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The classical limit of Todorov's relativistic Schrodinger equation for scalar interactions is presented in
a Hamiltonian context. The consequences of limitations on the coupling-constant size that exist in this
quantum equation for bound states appear as orbital limitations in the classical case. A systematic
method of generalizing the classical equations which removes these orbital restrictions is developed. The
corresponding quantum equations do not display any limitations on the coupling-constant size. An
exactly soluble example is given that displays very deep binding. In this example the total
center-of-mass energy of two equal-mass bound particles goes to zero as the coupling constant goes to
infinity.

I. INTRODUCTION

The purpose of this paper is to obtain a general-
ization of Todorov's homogeneous quasipotential
equation for scalar interactions. ' As shal. l be
demonstrated, this general. ization, al.though not
unique, permits an extension of Todorov's equa-
tion to the region of large coupling strengths. In

particular, in an exactly soluble model closely
related to scalar quantum electrodynamics with
scalar photons, we demonstrate the existence of
very deep binding for which the total center-of-
mass (c.m. ) energy of the two equal-mass bound

particles goes to zero as the coupling constant
goes to infinity. The generalization (5.56) of
Todorov's relativistic Schrodinger equation is not
limited to scalar QED, but can be adapted to any
scalar type of interaction including the nucleon-
nuc leon interac tion.

Although this result refers to the relativistic two-
body bound-state problem in quantum mechanics, the
bulk of this paper is concerned with the classical
Hamiltonian formalism. In constructing a general-
ization of the quasipotential equation, care must
be taken so that not only a systematic but also a
consistent approach be applied. Employing the
classical. Limit as a vehicle to arrive at a general-
ization is a useful and traditional aid. It is also
of interest in itself to examine the classical limit
of this two-body reLativistic quantum equation and

its generalizations.
The remainder of this section is devoted to a

review of Todorov's derivation of the quasipo-
tential equation for scalar interactions as mell
as discussing some of the motivations for consider-
ing general. izations. Limitations on the size of
the coupling constant found in Todorov's quasi-
potential. equation also appear in its static limit,
the Klein-Gordon equation. In Sec. II the conse-
quences of such limitations are examined in the
classical limit of the Klein-Gordon equation in

the on, -energy-shell, off-mass-shell approach
characteristic of Todorov's quasipotential. equa-
tion. Both the covariant and the three-dimensional
Hamiltonian approaches are discussed. Before
giving the classical Hamiltonian description of the
two-body quasipotential. equation, we give the
coordinate and proper-time definitions that appear
to be inherent in this approach. Also given in
Sec. III is an alternative may of arriving at the
effective quasipotential Hamiltonian by a c.m.
reduction of a sum of two one-body Hamiltonians.
This is an essential step in constructing a
generalization of the quasipotential approach. The
subsidiary condition (1.3) characteristic of this
quasipotential approach is included ~~ t.» ~A-
body Hamiltonian by way of a Lagrange multiplier.
The equations that arise from this Hamiltonian
fit in quite naturally with the coordinate and
proper-time definitions given earlier. Orbital„
restrictions are also discussed in the two-body
case.

In Sec. IV a generalization of the Klein-Gordon
equation is presented. Again, using the classical
Hamiltonian procedure appears most convenient
for the discussion. The orbital l.imitations in the
classical case mentioned above as well as the
coupling-constant l.imitations that appear in the
Klein-Gordon equation do not appear in the gen-
eralization given here. In Sec. V the general. -
ization of the two-body Hamil. tonian is given.
The generalization is made on the bvo-body
Hamiltonian formalism discussed in Sec. OI that
provided an alternative derivation of the quasi-
potential Hamiltonian. The generalized version
of the quasipotential equation is developed on the
basis of this classical Hamiltonian formulation.

A. Todorov's quasipotential equation for scalar interactions

Todorov's quasipotential equation for the two-
body elastic scattering amplitude T has the
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following form in the center-of-mass (c.m. )
frame'.

T.(q, p) + V. (q, p)

d k 1
+

(2 p
VN(qi k)

(
2 2, )T (k, p) =0.

The quasipotential V is defined by this equation.
The variables w, p, and q are respectively the

center-of-mass energy and relative momenta in

the initial and final states. The total c.m. momen-
tum is P=(w, 5). The relative four-momenta P
and q in the initial and final. states are spacelike
and are orthogonal to P; P P =q P=0 where
P=(0, p) and q=(0, q} in the c.m. frame. These
two vectors have the same length b' in the c.m.
frame where

and their orthogonality to P follows from (1.3).
This orthogonality of the relative momenta to the
total momentum P is a central feature of the
quasipotential equation (1.1), as its following co-
variant form indicates:

T&(q, p)+V&(q, p)
"d'k

, V, (q, u)G, (b)b(P k)T, (b, P}=0.
2)i)'

In the c.m. frame G~(b) =wG (k) =-,'[ l((k' —b' —i&)J
The intermediate four-momentum k as well as
the relative momenta P and q are orthogonal to P.
The net effect of this is to yield a three-dimen-
sional one time formulation of the two-body prob-
lem with the set of hyperplanes perpendicular to
P acting as the time variable.

b' =,[w' —2(m, '+m ') w'+ (m, ' —m, ')'j .
4W2 1 2

(1.2)

Even though Eq. (1.1) is three-dimensional in

appearance, it is Lorentz-invariant. We shall
repeat some of Todorov's arguments to this
effect here and in IB, as we shall be referring
to them frequently in this paper when discussing
generalizations of the quasipotential equation. The
equation relating the two-body scattering ampli-
tude T and the quasipotential V is defined as on

the energy shell but off the mass shell. The
additional. assumption is made that the initial mo-
menta (p, and p, ) and the final momenta (q, and q2)
of the particles satisfy

B. The relativistic two-body Schrodinger equation

A Schrodinger type of equation is obtained from
(1.1) by defining the wave function

0;(p) = b(p-q)+G. , (p)T(p, q),

where

(m 2 +q2)1/2 + (m 2 +@2)1/3

Substituting (1.7) into (1.1) leads to

d3k
2w('q-b'( w}q).(q)+ 2, .V. (q, k)q. (k) =o.

For potentials of the form V = V (p —q) this takes
the l.ocal form

? 2 2 2 2 2
p -p2 =$1 -Q2 =m2 -m1 (1.3)

The total momentum vector P=p, +p2=q, +q2 is,
of course, timelike, P' =w'&0. The relation
(1.3) allows us to define the c.m. energies E, and

E2 of particles 1 and 2 in terms of this invariant:

+2 b2
+g (r) y„(r) =

2 4„(r),

where
ejk r

u. (i) =
2 ). J&')'4 )' (i)2)i)' m 1m 2

(1.10)

1 +m —m
PoP Paq

W 2K (1.4)
1E =-—P'p2 w 2

W2+m, 2 —rn, 2

w 2w

1 282+62 W'- m, 2- m, 2

N 2w
(1.5)

The spacelike four-momenta P and q mentioned
above are defined in a general frame as

E
P= ~P —~P' 1

W
2&

W 1 W
2s

Another invariant is the energy variable E defined
by

and m =m, m, jw is the relativistic reduced mass.
Before considering generalizations of this

relativistic SchrMinger equation for scalar inter-

actionss,

we shall give some of the motivations.
We consider the spectrum that arises from solving
this equation for a potential V(r) that is derived
from a pure scalar analog of quantum electro-
dynamics. ' The Lagrange function describing the
interaction has the normal-ordered form

Z,, (x) =(g, : 4 +(x)4,(x}:+g,:4 +(x)))),(x):)A(x).

(1.12)

As V, = —T„ the lowest-order approximation for
the potential is
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(1.13)

The coupling constants g, and g, have the dimen-
sion of mass. Ne introduce a dimensionless
quantity 0 by setting

or

[p'+m'+2m'(r)]4(r) =0,

(1.17)

(1.18)
giga = 16n mima (1.14)

This leads to a relativistic Schrodinger equation
of the form'

(1.15)

This can be solved exactly giving the O(4)-sym-
metric result'

sea=m '+m '+2m m 1-—
1 a i a na (1.16)

Consider the ground state n =1. If the coupling
is strong enough so that a&1, then the energy
becomes complex. Such occurrences of complex
energies are well, known for point interactions in
the case of one-body relativistic bound-state
equations in which the Coulomb potentia, l is a
fourth component of the vector potential; the
Dirac equation for hydrogenlike atoms is a prime
example. For real. istic atomic calcu1.ations such
occurrences are academic because the finite
extent of the nucleus smooths out the potential.
so that real energies occur for the ground state
beyond o. =1. The appearance of complex energies
for point interactions in the scalar case may, in

fact, be an intrinsic limitation of the model.
Atkinson and Crater' have recently examined the
possibility that including radiative corrections in
a nonperturbative way would eliminate or deflect
this probl. em. A 1.2% shift upward of the value
of ~ for which the energy becomes complex from
n =1 to n =1.012 was found by this approach. This
indicates, although it does not prove, that there
are intrinsic limitations to the coupling-constant
size in this model, and that rather basic changes
are necessary if one is to obtain real bound-state
energies for strongly coupled scalar interactions.
This has significance beyond the simp1. e model
we are considering. For example, other scalar
types of interactions such as the pseudoscalar
nucleon-nucleon coupling differ from the inter-
action here mainly in their long range behavior.
This long-range behavior does not affect the
problem of complex energies.

The static limit of the homogeneous quasipo-
tential equation (1.10) is the conventional Klein-
Gordon equation. In the static limit ma-~ and
m -m, =-m. Calling 8=x -m„one finds that
the effective particle re1ativistic SchrMinger
equation (1.10) becomes

with the on-energy-shell condition p = . For
g= -a/r the spectrum

(1.19)

is easily obtained either directly from the static
limit of (1.16) or by solving the eigenvalue equa-
tion (1.18). In a recent paper Dosch, Jensen, and
Muller demonstrated that for a Dirac particle in

an external scalar Coulomb field the energy re-
ma, ins real for all a.' An appropriate generali-
zation of the relativistic Schrddinger equation
(1.10) will not only give real energies for spin-
zero particles in a strongly coupled external
scalar field, but also will permit real energies
for the strongly coupled two-body scalar inter-
action bound-state probl. em as we1,1.

Il. CLASSICAL LIMIT OF THE KLEIN-GORDON

EQUATION

P„P~+m
2m

(2.1)

This "Hamiltonian" describes a particle off the
mass shell (P'+m'x0) and on the energy shell,
meaning that Po is not regarded as an independent
dynamical variable, but rather just a number
(or in the quantum case, an eigenvalue). Alter-
natively, one can regard all four-momenta as
independent with the modified mass-shell restric-
tion P +m +2 m& = 0 imposed after finding the
equations of motion. The equations of motion are

9Jc d r„p„&R dp„s'U
(aP" d7 " m' ax" d7 ax~'

where & is the proper-time variable. In the c.m.
frame the potential is, like the quasipotential in

(1.17), a function of r only so that
dt

P =- h = cons tant = mu = n—
dT

(2.3)

di
= —V'0(r).

A. Four-dimensional proper-time formalism

It is of interest to examine what happens to the
classical bound-state solution in the case of a par-
ticle in an external scalar field when the coupling
becomes too large. The covariant "Hamiltonian"
is
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Combining these two equations leads to the equa-
tion of motion

2d r —m ~
dt2

=
@2

~'U(r) (2.5)

2dr —mr
dt' (2 6)

in terms of the lab time variable t. With '0 = —a/r
this equation is (VS)' a b' —m' 6'

2m r 2m 2m' (2.15)

This leads to4

Is this restriction on the lower limit of r in the
classical. limit related to the upper limit on n in
the quantum case'? We can see such a relation if
we look at the classical limit (h-0) of the Klein-
Gordon equation. Using g =e', the @=0 limit
ls

B. Three4imensional formalism

The modified mass-shell condition R=O and the
on-energy-shell condition 4 = constant can be used
directly to obtain the same equa, tions of motion
with the three-dimensional lab time Hamiltonian
formalism. The three-dimensional Hamiltonian
ls

—2m'@2m

2m (Z, +Ze+Z~)2 '

where

J, = p) dq; i =r~ 0, (I)

or

(2.16)

(2.17)

(2.18)

and

dr ~ p—=V H=-
dt ~ h

H = [p' + m' + 2 m 9(r )]
+ = 8 = constant.

This leads to the equations of motion

(2.7)

(2.8)

where J„+Je+J@=2m'. This looks identica, l to the
quantum result (1.19), however, n need not be an
integer in (2.18). If we combine this equation
with (2.13) then we obtain a relation between v

and r, namely

or

—dp ~ m~
dt

= V H= —, V'V(r} (2.9) 1-2u!mrv'=1-
1 —u'/n' ' (2.19)

r
gs ~~(r), (2.10)

which is the same as (2.5).

C. Orbital restrictions

u'=[u'+1+2'0(r)/mI '=df/dT= &/m.

With u =vd t/'dT this in turn gives

h=m I 1+2'U(r)/m
1-va

If u = —a/r then

(2.11)

(2.12)

Using the modified mass-shell condition K =0
together with P = mu leads to

If h is to remain real then u /n'&I and hence
v'&0 implies that r&2n'/mu. The other restric-
tion on r (r&2a/m) follows from v &1. Thus a
bound orbit in this model is restricted to lie in the

interval r, =2u/m&r & 2n /ma =r, Smaller r.

would lead to velocities greater than c or complex
energies. For r in this range, 1&v2~0. Suppose
that u'=n2=1 —z, where e«1. Then r must be
very close to r» r =r, +a. The constant a is de-
termined by substitution into (2.19) to be r, v',
so that r =r, (1+ev2) Hence as u. /n-I from
below, the total energy of the bound particle
approaches zero and its orbit approaches the
circle r =2a/m. Larger a or coupling strength
would lead to complex energies or v&c.

h =m 1 —2u/mr +
(2.13)

III. CLASSICAL LIMIT OF THE QUASIPOTENTIAL

EQUATION FOR SCALAR INTERACTIONS

Thus v'&1 and r&2a/m give real energies. The
classical orbit for bound states appear to have
a lower bound on the radius. Furthermore,
mv2/2&a/r for h&m. Notice that if v~«I and
2a/mr«1 then we have

A. Coordinate and proper-time definitions

In this section we shall give coordinate and

proper-time definitions that appear to be inherent
in the on-energy-shell, off-mass-shell quasi-
potential approach. The total momentum may be
written as

mv Q4=m+
2 r'

the usual nonrelativistic expression.

(2.14)
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where R is the coordinate of the center of mass.
72 are the respective coordinates andk

proper times of particles 1 and 2, and T is the
proper-time variable of the center of mass. In
the c.m. frame, the proper-time variable 7 is
the c.m. time t. In this frame

(3.2)

This allows us to rewrite (3.1) as

1 2
(3.8)

In the static limit m2-~ the proper-time variable

8

In the c.m. frame the independent dynamical
variables are the spatial components. Hence, the
classical and quantum Poisson bracket relations
involve just these variables.

Starting with the (quantum) Poisson bracket
relation

dR dr, dr, (3.3) [r~~ p, „]=' bo g~ pi (3.9)

Maintaining the assumption (1.3) in the classical
limit also gives E, and E, as functions of the in-
variant w, leading naturally to the definition of
the c.m. coordinates given below:

we find

[r ~, p„]=zg) „, A., &=1, 2, 3

and

(3.10}

E, r, +E,r,
EO

(3.4)

The c.m. coordinates are found by weighting the

individual particle coordinates with their c.m.
energies. It is of interest to point out that this
definition implicit in this quasipotential approach
is similar to one of the more acceptable defini-
tions of relativistic center of mass as shown by

Pryce. ' It should be noted, however, that Eg and

E, are not operators or dynamical variables but

are invariants equal. to the energies of particles
1 and 2 only in the c.m. frame.

In the c.m. frame P=(w, 6) so that

[&Xi Pjl J = Wk p (~i p = I i 2i 3}. (3.11)

[Rg, AqJ=O (3.12)

B. The effective free-particle Hamiltonian

and the hvo-body Hamiltonian

It is instructive and, for our purpose of con-
structing a generalization of (1.10), necessary to
obtain (1.10}by an alternative approach to that
given in IB. First of all. , one should recognize
that for a free effective particle the effective
"Hamiltonian" in (1.10) is

Since the r's commute and the energy variables
are not operators, the c.m. coordinates commute
with one another:

dRO dr', dr,'Po =w =w =E, ' +Ei =E„+E~. (3.5)
dt ' dt

p2 $2

2m
(3.13)

P
E2P, —EjP2

m, E, dr, m, E, dr" m dr
(3.6)

The variables T, and 7 can be related by using
the definition of m„:

The relative time variable r'=r', -r,' vanishes in

this frame if we require R" and r" to be ortho-
gonal. The coordinates r" and proper time 7, of
the fictitious relative particle can be deduced
from the definition given here of the relative mo-
mentum':

This may be written in the alternative form

p„p" +m '
2m

(3.14)

where p" = p" +(E/w}p", as the relative momentum
P" is orthogonal ioP„. In'the c.m. frame P" = (E, p}.
Here E plays the role of the energy of the fic-
titious effective particle; this is reflected in the
equation E~ =m '+b The "Ham. iltonian" (3.14)
is identically zero on the mass shell. when p2=b2.

We can obtain the effective one-particle
"Hamiltonian"(3. 13) as a c.m. reduction of a sum
of two one-body "Hamiltonians*' for free single-
particle systems. If we take two free-particle
"Hami ltonians"

r 1'2 .

(3.7)

This allows us to identify the relative coordinates
and proper-time variable by

and define

(30'+X,') =X'
m~ +Ng2

(3.15)

(3.16)
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then we obtain (3.14) in the c.m. frame. This
foll. ows from the fact that

E
p = P+p p = P-p P'p=0, (3.17)

as well as E, =m, '+O'. This latter condition in
turn foLlows from the condition (1.3) in the c.m.
frame. ' Notice that in the static limit m2-
(3.16) reduces to R', .

If the particles are not free then we define

d ~ dP
(p, +p, ) = = -V, 'I) —V,g =0.

e Te
(3.22)

The equation of motion of the rel.ative momenta is
given by

From the second set of equations we obtain several
relations. First of al.l, in the c.m. frame

=g (r» x2). Hence, as expected, p', =E, and
p2'=E, are constants. Also it follows that the
c.m. momentum remains zero:

p2 Q2
X = +'Q

m
14)

(3.18)
~%Pi —~iP2 (@i+E2)

p
2 1 1 2 ~ 2 pe

d7, d7,
(3.23)

C. The subsidiary condition and the two-body Hamiltonian"

The result (3.18) was obtained with the aid of
the subsidiary condition (1.3}. In this section we
shal. l derive an equivalent form of the above
"Hamiltonian" using the subsidiary condition by
way of a Lagrange multiplier. This will have the
additional advantage of confirming in a Hamiltonian
context the definition of the relative proper-time
variable 7, given earlier and its relation to the
subsidiary condition. It will also lead naturally
to the definition of p„p„and p in terms of co-
ordinates given in Eqs. (3.1) and (3.6). The
"Hamiltonian" is taken as

(r u r g)
P" E2Pi' &.P."

dT m m2ml m»m2
2

(3.24)

This same equation of motion could be obtained
from the effective one-body Hamiltonian (3.18)
using p and r as independent variables with ~,
as the relative proper-time variable, provided
that P" =m„dr" /dr, is consistent with the above
Hamiltonian (3.19). This can be verified directly
from the equations of motion (3.20) and the def-
inition of relative momentum (1.6) by an appro-
priate and consistent choice of A. The variable
must be chosen so that

2 2 2 2p, +m, p, +m,
+ +U ~M 2m, 2m,

NA.
+ (p, —p, —m, +m, ), (3.19)

This gives two equations for A, :

E x E~ = —(m A+I) ~= —(1 gm ),
m ~ » m2

Both of these equations are satisfied by

(3.26)

where M=m»+m, . The Lagrange multiplier is
w+/2M. With the subsidiary term included we can
treat all variables as independent (provided, of
course, that the modified mass-shell condition
X' =0 and the subsidiary conditions are imposed
after finding the equation of motion). In finding
the equation of motion only one time variable is
needed. Ne take this time variable to be T„ the
proper-time variable of the effective particle.
The equations of motion are

dr" u 1=gj' = ' = —p"
d7'e M l m

(3.20)

m, E2 —m2E,
mlm2 K

(3.26}

p E»E
dT, m, m, dt

m, m, EE, dr
m, m, dt

(3.27)

or

This same value of A, also retrieves for us the
reLation P," = m, dr,"/dT, by substituti. ons into
Eq. (3.20). In terms of the c.m. time variable
t {which is the proper-time variable 7 in the
c.m. frame), the equation of motion (3.23) takes
on the form

dS{. d r," u) 1gP 2 *0
d r —wm, m, V g~ (3.28)

d3C'

»p r»»p
(3.21)

In the static limit m, -~ this reduces to (2.6}.

D. Orbital restrictions in the two-body bound-state problem

~X —dp,"
d7, &r2

For our examination of the orbital restrictions
in the two-body case, we consider the equal-mass
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QJ~ 2 m~
(3.29)

case. ' The modified mass-shell. condition X =0
together with 8' = 6'+m ' leads to

As a/n-1 from below, the total energy of the
two-particle system approaches v'2m and its
orbit can range from r&(2n/m) where v-2 to
r =2(2n/m) where v-0.

Fur ther more,

p'=m 'u'=m ' =m ' v . (330}i' 14i d7 7V

IV. GENERALIZATION OF THE KLEIN-GORDON

EQUATION AND ITS CLASSICAL LIMIT

A. The generalized classical covariant "Hamiltonian"

For equal masses,

dt m'
j m ~

dT 4m' '
e

Hence
2K

16

and (3.29) reduces to

2
w3 —4m~= +Sm 'U

(3.31)

(3.32)

(3.33)

%'e now postulate the fol. lowing generalization
of (2.1):

(4 1)

This "Hamiltonian" fol. lows from a Lagrangian
of the form 8= pu .' The function p plays the role
of mass but it is allowed to depend on r. The
condition X =0 means that the particl. e satisfies
a modified mass-shell constraint. This constraint
is used after imposing Hamilton's equations in
their four-dimensional form.

This in turn leads to

1+2'U~ N (3.34)

eX dr, p'
~p dT p

(4 2)

The nonrelativistic, weak coupling limit of this is

-dP). -~P 1 ~P= s„~ pa(p' p+')+s ~. (4.3)

1m
to =2m+ ——v +'U

2 2
(3.35)

Using p'+ p'=0, the last equation becomes

—m~ Q 217

2m (Z„+Ze +Zg)' ' (3.36)

and with definitions similar to (2.17) we obtain

Kith &m as the nonrelativistic reduced mass,
(3.35) is recognized as the rest mass plus non-
relativistic kinetic plus potential energy of the
two-body system. The rest of our analysis will
foll.ow that of the static limit given in Sec. II C.
With 8 = —o./r, w becomes complex if r&2a/w
or if v&2. It must be remembered, of course,
that v is the relative vel.ocity of two particles as
seen by the c.m. observer and need not be less
than c, but of course must be less than 2c. To
relate this to the appearance in the quantum case
of complex w for o.'/n&1, we examine as before
the g = 0 limit of the guasipotential equation (1.10).
The two-body analog of (2.16) is

dp), d —&p

dT dTP ~ br (4.4)

Since P=P(r), this equation is complicated when

using the proper-time variable 7'. The equation
is simpler in terms of the lab variable t. Since

dt P' b d dr b d'r—P—=—
d7 p p' dT d~ p dt~'

and the equation of motion is

(4.5)

d~r —PVP
dt' P (4 6)

H =(p'+ p'}+ = b = constant.

This gives

(4.7)

As a check, this same equation can be derived
from the three-dimensional Hamiltonian forma-
lism. With X=O, we have

(3.37} dr p—=V H=-
p (4 6)

This leads as before to an inequality that must be
satisfied for real w:

and

-dp P P d'
(4 9)

2Q 40.
w w[ 1 — 1 — '/n')n~] (3.38}

which agrees with (4.6).
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8. Orbital analysis

In this section we shall. perform the same type
of analysis that leads to orbit information for the
Hamiitonian (2.1). From Hamilton's equations
in their covariant form we have

(2.13) is that the former gives real S for all
values of r, unlike (2.13). Owing to this and
earlier considerations in II C we do not expect
any limit on n above which b becomes compl. ex.
This can be demonstrated for the first choice of
P analytically. Writing X =0 as

dt h - p
Q u

dT P' P

Using the condition P +P =0 this leads to

(u2+ I)'df
dT

(4.10)

(4.11)

P,P'+m2+2mV+Z2 =0,

with 'U = —u/r, the corresponding Hamilton-
Jacobi equation is

(VS)' u u' 8' —m'
+

2m r 2mr2 2m

(4.16)

(4.17)

Since u=vdt/dr we obtain

dt 1
dr (1 —v')'+

or

(4.12)

This differs from (2.15) by the presence of a
repulsive term u'/2 mr' and by an analytic con-
tinuation in l2 to the energy equation

(4.13) h=m
[n+ (I2 + u'}~ —l )

'
(

(4.18)

Q
m ——, P =me ™"

ll (4.15)

The first point of contrast between (4.13) and

Equations (4.13) and (4.12}are to be compared
with (2.11) and (2.12). The function P(r) is chosen
so that in the weak coupling, nonrelativistic limit
8 is given by (2.14) for 'U = —u/r The ch.oice of
P is not unique. %'e will examine two choices:

(4.14)

So for 'U = —u/r

{1—u/mr )'
1 —u'/n" (4.19)

where n' =n+(l'+u')~2 —l. Unlike the case for
(2.19), this equation does not relate U'( 1 to a
lower limit on r. There are, however, limits on
r placed by v'& 0 given by

where I = 2v(de +dz). h is rea, l for all u and ap-
proaches zero only for u-~, unlike (2.18) which
approaches zero for u/n-1 and becomes complex
for larger o. .

The equation for U3 analogous to (2.18) is

nt y ~2 lj2~

em „n" am n" (4.20)

C. Quantum spectrum: An example

Now we consider the generalization of the
quantum Klein-Gordon equation. This static limit
equation is

(p'+ p')0 = o. (4.21)

If we take P =m —u/r then the on-energy-shell
equation is just the stationary-state Klein-Gordon
equation (1.17) with

'U= + (4.22)r 2mr2

If P=me i ", then

m( -an/mr 1)elt 2

Solving the stationary-state Klein-Gordon equation
with 'U„, , given in (4.22) leads to

Q
h'2

( n + a ll(2l + 1)' + 4u') ~ —{2I+ 1}»'

(4.24)

E is real. for al. l u with 4 - 0 as n -~. A similar
spectrum ha, s been found by Dosch, Jensen, and
Muller for the Dirac equation for a scalar poten-
tial. ' Numerical studies indicate that if the ef-
fective potential (4.23} is used in place of (4.22)
then real b is also obtained for al. l a. The equa-
tion we ultimately seek is a generalization of the
two-body homogeneous quasipotential equa tion
(1.10). Obviously this equation must yield the
above type of spectrum in the static limit.

V. GENERALIZATION OF THE QUASIPOTENTIAL
EQUATION FOR SCALAR INTERACTION

AND ITS CLASSICAL LIMIT

A. Coordinate and proper-time definitions

In this section we shall give coordinates and
proper-time definitions that are a generalization
of those given in Sec. IIIA for the original quasi-
potential equation. First of all. , p, and p2 wil. l be



CLASSICAL LIMIT AND GENERALIZATIONS OF THE. . . 1173

defined as

If, as in (3.1), we define

dR' ), , d r," dr,'

(5.1)

(5.2)

8. Generalized two-body "Hamil tonian"
with the subsidiary condition

The "Hamiltonian" we postulate that is a gen-
eralization of (3.19) is

B 2P, 2/2

then

+
2E (p, -p, -m, +m, ), (5.10)

This all.ows us to write

(5.3)
where 8= p, + p2. The subsidiary condition is the
same as used in Eq. (3.19). This "Hamiltonian"
leads to the following equations relating P, and u,.:

(5.4)

The energy variables E, and E, are defined as
before to be

de' d r," u
(5.11)

I' p se' p +p'
2'

Qgp g)2 p 2+p 2

2u

(5.5)

Evidently, in the frame in which p, = p,. (r), the
Hamil. tonian formulation would lead to

p =E, =0 =po2=E~, and the original definition of
given in equation (3.4) would be valid. This

would also allow one to impose the same sub-
sidiary condition (1.3). In the c.m. frame, the
relative time variable r', -r,'=0 as before since
(3.5) and the attendant arguments still hold. The
relative momentum variable is defined as before
and is equal to

(
k k)

N d, T
(5.6)

At this point, there are two logical choices for
relations between dT, and dT . If dT,
=(m,m, /E, E,)dr as before, then p =m dr /dT, .
That is, the relations between the relative mo-
menta P, the relativistic reduced mass m, and
the proper-time variable 7, remain the same.
The second choice would be

Notice that a unique choice of the multiplier is
found to be consistent with dT, = (p, p, /E, E,) dT .
Using (5.11) and (1.6) leads to

PP, d(
1 2

e

=
E (P2P,"(PP+1)—PP,"(I —~P, ))

= EP" —E,P"
N

(5.12)

This in turn gives two equations for A. ,

N l6
E, = —P2(P, ~+1), E, = —P, (1 —~P, ), (5.13)

and they are both satisfied by

I 1 2 1~2

P,P2 u
(5.14)

This is to be compared with (3.26). Notice that
if we had used the prefactor ~/M instead of ur/B
in the choice of the "Hamiltonian" we could not
have found a unique 4. This value of A also gives
us back the relations p,". = p, dr,"/dT, , i =. 1, 2 by
substituting into (5.11). The other equations of
motion are

P,P,dTe=E E
d ~.

1 2

Then we have

where

(5.'t)

(5 6)

(5.15)

dp Eq dp~/d& —Eqdp2/dT

~K' —d Nc' —d

~r1~ dT~ Or2~ dTe

As p= p(r, —r, ), we find as before that dp/dT, =0
and

We take the second choice, as it has the correct
static limit (4.10), unlike the first choice.

—E,V,X' +E,VPC'

N

(5.16)
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In order to compute the right-hand side of this
equation we must employ the modified mass-shell
condition X' =-0 as well as the subsidiary condition
(1.3). Rather than give the result at this point
we shall rederive this equation of motion and the
subsequent equation of motion for r by employing
an effective one-body reduction of this two-body
"Hamil. tonian, " imposing the subsidiary condition
as an intermediate step as was done in Sec. IIIB
for the original quasipotential equation.

C. The generalized effective one-body "Hamiltonian"

We wish to obtain a one-body reduction of the
two-body "Hamiltonian" analogous to the reduc-
tion (3.16)-(3.18). Using the substitution

P, =E,P/w +P, P, =E,P/w —P the combination
K, +K„where

where

v8 = P,p./B

Multiplying this by w/B leads to

W p'-62X—=—(3C, +R, ) = +U,„(,

(5.20)

(5.21)

where

p, (p,'-m, ')+ p, (p,'-m, ')
eff 2P

(5.22)

This effective "Hamiltonian" should reduce to
(3.18) for a weak potential g . The choices

If we impose again the subsidiary condition in the
form Ej2 =m j2+b', then this becomes

~ —b + -mK+X = + ' ' ' ', (5.19)

2+ 2

j 2P 7

becomes

(5.17) and

Pj =mj8~~

'U~ pl~Pj=mj + ', iWj

(5.23)

(5.24)

(5.18)
ensure this weak potential limit. The first choice
l.eads to

, ~vv„1 2
fj 2 &(g~/f4l)(2 ~m & m&/~) +m +(Q~ j%o)( 2 ~~ fff2/ ~)

1 2

(5.25)

and (5.21)becomes the original classical form
(3.18) as

dr p
d&, P

(5.29)

1 (e2n~~kllv~ 1) v0 m 2y

(5.26)

dp
d7g

(5.30)

and

~(enuw~x~~ 2 —1)—'U ~mq
2

'U. ff
'0 e ~ (5.27)

-m 2

U eff 2P

which agrees with (4.1) on the energy shell.

(5.28)

D. The equations of motion

The mass dependence postulated in (5.23) and

(5.24) insures the correct static limit. The
static limit (m, -~) of P is P, =P. The static
limit of '0 „,, is (m, =-m)

and

1 2
(5.31)

and of course the modified mass-shell condition
X=0. The subsidiary condition (1.3) is already
incorporated into these equations. The relevant
time variable is as before the variable 7, which
reduces to the proper time 7 of the bound particle
in the static limit. The static limit equations
(4.2)-(4.4) would have been simpler if we had

used the lab variable t. In the two-body ease, the
analog of t is 7 which becomes t in the c.m.
frame. We shal, l give the equations of motion in
terms of this variable. As dT =dt in the e.m.
fra, me

The equations of motion that follow from (5.21)
are

dr F,E, dr
dT, w dt

(5.32)
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Hence

dp tU dp
EE

Using the modified mass-shell condition X, =O when computing VK gives

(5.33)

r
VP ~I~2 + I 2 1 I 1 2 ~2 m2 V P1~2 ~l 2 +P2ml ~1 ml

a' a ' a a' a (5.34)

The s ta tic limit (m, -, p, =- p, m, =- m, Vp, = 0; E, =- h)
of this equation is

m 'Q~E =m +p+2m g + (5.43)

d r -PVP
dt' 8' (5.35)

(5.36)

P =mez ™
we have

(5.3 I)

which agrees with (4.6).
For the propose of comparing (5.34) with the

unmodified two-body classical equation (5.31),
it is convenient to look at the equal. -mass case.
In that case (5.34) is (P, =P, = P)

d'r —16
dt 2 zo2

, (1+1' /zu)'

1 —v '/4 (5.44)

As before, the nonrelativistic, weak coupling
limit of this is (3.35). With g„= - a/r this gives
real ur for alt r, unlike (3.34). Unlike (3.3"I), we
do not expect any limitations on the value of n.
%'e demonstrate this for the above choice of P.
Equation (5.42) leads to the following Hamilton-
Jacobi equation:

and differs from the corresponding term (3.29) in
the original approach by the additional '0' term.

By a series of steps very similar to (3.30)-(3.33)
we find that

d r -16m & ~ y
—16' ar

dI. 2 gg2 'w ~2 g3

(5.38)

(~q$)2 2 $2

2m„2~ 2m„'

With '0 = u/r t-his becomes

(5.45)

The explicit result for U = —u/r is displayed on
the right-hand side. This is to be compared with
the equal-mass version of (3.28) which is

(VS)' n o.' b'

2 m~ 'Y 2M)7 2m~
(5.46)

d'r -16m -16m nrV'U
4p N K 'V

(5.39)

As expected, the two do not differ significantly
for small 'U.

This is solved in much the same way that (2.15)
is solved in standard textbooks. 4 The replacement,
as made in obtaining (4.18), of the angular mo-
mentum I = 2m(Je +J~) by & = (I'+ o.'m'/w') leads
to [ in analogy with (2.16)]

E. Drbit considerations and the classical spectrum

(5.40)

For orbital analysis in the classical limit, it is
convenient to use the equal-mass version of
(5.24).' For P, = P, =P we have

p~ -b2
2P eff &

b' —e'm
2m. 2n" '

where

n'=n+ Pg 2 —l.

This in turn gives

(5.47)

(5.48)

where
u P-m

=2g (P — )= (5.41)
—4m~2(~2 4~2) ~2 (5.49)

The off-mass-shell condition &= 0 together with
E'=b'+m ' gives

ol

2m'[1~ (1 —o.'/s")~]. (5.50)

-2 ply
2 2 2

E2
2m

=m +p +P -m~

For P =m(1+ g„/w) this becomes

(5.42)
Now in the classical limit of the original ap-

proach, n' was equal to n and was independent of
a and w. This meant that only the positive root
was to be chosen. This can most clearly be



HORACE %. CRATER AND JOSEPH NAFT 12

demonstrated by differentiating (5.49) with respect
to ~' with n' replaced by & and held fixed. We
obtain

dw, -4m4 1
du' n z w(w' —2 m'} (5.51)

zz., =n'(w =2m, o.o),

and is given by

(5.52)

Clearly u decreases with increasing o.', as long
as m'& 2m'. This means that the positive root
must be chosen, as the negative root would yield
w'& 2 m' with w' increasing as a increases.
Furthermore, the positive root is continuously
connected to the o. =0 l.imit of +2 =4m2, whereas
the negative root is not.

In the generalized case, with n' =n'(zz. , w), choose
the positive root until n'/n" = 1 at which point
u 2 = 2 m2. As u increases beyond this particular
crucial value (call it o.,) cz'/n" decreases, unlike
the original case where o.'/n' continues to increase
and ~2 becomes compl. ex. Thus for n beyond this
crucial value, choose the negative root in (5.50).
Ultimately as o.'/n' z-0 (corresponding to a- ~)
w2-0, and one has the limiting case of the binding
energy equal to the total. rest mass as the coupling
strength becomes infinite. The main reason that
this differs from the original approach is that
w' continues to remain negative as m decreases
through 2m'. Rather than give a demonstration
of these points using the classical approach we
shall display these points explicitly in the quantum
case in Sec. VG for a quantum equation for which
this system is the classical. limit.

For now, we use this assumption on the choice
of roots in the expression (5.49) to obtain a
relation between v2 and r. In the following, the
plus root is chosen for 0 & u+u, 3nd the minus
root is chosen for a, u& ~. The value o('.0 is
defined by

no=2(n —I)+(2nz —2nl+4fz)+ (5.53)

where

z) =-,' [1—(1 —o.'/n")+]for 0 ~ n& n„

q = —,
'

[ 1+ (1 —u'/n")+] for a, ~ o. & ~.
(5.55)

Hence, q increases from zero at e = 0 to 2 at
a =no toward unity as n-~. Unlike the limits
in the original approach (Secs. II C and III D),
these limits arise only from v2&0.

F. Generalized quasipotential equation
for scalar interactions

On the basis of the classical covariant "Hamil-
tonian" for the generalized two-body problem
given by Eq. (5.21) of Sec. VC we postulate the
fol. lowing generalization of the two-body homog-
eneous quasipotential equations for scalar inter-
actions:

g2 ~2(j 1 ™1)+Pl(J2 2 }
4 (r) bz4, ( )

(5.56)

This equation can be regarded as a generalization
of (1.10), here written as

( —V'+2m '0 )g (r) =b'g„(r),

for strong coupling. For the choice

(5.57)

'Uttzm2 U tfzml (5.58)

(5.56) becomes

Equating (5.43) and (5.49) gives us the limits
onr,

r -=—[1 —(I-z)) ] &r & —[I+(I-z)) ]=r„,Q

N'g N

(5.54)

2

2Mm g +(2mzm2M+ m,z+ mzz) 2 + m, mz
EO l8 2 (5.59)

and for the choice

p ~my)ttz/mqw p ~ ~ P /~
1 1 2 2 (5.60)

it takes the form

m zm emzumjmzm
(ezmz'vmlmzm I )+m 2m emz mlmzul (ezmzvmlmzu~, l)1 2 )

) (r) = b'q (r}
m gift@ ~/If' +m g~jU/fft2

1 2
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Both generalized forms reduce to the original
relativistic Schrodinger equation when g can be
considered small. They also have the expected
static limit.

G. The quantum spectrum: An example of deep binding
for scalar interactions

As an illustration of the nature of the quantum
spectrum in this case of the generalized quasi-
potential equation, we choose the exactly soluble
example of equal masses (m, =m, =-m) with

P, =P, =P=m (1 —u/wr). With this substitution,
(5.56) becomes

m'a'
(5.62)

Solving this leads to the relation

4 'n'
w'(w' —4m') =— (5.63)

w' =2m'[1~(1 —u'/n")+], (5.65)

with the positive root chosen for 0 ~ e& n, and
the negative root for n, ~ n&~, where uo is the
solution to u =n'(w' =2m', u). As stated earlier,
this choice follows from the fact that m' remains
real and negative as ~' decreases through 2m'.
%'e demonstrate this explicitly for the case n =1,
l =o. We can solve (5.63) rather easily in this case
for a' in terms of w'. We find

where

n' =n+ 2 (2l + 1)2+ 2
u' —2l —1( . (5.64)

EU

As with the classical case in solving (5.63), one
takes

for the original equation with n' =n =1. For
w~ =2m', u =4 from (5.66) and u' =1 from (5.67).
The differences beyond this point are even more
crucial. As pointed out before in the classical
case w' is negative from (5.51) only for w'& 2m2.
This also holds for the quantum equation (5.67).
On the other hand, the derivative of u as com-
puted from (5.66) is

I

32m" (5.68)

which is negative for all u in the range 0&m' «4m'
for bound states. In the special case we have
considered we switch roots when a = 2, as beyond
this u' decreases through 2m'.

Vl. CONCLUSION

The generalization (5.56) of Todorov's relativ-
istic Schrodinger equation can display, unlike
the original equation (5.57), very deep binding in

the strong coupling limit. We have shown the
absence of complex energies for these generalized
quantum equations for strong coupling to be re-
lated to the absence of orbital restrictions in the
classical case. Although the generalization (5.56)
is not unique, it does not require a modification
of the basic assumptions behind the quasipotential
approach. For example, the higher-order con-
tributions to'U „-, that arise from these general-
izations could be subtracted from the higher-
order corrections that come from including more
Feynman diagrams.

In a future paper, now in preparation, we shall
examine the trajectory w(n, f) of bound states in

the above models for arbitrary mass ratios as
a function of the coupling constant.

16m' - 4u'
Q 2

EU

This is to be compared with

(4m' —w')
Q =

~ N

(5.66)

(5.67)
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