the dynamical state. The position of a dynami-
cal pole in vertices does not coincide with the pole
position of physical states in Green's functions.
To get a physical picture of this, it is convenient
to think of turning on the coupling to the scalar
field weakly so that we may think of it as a small
perturbation on the previous problem. Also choose
a situation in which all particles are stable for the
sake of this argument. We can then expect a shift
in the position of a dynamical pole in vertices be-
cause the amount of binding will be affected by the
inclusion. Now there are two points we wish to
note: (i) The shift will be the same for all dynami-
cal vertex poles in all channels to a new mass we
denote m~ and the residues will still factorize as
before. (ii) Green's functions will have two poles
in every scalar channel; one having its genesis
in the free o propagator at mass m, and one having
its genesis in the dynamical state at mass m
The mixing of the two results in a shift of m,
away fromm~ The two poles atm andm, . must
appear in the scalar propagator with positive re-
sidues. Positivity of residues requires that the
propagator have a sign change between q = m, '
and m, .'. In fact, it has a simple zero at q = ms'.

F(,~,),„),P(p, , p, , mi) ) (mn)
Wy) P2 I P~ S 2

( )
~ (mn'}&(ms')

S —mg)

(3.6)

(3.7)

where s= (p, +p, )'. Inserting E(ls. (3.4), (3.5),
(3.6), and (3.7) in E(l. (3.3) gives the cancellation

I 3

(~)
A

4
+ 8+8+8„

(b)

I' + 8t + 8„

(c)

FIG. 4. (a) One-particle analysis of A. 4; (b), (c) rela-
tions between vertices and the self-energy. Dashed lines
are scalars; solid lines are pseudoscalars.

Now assume the vertices have a pole at s = m~'.
Then factorization gives

I'&4io)(p p p p ) P(pl ip4 im. s )P(ps iP4 i ms }
s -m&'

(3.5)
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t F(OI2)(0)o 2 + ~ ~ (3.8)

where ?so"'(0) = (),„'(0)& 0. The coefficient of o'
is negative and therefore the vacuum is unstable.
This is not a new result since the instability is a
consequence of a physical particle mass going
imaginary. However, it leads to the observation
that as the position of the dynamical vertex pole
approaches zero energy, if it couples to a field,
then the theory becomes unstable.

B. Pole approximation to I'P ")(0)

We now identify for each m and n the factorized
structure that gives the maximum power of I/mD'.
For n = 0, the problem was, of course, solved in
the previous section, Eq. (2.8). Locating the dom-
inant term for general n is straightforward and is

of the vertex poles, making the amplitude A "~
finite at s= m~'.

The inverse & propagator is shown schematically
in Fig. 5(a). We have identified the higher-mass
state as the o, and the lower one as the o'. These
two states are on equal footing. One cannot say
that one is the bound state and one is the state
corresponding to the field. If we were to turn off
the coupling between o's and (gal)'s, holding m, con-
stant, then m wouM be the mass of the decoupled
& field, m would approach m&, and we would
recover the case of the previous section.

Suppose the lower zero of 6,,„'occurred for
s &0 as shown in Fig. 5(b}. At first sight it ap-
pears that there is a tachyon. However, this is
not the case. There is an instability and we need
to look no further than the (r' term in &(p, (r) to
see it:

This gives the expression of I'~ '" (0}:
F(m, n)(0) i)((pair) Q(a) pm/a& a

R m m/2+n

x "i"+" '(1/ ')~+ (3.9)

The N's are defined by Eq. (2.10) and (2.11}, P, y
have the same meaning as before, and e = e(mn').
Insert Eq. (3.9) in the definition of V(i!), (r), Eq.
(3.1), and employ the summation indices n, and
i =m/2+n- 2:

I'(y (r) =- a Fa'"(0)0'- a F'n'"(0)(r'

(»)!y'
2""i!(i+ 2)!m 4'+'

'" (@'p)'" "(2e(r)"(i+2)!
n! (i+2 —n)!

rt= 0

(3.10)

Although (r ' appears in the sum (i = 0, n = 2), an
additional term I is added and will be discussed
shortly. The sum over n is just the binomial ex-
pansion of (i!)'p+2eo)'+'. The sum over i is now

the same as in the last case, Eq. (2.12'), if we

shown in Fig. 2(b). As in the last case, take mo-
menta of pairs of Q lines to the vertex po1.es, and
for the o' lines couple them each directly to a pole
term. The further residue analysis of this vertex
follows the same procedure as the last section.
We can write this answer by inspection, the factors
being

—,'m (Q, i!), boundstate) vertices: p(P, P, mD'),
n (o t bound state) coupling: e(mD'),
m+ 2n —3 pole factors: —(P' —mD') ',
—,'m+n —2 (3 bound state) vertices: y(mr)', mD', mo').

{a) {b)

-I

hR
I

fA ~

Im
VD

2

FIG. 5. Schematic behavior of the inverse & propagator &z '(s) when there is a dynamical pole in Z(+) at &=m~~. In

case (a) there are two particles; in case (b) there is one particle; there is no tachyon because &z (0) & 0 and hence the
normal vacuum is unstable, contrary to assumption.
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make the replacements P'- Q'+2«/P, ms'-mo':

V(y v} 1 F(2 ~ 0)(p) y2 j F(0, 2)(p) v2

1 6

[3$ —2 + 2(1 —t')2 ~2], (3.11)-6 y'
] 2

W( —($2+v)/2) .
6 y2 (3.16)

where

& =y(P4 +2«)/m

The coefficients of the quadratic terms are

—2 F)2 ' (P) = —2 a2e '(P) = 2 m2',(2.o)

(3.12)

(3.13)

(3.14)

We note that if F~ were zero, the coefficient of
0' would be negative and the theory would be un-
stable. We have already discussed this and we
want the theory to be stable under that criteria
so we may proceed. Note that 1 „is down by a
factor mo'/e compared to the leading term.
Therefore, we are really including a term from
the next order in the expansion in mD' in order to
make the vacuum stable in the a' term.

As in the previous section, there are two cases
to examine, depending on the sign of P y.

(i) py&0. Define p'=(py/mo')p', o =(2 ey /mo)v
giving

1 -~,„-'(P) -, 1 -I(')(P)m.V=—
2 P y 2 4c'y'

Figure 6 shows the branch point curve in the
($, v) plane for these two cases. Case (ii) is un-
stable for the same reason as before. For case
(i) let us suppose that the previous criteria for
stability of the vacuum are satisfied. There is
still the possibility of instabilities due to excur-
sions in the & direction. For large negative &,
W C2 —(- v)2i2. The explicit v' term in Eq. (3.15)
is positive and will overpower 8', and so it appears
to be stable. However, this is a very risky argu-
ment, since the term I'~v'mo'/4e'y' is higher
order inmo'/e and is only the v' term of a func-
tion of Q and 0 as yet uncalculated. Although this
term is needed to give stability for small o, it
cannot be trusted in a condition for stability for
large o'.

IV. PSEUDOSCALAR BOUND STATE

We now look at the field theories of the previous
sections again but this time assume the dynamical
state is pseudoscalar instead of scalar. The same
type of arguments go through but V for this case
looks quite different.

A. Pseudoscalar field
1 2

W((P'+v)/2),

where W is defined by Eq. (B6'), Sec. II and
V= V/mo' as before.

(ii) Py&0. Define Q' = —(Py/mo')Q' and
v = —(2ey/mo')v, giving

(3.15) First we treat the case of one pseudoscalar field,
no scalar field, Eq. (2.1). Assume the vertices
I'I2 ' have poles at p' =mo2 in the pseudoscalar
channels. The Green's functions will have poles
at m&' and m@

' which straddle mo as in Fig. 5(a).
Figure 2(c) shows how to locate the contribution

(b)

2

FIG. 6. Branch point in the (Q, o') plane for a scalar bound state. The shaded area indicates V is complex. For
(a) Py&0, tb) Pq&O.
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to I'
s(

' that has the maximum power of 1/mD'.
(Delete the dashed-line scalar couplings until
later. } The only difference between this case and

the scalar-field-scalar-bound-state case is that
the 3-bound-state couplings are replaced by 4-
bound-state couplings. The completely factorized
vertex is a tree graph structure constructed from
the rules in the third column of Fig. 3 (delete o.'

coupling), with the proviso that P lines (solid) are
only external, bound-state lines (wiggly) are only
internal. This structure has the following factors:

(3i-3)!h'
(B17')

where

1[(g1/h ~ lh)2+ 1]2 (B19')

We have added a term I in order to make the
Q2 term positive for the same reasons discussed
in Sec. III. Without it, the Q propagator would
be like that shown in Fig. 5(b). From Appendix B
we have

m (p-bound - state) couplings: e(ms'),
-,'m-2 pole factors: -(P,'-m))') ',
—,
' m- 1 (4-bound-state) couplings:

)).(ms, mo, mD, ms, s), t„u,),2 2 2 2

where

X= 1-— +

Hence

m'
V(4)}= --,'r(„"(0}y'-

~ U((). (4.5)

3m'-2
1 ( m) (0) N(4) em ) m4-) (4 1)

s)+ t) +u) =4m~'.

The completely factorized residue still has mo-
mentum dependence as indicated in the arguments
of ~. Since the bound state is pseudoscalar there
is a requirement on the momenta in pseudoscalar
channels. But there is no requirement on the mo-
menta of an even number of (I)' s. Ne are going to
take all momenta to zero and use this as an ap-
proximation to I'~(" '(0}. However, we cannot take
the momenta to zero in A. as it stands since it is
only defined for s;+t&+u, =4mD'. What we must
do is this: Choose each momenta P,„,„&' =~3m~',

then each + will be evaluated at the symmetry
point; then, treating ~ as a constant

)), = )).(mD, mn, m)), mD;, m)), , mD, , mD ),2 2 2 2. Q 2 4L. 2 Q 2

take all momenta to zero. This choice may seem
arbitrary but it is the only one in which I'(0) is
extrapolated from a crossing-symmetric form.
The vertex is then

The inclusion of a scalar field results in a minor
modification of this formula so we give that re-
sult before discussing the behavior of V(Q}.

(m~ +n —1)!
mI, 4 (m 1)) (4.6)

To derive it draw n distinguishable dots in a row
and partition with mI, —1 lines making m~ bins.
Permute all lines and dots giving the numerator.
Divide by the number of permutations of the l.ines.

For each () line there will be the factor o. /mD'.

Therefore, the potential will get a contribution

8. Inclusion of a scalar field

Figure 2(c) shows how to locate the maximum
power of 1/mD' when a scalar field is included.
The complete rules are given in column 3 of Fig.
3. The coupling to the scalar field is n()!),mD', mD'}.
We denote the vertices for m pseudoscalar and
n scalars by I'„"'. For each structure I'z "
we need to find the number of ways of attaching
n o lines to the 3m/2 —2 -=mz, bound-state lines.
We denote this number by N

(,) (3m/2 —3)!
(m/2 —l)l6 ~ ' ' (4.2)

Changing the index to i =m/2 —1, V(@) becomes

where e = e(m))'}. N„"' is a combinatoric factor
derived in Appendix B that counts the number of
such structures:

m! n! m, '

Summing over n gives

(3m/2 - 3 +n) l o'.o
m! „0 (3m/2 —3)!n! mD'

(4 7)

V(4) = —-'1'"'(0)4'

m ' " (3i)!('
4~0 i!6'(2i+ 2)! '

where

(4.3)
{

Qg)-I (4.6)

3m+-2 m

fi(4) ~m) mph-) ~
,
. (4.9)

mg) —Q(7 m!

ega.
mg)

(4 4)
Comparison with E(l. (4.1) shows that the only
modification of V is the replacement m&'-mD2 —uo.
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Therefore,

V(y c) ~ f (sIo)(0)ym ~ 1 (o,a)(0)y

(m~3 uc)2
(4.10)

in Fig. 7(b). Now U is negative in the region below
the singular curve, and the third term again gives
a negative contribution to V.

ACKNOWLEDGMENTS

where
f2 Q2)(

(m~' —ao)'
The only a' term is shown explicitly, I's(0'2)(0)

2-m
ty ~

Let us look at V(Q, o) for the two cases )).& 0,
A.&0.

(i) )).) 0. Define &P =(9)).e'/8m~')())', & =(a/m~')c,
$ = V/me~; then

4F~~")(0)mn', F~~ "(0)~

(4.11)

(1-&)' 8(P
9(1 —0)')' (4.12)

(4.13)

The singularity is now at p = —(1-&)' as shown

The singularity of U at P =(1-o)' is shown in
Fig. 7(a). The singularity is a —,'-power branch
point. U is positive in the region below the singu-
lar curve, and hence this term gives a negative
contribution to V. This term is zero for /=0
for all values of a'. For large negative 0, f e0,
—(1 —&) U- negative constant. A detailed search
for an instability depends on a balance between
this term and the first two terms which cannot
be trusted for large Q and o.

(ii) )).( 0. Define Pi = - (9)).e'/8m))')&jP, () and V

same as above; then
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APPENDIX A: DYNAMICAL POLE ASSUMPTION

In this appendix we show that if vertices have
a dynamical pole at energy mD with factorizing
residues, and if there is a field with the same
quantum numbers as the pole, the pole is not pres-
.ent in Green's functions and hence does not cor-
respond to a particle state. Our demonstration
here is for the case of two spin-zero fields P,
and Q, that carry different values of a conserved
multiplicative quantum number, e.g. , parity.
Choose Q, to be the field coupling to the dynamical
pole. Consider a momentum-space connected
Green's function 6 with n, external. Q, lines and

n, external @, lines. The single-particle analysis
of G consists in expressing G„(R for renormal-
ized) in terms of structures topologically equiva-
lent to tree graphs with full renormalized vertices
in place of the bare couplings and full renormal-
ized propagators in place of the free propagators.
This takes the form (all variables suppressed)'

G(ni, n2) (~(1))n&(~(2))))2
R R R

p) (g(l) y 1(g(2))~
R

(A1)

There is a propagator for each external. line, and

(a)

-2

~ ~

FIG. 7. Branch point in the (Q, o) plane for a pseudoscalar bound state. The shaded area indicates V is complex. For
(a) A. & 0, (b) A & 0.
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a structure of P vertices connected by m1 and m,
internal lines. The sum goes over all such struc-
tures. For each term in the sum, the indices are
related as follows:

P

P l, =n, +2m„

u =n +2~,

P =m1+m, +1.

The dynamical pole assumption means the fol-
lowing: Select any I'~"''"~' and partition the
p., + v, lines into two sets of size a and a', a+a'
= p,;+ v, . This selects a particular channel a —a',
call it the s, channel. If this channel has the
quantum numbers of the field (I), then there is a
pol. e with residue that factorizes:

y(~ ) (~')
r(&» "~) = + finite,R

Sg —mD
2 (A2)

( ')where y ' and y
' are functions of momenta in

the a and a' partitions. For the special case in
which a (or a') is one Q, particle, the yi' ' is just
a number, y ". In particular,

y(1) (1)
I' ' = 2 + finite.

S, —m 2 (A3)

The renormal. ized propagator &~' is

As'~ '(s) = s —m,
' —[Z(s) —Z(m, ') —(s —m, ')Z'(m, ')]

= —r&"'(s), (A4)

where Z(s) is the self-energy of particle 1 and
Z' =(d jds)Z.

Now to demonstrate the cancellation of vertex
poles we select any one term out of the sum Eq.
(Al) and consider any particular vertex I's~"'' "&'.

Choose any partition of p,, + v, , (a, a') that has the
quantum numbers of the P, fiel.d. Then I „"'"&'

will have a pole in that channel with factorizing
residues, as in Eq. (A2). There are three cases
to consider: (1}If one of the sets —a or a' —is
one fIt, line and this line is an external line of G,
then the propagator on this external line has a
simple zero which eliminates the pole. (ii) If
one of the sets —a or a' —is one internal Q, line
(call it the partition a'), then the vertex is con-
nected to another vertex with partition (b', b), b'

one Q, line, as shown in Fig. 8(a). There is an-
other term in the sum Eq. (Al) shown in Fig. 8(b)
that has a pole at mD' with a residue of the opposite
sign which we will show below. (iii) If the par-
tition of the p., + v, lines into two sets —which we
now call a, b —does not involve a tIt), line, then
the situation is shown in Fig. 8(b). There is the

contribution Fig. 8(a) that cancels it.
The cancellation of vertex poles between Figs.

8(a) and 8(b) follows immediately from Eqs. (A2),
(A3), and (A4). In Fig. 8(a), the vertices have
poles, the propagator a zero:

y(&) (1) ~ m 2 y(1) y(& )s —mg
s —mD —y y s —'ppgD

2 (1) (1) 2

The pole in Fig. 8(b) gives

y(~) y(~ )

2S-mD

APPENDIX B: TREES

The dynamical pole residue structures are trees
in the mathematical sense; see for example
Harary. " In this appendix we show how to count
the number of independent trees for which the ex-
ternal lines are labeled. There are two separate
cases we need: (A) 3-line couplings-scalars, and
(B}4-line couplings-pseudoscalars. This analysis
deals with the residue structures only. The attach-
ing of scalar and pseudoscalar lines to these struc-
tures is dealt with in the text of the paper. After
counting trees we then give an alternate derivation
of the functions that enter in V by using a gener-
ating function. We are able to show that 8 V/8 $
satisfies an algebraic equation —quadratic for case
A. , cubic for case B—without ever determining
explicitly the combinatoric factors. Hence, we
can find V directly as promised in the Introduction.

A. Trees with 3-line couplinls

Consider a tree with n external labeled lines
denoted T„' . Each tree will have n-3 internal
lines and n- 2 3-line couplings. The total number
of lines is 2n-3. The number of distinguishable
trees is denoted N„". For example, N,"=1,
N, ' =1, N4' =3, N, ' =15. To find N„' for gen-
eral n, we proceed by induction. Consider the
process of attaching a line labeled n+1 to every
line —internal and external —of each n-line tree.

(b)

FIG. 8. A dynamical pole in vertices cancels between
these two terms as described in Appendix A.
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Consider the function

2n —4)!
n JI

(B2)

(,) x", " (2f)!x'
W(x) =g N„' —, = x' P

4-Q
(BS)

This generates each (n+1)-line tree once. There-
fore,

f)f„",, =(2n-3) f(f„" .
Since N, ' =1,'we have

partitioning (n —1) lines into 2 sets of (n —)) lines
and(i —1) lines. The factor of 2 comes from per-
muting the two sets. This equation looks far worse
than the equivalent definition —Eq. (Bl)—but as
we will seeit is not. It has important advantages:
It is derived without probing the internal line
structure of trees. The combinatoric factor is
based on partitioning external lines. The formula
Eq. (B7) is easily generalized wherea. s Eq. (Bl)
is not. Further, we can go from Eq. {B7)to Eq.
(B6) without even explicitly determining X„"'.

Define P„=f)f„")/(n —1)!, giving

This is the form of the function that enters in V

in Secs. II and III. Using the Gauss multiplication
formula" for n = 2

1 n-I
P„= —g P„,+, P, ,

k=2

n "=- 3

ff -].
T( )=(2 )'"'' "' '"' ' "II F +- (B4)

n
k=Q

Multiply by x" and sum n=3 to ~. Interchanging
the order of sums gives

we find

x'
W(x) = —P (1, 2; 3; 2x),

where E is the hypergeometric function"

(B5)
Define

&=2 f7= 1+ I

()0 ()0 n

(n —1)!

x" P„=—g P; x' P P„;„x"

(B10)
n=2 n=2

This I" is an elementary function, and we find

W(x) = —,
' [Sx-1+(1—2x)'i'] . (B6)

We now show how to get Eq. (B6) without the
step Eq. (Bl). Consider an n-line tree: In Fig. 9
we have drawn the line labeled n and have noted
that every tree can be classified into sets branch-
ing at line n with n —I external lines on the left and
i-1 lines on the right. The sum of these —each
taking the value 1—gives the following equation
fo X&":

(s) 1 r ' « —I}' (s) (s)
n 2 ~ ( )!( 1)l n-i+), )

&=2

(B7)

The combinatoric factor is just the number of ways

then Eq. (B9) becomes

1A-X'p = —A2
2x

where P2 =1. We solve this equation and choose
the root that gives A ccrc' for small x:

A =x[1—(1 —2x)'~']

From the definition of A, Eq. (B10}, it follows
that

d
A(x) = x —W(x),dx

and finally,

( )
f*A(*')dx'

Q
X

The source of the & power clearly comes from the
integration over A.

n-i

FIG. 9. Classification of tree graphs in terms of the
branching at the external line labeled n for (a) 3-line
couplings, (b) 4-line couplings as described in Appendix
B.

8. Trees with 4-line coupling

For this case a tree with n external labeled
lines, denoted T„', has n/2 —2 internal lines,
n/2 —1 couplings, and 3n/2 —2 total lines (n must
be even). The number of trees T,',"we denote
1V„, eg. , N ~ =1, N ~ =1, V~ =10, 3~," =280.

b

Finding this for general n is considerably more
difficult than for the 3-line case. We claim the
recurrence relation is (derived below)

(3n/2 —2}(Sn/2 —1) („.
8+ 2 2

~~n
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giving

i, ) (Sn/2 —3)!
n 6n/2-x (n/2 1)t (B16)

Define new indsces

j+1 i+1 n

2 ' ~ 2

Define the function U(x) that enters in the poten-
tial:

!,) x"~' ~ (Sj —3}!x~

and

giving

N, p

(2p- 1}! (B22)

(B17)

Using Eq. (B4), n=2, and n=3, U(x) can be ex-
pressed as a hypergeometric function:

1 P 8-i
Qp =

6 Q Q Q~QB ~Qp s„, p~2 . (B23)
8=2 n= 1

Multiply by x and sum p =2 to ~. Change the sum-
mation order

U(x) =F(--,', --,', —,'; —,'x) —1,
which in turn is

U(x) = —' ——,
' [(X' ' —X ' ')' —1]',

where

X—(1 9x)& ~2 +( 9x)& ~2

(B18)

(B20)

Define a generating function:

B(x) = Q Qpx~
p=l

(B24}

We now give an argument to justify Eq. (B15).
Note that for Tt'l, there are Sn/2 —1 = n~ total—
lines, and hence N!+,/N„~ =nz(nz+1)/2. This is
the number of ways of placing two indistinguish-
able dots on the nl. lines of T„' . If we can make
a correspondence between each T„' with 2 dots
and each T!',!2, then Eq. (B15) is verified. To do
this, cut T„' at each dot. Color the resulting cut
trees red, white, and blue, white being the middle
one. Draw a single 4-line vertex labeled n+2, red,
white, and blue. Join the colored trees to the
colored lines, assigning the label n+1 to the
free white line. Repeat the joining but this time
reverse the ends of the white tree. This proce-
dure gives each tree twice.

This argument is a recipe, not a proof. A proof
along these simplistic lines is tortuous and more
powerful techniques are called for.' Rather than
going that direction, for which we see little future,
we show how to get Eq. (B19)without knowing N„'
explicitly analogously to the 3-line case.

By considering Fig. 9(b} we can write the fol-
lowing equation by inspection, analogously to Eq.
(B7): For n~4, we have

ff J. (~) (4) (~)
(,) 1 ~ ~ (n —1)!Ns+i lA-&Nn-&+i

3! ~ ~ j!(i —j—1)!(n i)t-
&=s S=x
odd odd

(B21)

N2pxP~ (2p-1)!
p=1

N(4) xff/2

(n —1)!
(B25)

Equations (B23), (B24), and (B25) give

1B-xQ = —B'
6x

(B26}

where Q, =1. There is one root that has Bcf-x
for small x:

B=—(-2x)' '(X' ' —X ' ') (B27)

dU
2x —=B(x) .

dx
(B28}

Hence,

( )
2 0 x (B29}

Since Eq. (B28) checks for the explicit functions,
our recursion relation Eq. (B15) is correct.

where X is given in Eq. (B20). For x small and

negative all factors are real and we mean the posi-
tive real root everywhere.

Comparing Eq. (B17}and Eq. (B25) shows that
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