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Propagation of photons in homogeneous magnetic fields: Index of refraction*
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The index of refraction associated with the vacuum polarization induced by homogeneous magnetic fields is
calculated for two cases: (i) high-energy photons traversing fields weak compared with the critical field,
H„= m'c '/eh —4.41&(10"G; and (ii) low-energy photons in fields of arbitrary intensity. Some implications
for the physical optics of intense magnetic fields are briefly discussed.

I. INTRODUCTION

The index of refraction of a homogeneous mag-
netic field was first calculated by Toll from the
photon-pair creation rate via a dispersion rela-
tion. ' Subsequent field-theoretical derivations
displayed both the absorptive as well as the dis-
persive effects of vacuum polarization in a unified
fashion. ' ' Nevertheless, an asymmetry persisted
in the sense that although practically useful re-
sults for pair creation became available —and were
widely utilized for pulsar physics —the only ex-
plicit representations of the index of refraction
were based on empirical approximations. ' Re-
cently the index of refraction due to vacuum polar-
ization and the corresponding absorption coeffi-
cient for pair creation in homogeneous magnetic
fields were obtained directly from the photon
mass operator in terms of two-parameter integral
representations. ' These were reduced still fur-
ther in two particular cases: the index of refrac-
tion for low-frequency photons in weak fields,
and the photon absorption coefficient for high-
energy photons in weak fields. ' The purpose of
the present paper is to extend the range of these
results for the index of refraction. Starting from
the exact mass operator expressions given in
paper I, we will demonstrate that the index of
refraction for high-energy photons in weak fields
can be expressed in terms of a single-parameter
integral form analogous to the absorption coeffi-
cient. The index of refraction for very-low-fre-
quency photons in fields of arbitary intensity can
be integrated explicitly. This constitutes one of
the few vacuum polarization effects known in
closed form.

II. HIGH-ENERGY PHOTONS; WEAK MAGNETIC FIELDS

We shall suppose that the orientations of the
magnetic field H, the photon propagation vector
k, and the polarization vector of the photon &

conform to the conventions adopted in paper I:
Specifically, fl coincides with the + z direction
and k lies in the x-z plane. The polarization vec-
tor of the photon can be resolved into parallel
(&~~) and perpendicular (e,) components corre-
sponding to the directions parallel and perpendic-
ular to the plane containing k and H. The actual
photon propagation direction is specified by into-
ducing 8 to denote the angle between k and A.
The index of refraction is essentially determined
by the real part of the photon mass operator. In
particular, for high-energy photons (&u/m» 1)
propagating in weak magnetic fields (eH/m' «1),
simplifications paralleling those carried out in
Eqs. (150-155) lead to the representation

eH
n(l ~=1 ———,sino I

where

18
Ilt ~= ~ dV

0

1 ——,—+— cose.

(2)

The auxiliary variables are given by

3fdeH . 4 1 3 y'~=———,sin8, $=—,, e=—$ y+-2m m,
' &1 —v '

2 3

The y integration can be carried out explicitly in
terms of generalized Airy functions'.

1

x dv(1 —v') '~'
0

2 1 v'
x 1 ——,—+— e,'[-(-,'g)'~'].

3 tt 2 6

12 1132



12 PROPAGATION OF PHOTONS IN HOMOGENEOUS MAGNETIC. . .

According to the conventions adopted by Nosova
and Tumarkin, '

xe,(t) = dx sin tx —— (5)

and the primes denote derivatives with respect to
the argument, i.e. ,

e~(t) = e,—(t) (6)

e,'(t) =
(7)

we can compute the limiting cases corresponding
to Z«1,

We note that the representation (4), in terms of a
one-parameter integral over Bessel functions, is
more compact and much simpler than the form
obtained by using the dispersion relations, "and
has a form analogous to that which occurs in cal-
culations of synchrotron radiation and the absorp-
tion coefficient. ' Since the properties of the e„(t)
functions are well known and extensive numerical
tabulations are available, ' all essential features
of the index of refraction can easily be derived
from Eq. (4}. In particular, from the asymptotic
forms

ble that the auxiliary hypothesis (d(/m» 1 is actu-
ally superfluous. This is consistent with the fact
that the small-X limit, Eq. (9), is identical to the
low-frequency weak-field result (I53), as well as
the low-frequency arbitary-field expressions
(37a) and (37b). We also note that both components
of the index of refraction increase monotonically
in the range 0 (~s 1.2, decrease monotonically
for 1.2~ ~~ 24, and, in fact, decrease below
unity at &-24. For ~) 24, the indices approach
unity from below in accordance with Eq. (10). De-
tailed numerical information on the variation of
nf[ ~ is given in Hefs. 1, 6, and 10.

III. LOW-ENERGY PHOTONS;

ARBITRARY MAGNETIC FIELDS

Next we consider the case of very-low-energy
photons propagating in magnetic fields of arbitrary
strength. The representation appropriate for this
limit follows from (I45), (I47), and the constraint
that, below the pair creation threshold ((o(2+,
the mass operator M[], must be real. Specifically,
we have

Q
n]~ ~=1+—sin 8 J[i »

where

n(( i= 1+——,sin8 [(&,)(( (~~) ],

and to»&1,
2

n[| i = 1 ———2sin8 -Tt' 2 A. I' —,
'

(9)
00 1

d(( d
= - —8 ' dt(ttt(( i(z, v),

~ tf«fft2 «II

0 0

V SinVZ Z COSVZ
N(((zt v) = —z cotz 1 - 8'+ . +

sinz slnz

(12)

(13)

These asymptotic results furnish a check on the
indirect prior computations. "

It is apparent from Eqs. (4)-(10) that the index
of refraction essentially depends on the dimension-
less energy-field product &= 2 [h(d/(mc')](H/H „),
where H„= (@Pc'}/(elf), and therefore it is plausi-

z cosvz vz cotz sinvz
t(t z, iv)= — . +

Slnz Sinz

2z(cost(z —cosz)
+ sin'z (14)

It is convenient to begin the evaluation of (12) with
an integration by parts:

/
~

, 2...„vs1nvzcotz, " e ' . m'
dz e v'+ ~ . —v cosvz+i vsinvz

SiQZ 0 S1QZ eH
(15)

If ftt2 «/8' e - im2«/eH

2 d* . , (cos * —coo*)=-', (t — 'i ~ d* — st *cot* ~ cos '* —( cot*(cos * —cos*i);sin'z Sinz eH

(16)

and

, 2,/,~COtz, vsinvz . m' cosvz —cosz
dz e " . icosvz —cosz) = dz e

S1QZ sinz eH sinz
(17)
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The basic expressions J~~, can then be rewritten
as

of the integral"

E
Ji] = 3 —&1-&2- &3,

J = —', —8, +6JP4„

(18)

(19}

x x
lnI;(x) = dt lni'(t) +—(x —1) ——ln(2w). (31a)

0

It satisfies the functional equation

H„
2H ' (20}

where we have introduced the dimensionless pa-
rameter

r, (1+x)= x'r, (x), (3 lb)

I', (1+n) = 1' x2' x x n", n ~ 0. (31c)

with the constraints I;(0)= I', (1)= I', (2) = 1, and

for integer values of the argument reduces to

and the auxiliary integrals are given by

dz e-""' cotz —z -'),
0

oo 1

82=2ih dze ""' dv
0 0 sinz

e-2IRB dv(1 v2)
0 sinz

1-z

(21)

(22)
—0.248 754 47'7.

Finally, assembling the results given in Eqs.
(25)-(32), we obtain

(32)

The constant L, which appears in Eq. (29) can be
obtained from the Raabe integral

1

L, = —'+ dx lnI;(1+ x)
0

(23) n g (H e) = 1 +—sin'8 O ~~ (h), (ssa)

These quadratures can easily be carried out by
rotating the path of integration to the negative
imaginary axis (z -- ix}; in virtue of the struc-
ture of M~], the residues at the poles of sinz do
not obstruct this deformation. Finally, by shifting
the variables to

where h= m'/(2eH), and

rtp (h) = 8 Inl', (1 +h) —4h lnl'(1 + h) —-', P(1 +h)

—2h lnh —2h'+ 2h ln(2w) + (3h) '+ [3 —8L,];

(ssb)

t = 2x, u = z (1 + v), (24) furthermore,

the remaining integrals can be recast into the
standard forms of various I" functions. The re-
sults are

n~(H, 8) =1+—sin'8g, (h),

where

(34a)

8, =-', [tt(1+h) —Inh —(2h) '],

8, = 2hK, (h},

8, = —', lnh —4K, (h},

where

(25)

(26)

(27)

tt (h) = —4h lnl'(1+ h) +4h'$(1+ h) +2h lnh

+ 2h [in(2x) —1]—4h' +—', . (34b)

The asymptotic representations corresponding to
h»1 are

1

K, (h) = du(2u —1)it(u+h)
0

= 2 lnI'(1+h) —(1+2h)lnh —in(2v) +2h, (28)

g(x) =—lni'(x).d
d&

(30)

The generalized I" function I;(x) appears by virtue

1

K,(h) = duu(1 —u}g(u+h)
0

h=2lnI', (1+h) —2L, —h(1+h)lnh+ —. (29)2'

As usual, g denotes the logarithmic derivative of
the I' function,

1 1 1

6h 180h' 630h''

lnh 1 1'(" =
6 'S6Oh' 2S2Oh"

1 1 1"(' '"' ='""'sh 12h" 12Oh'

In case h «1, we have the series expansions

K, (h) = —(1 + 2h)lnh —1n(sx) + 2h(1 —y)

+—1+———[1+f(3)]+
2 6 3

K, (h) = —h(1 + h)lnh —2L, + h[1 —ln(2x)]
2

+h'( —'- y)+h' —+ ~

18

(ssa)

(35b)

(35c)

(36a)

(36b)
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((((1+h) = —y+—h —C(3)h'+ (36c)
14 H ' 13 H '

n(l(H, 0) =1+—sin'8

(3%a}

where y is Euler's constant, f denotes the
Riemann I function, and I, is given in (32). it ls
then a straightforward matter to compute the
limiting forms of the indices of refraction corre-
sponding to H«H„, as well as those corresponding to H»H„,

(3Vb)

a . , 2 H 1 2y H., 2H H„v' H„' 1 g(3)
nl((H, 8) =—1+—sin'8 — + —+——8L, + "ln + " 2 —In(2v) ——+ " —+, (38a)

4w 3 H„3 3 ' H H„H 18 H 2 6

(38b)

The detailed numerical variation of the indices in
the range 0.1-H/H„-10 is displayed in Table L
Outside this interval the various limiting forms
given in (37a)-(38b) are accurate to at least 0.05gp.

Finally, we note the technical point that the field
ratios should actually be written as ~H/H„~ since
the mass operator essentially depends only on the
combination + (F„,E" )'~' (see Ref. 12).

IV. DISCUSSION

The physical optics of the polarized vacuum is
essentially determined by the indices of refrac-
tion n, l „(H, 8, ~), and the attenuation coefficients
o(( ~(H, t), v'„ corresponding to pair production. "
Although these functions have a complicated ana-
lytic structure in H, they do satisfy dispersion
relations in the plane. ' In the following, we
will discuss some physical implications deduced
from the dispersion relations and the results''bW
tained here and in paper I (see Ref. 7).

(i) Suppose we consider

and specialize to the limit td -0. Furthermore,
if we introduce the superscripts w and A to dis-
tinguish "weak" (H «H„) and "arbitrary" field
intensities, then the direction of the inequality
n(( (0) &n', '(0} [compare Eq. (9)] is consistent with

&(~ '((d) & n',"'((d) [compare Eqs. (I59a) and (I59b)];
the symmetry in the pair production rates is di-
rectly linked with the preferential overlap of the
e' wave functions in the plane perpendicular to k
and A. " Since n',

(
'(0) &n',"(0) [compare Eqs. (33a)-

(38b)] it is plausible that similar constraints pre-
vail for n(~ ((d) and a/~ (d). Furthermore, the
"formal" inequalities n ll (0) &n( ] (0) imply that
for some range of & the weak-field attenuation
coefficient o((( ~, must actually exceed the arbi-
trary-field attenuation g~ l~.

(ii) It can easily be verified that the magnetic
"oscillator strength" given by the sum rule
J',"d&of"l(&) diverges. However, the next moment
exists and may be used to assign an effective fre-
quency to the field: We find

(g(d}„,= (4o)

where o is given by (I60).
(iii) The dispersion relation conjugate to Eq.

(39) is
4(d2 " n

ll i(&u) —1
o(( i(» =—

I KC 0 Vc- (d
(41a)

This is useful since it follows directly from Eqs.
(4) and (10) that n(l ', 1 satisfies the "supercon-
vergence" criteria

In(, ((~,) — (",'. ( .ll - o(( .( "".( '
2

(di ) 4)2,

with Holder index P&0. Under these circum-
stances the asymptotic evaluation of the Hilbert
transform (41a) leads to the "inertial" sum rule"

r d(ii[n((, (&) —1]=
4

lim [o(~ ~((u)] = 0. (41b)
0

(iv) Since n(P(~~(0) —1 &0, it follows from (41b)
that there must be some range of frequencies
where the phase velocity exceeds c. This is, of
course, consistent with the explicit results given
in Eqs. (4) and (10}. If the inertial sum rule (41b)
retains its validity for arbitrary field strengths,
then Eq. (38a) makes it plausible that n(l" (&)
could become negative. This is subject to the
caution that when H/H„& ((/a-430, the mass
operator itself is liable to significant O(n') radia-
tive corrections. '
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H/Hcr g)t (h) (h

50
10
8.33
7.14
6.25

5.56
5.00
2.50
1.67
1.25

0.01
0.05
0.06
0.07
0.08

0.09
0.1
0.2
0.3
0 4

32.146
5.663
4.585
3.821
3.254

2.817
2.471
0.983
0.541
0.345

0.591
0.441
0.416
0.393
0.373

0.354
0.337
0.220
0.156
0.116

TABLE I. Numerical values for the indices of re-
fraction: n)~ ~(H, 8) =1+(ot/4m') sin e&lt, i(h)'
h = (H, /2H).

(v) The advent of pulsars has stimulated far-
ranging speculations on observational conse-
quences of magneto-optic effects in fields of the
order of H-H„-10" G. In this respect Eqs.
(33a)-(38b) are grist for the mill since they are
among the few quantum electrodynamics results
which actually ought to be valid for field inten-
sities up to H~10" G. One effect which could be
significant is transverse double refraction"
(Cotton-Mouton effect): Specifically, if we con-
sider light of wavelength ~ traversing a path length
l normal to a field H, then for 45' initial polari-
zation, the angular rotation of the plane of polari-
zation is given by

1.00
0.833
0.714
0.625
0.555

0.500
0.454
0.417
0.385
0.357

0.333
Q.312
0.294
0.278
0.263

0.250
0.238
0.227
0.217
0.208

0.200
0.192
0.185
0.179
0.172

0.167
0.143
0.125
O.ill
0.100

0.5
Q.6
Q.7

O.S
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.5
4 Q

4.5
5.0

0.239
0.175
0.134
0.106
0.0858

0.0705
0.0591
0.0502
0.0432
0.0375

0.0329
0.0291
0.0258
0.0231
0.0208

0.0189
0.0171
0.0157
0.0148
0.0132

0.0122
0.0113
0.0104
9.80x10 3

9.09x10 3

8.52 x 10 ~

6.28 x 10 ~

4.82 x 10
3.81x 10~
3.09x10 ~

0.0894
0.0708
0.0573
0.0473
0.0395

0.0335
Q.0288
0.0249
0.0218
0.0192

0.0170
0.0152
0.0136
0.0123
0.0111

0.0101
0.009 26
0.008 50
0.007 82
0.007 22

0.006 69
0.006 21
0.005 78
5.39 x 1Q ~

5.04x10 ~

4.72 x 10
3.50 x 10
2.70x10 3

2.15x10 3

1.75x10 ~

8 = 2v(n~~ —n, ) l/&

2@i H 1s s 430.H

CZ CI

(42)

Another obvious possibility concerns variable
time delays: From (38a) we infer that variations
in the product (field intensity) x (path length) of
the order of 3 x10" Gm can give rise to time de-
lays of a nanosecond.

(vi) Finally, we note that high-energy electrons
traversing intense fields (H&H„) can generate a
hybrid Cerenkov bremsstrahlung. Earlier esti-
mates of the threshold for this effect can now be
revised on the basis of Eq. (38a). We find

(43)

which is less stringent, and more reliable, than
Eq. (5.6a) of Ref. 10. A complete discussion of
this hybrid radiation phenomenon will be given
elsewhere.
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