PHYSICAL REVIEW D

VOLUME 12, NUMBER 1

1 JULY 1975

General space-time structure of the neutral-current interactions*

S. Pakvasa and G. Rajasekaran’
Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822
(Received 16 January 1975)

We present a general analysis of the neutral-current inclusive cross section taking into account all the
covariants (scalar, pseudoscalar, tensor, vector, and axial-vector) in the interaction. We derive the model-
independent formula for the inclusive cross section and we also discuss the consequences of various models.
We deduce bounds on the ratio R =o0(V N)/o(vN) in the case in which scaling is true, i.e., the inclusive cross
section at high energies is proportional to the incident neutrino energy E. The scaling violations arising from
spin 1 partons and the bounds of R in that case are also discussed.

L. INTRODUCTION

Ever since the neutral-current weak interactions
were experimentally discovered,’® it has usually
been assumed that the interaction is made up of
vector and axial-vector currents. It is obviously
of great importance to establish whether this is
really so.

If the neutrino were a two-component field satis-
fying

YsV=V, Dy,=="V,

then the neutral-current weak interaction of the
neutrinos would have to be through vector and
axial-vector currents. But how do we know that
neutrinos are two-component objects? The fact
that neutrinos behave like two-component objects
in charged-current interactions does not prove
them to be intrinsically so. It is possible that in
neutral-current interactions the missing two com-
ponents of the neutrinos manifest themselves.? In
any case, this is purely an experimental question.

Hence, the question of the space-time structure
of the neutral-current weak interaction is com-
pletely open. We have yet to determine which of
the covariants, S, P, V, A, or T, occurs in neu-
tral-current weak interactions.?

This paper is devoted to a general analysis of the
inclusive processes

V(D) + N- y(V) +anything

taking into account all the covariants S, P, V,A, T
in the interaction. These are certainly not simple
reactions to study. But, unfortunately, these are
our most copious supply of neutral-current events
so far and so we consider it useful to know the
general structure of the inclusive cross sections.
What we present is a general framework. The
questions we ask are of the following type: How
many invariant structure functions does the nucleon
have, if all covariants S, P, V, A, T are allowed in
the interaction? What are the properties of these

12

structure functions? What kind of scaling hypoth-
esis can be made? What do the parton models
lead to?, etec.

In Sec. II, the inelastic structure functions of
the nucleon are defined and the double-differential
cross section for the neutral-current inclusive
process is calculated. Section III deals with the
scaling model and its consequences. Sections IV
and V are devoted to spin =% and spin #3 parton
models, respectively. In Sec. VI we present the
summary. In the Appendix the positivity properties
of the structure functions are derived.

II. CALCULATION OF THE CROSS SECTION
FOR THE INCLUSIVE PROCESSES

A. The form of the neutral-current interactions

The most general local (i.e., nonderivative)
neutral-current interaction of the neutrinos with
the hadrons can be written as*

G _ _
£, = ﬁ[”ya(aV +bv7/5) vV + VY o¥s(@a +0a7;) VA
+V(ag + tbgy,) VS +ivy (ap +ibpy,) VP

+70 g glar +ibpyy) vT] . (2.1)

Here V%, A% S, P, and T°® are the vector, axial-
vector, scalar, pseudoscalar, and tensor hadronic
currents, which are all Hermitian.

We shall assume invariance under time reversal
for the rest of this paper. The transformation
properties of the leptonic currents under time re-
versal are the following:

(V)T ' =7y ,

T(EDyv) T == iy,

T(Vo 4gv) T™' = = nVOLgV ; {+1 for ap =ij

. - . n
T(EVO o gvsV) T~ =NiTOLgYsV —1for apB =0 or 0,
T(Vy v) T™ = =Dy v } {+1 for a=1¢
- n=
T(DyoysV) T~ = = N0y vV —1for @=0.
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We shall assume that the hadronic currents also
have unique transformation properties and that
they transform in the same way as the leptonic
currents, i.e.,

TIST™'=S,
TPT™'=-P,
O T
TV, T '==7V,,
TA,T'=-nA, .

Hence, for invariance of the interaction under
time reversal® we have to set bg=b,=b,=0. Thus,
for S, P, T interactions, time-reversal invariance
implies parity conservation, which is reminiscent
of the Feinberg-Gupta-Soloviev theorem for
Yukawa couplings.®

We next note that, for collisions initiated by v,
or Ur which alone are produced in the well-known
7 or K decays, we can replace (a, +byy,) and
¥s(@a+b,47y;) in Eq. (2.1) by (ay +by) and (a, +by),
respectively. Hence, absorbing the constants into
the hadronic currents, we get the simpler form
for the effective interaction

Ws,s=3 3 (pIS|i)(i]S|p) (@2mP 6*(p~ p; - q)
=W7 »
We.p =33, (p|P|i)(i| P|p) (21 6%(p - p; — q)

=Ws,

W ap=3 Z (pIS]8)(i| Tuglp) (2m30%(p = p; =)

i
=7NZ (paqe"qapﬂ) Wy,

We,as=5 D (b PI1) (il Tag|p) 27 64— i~ )

Z
P €opur(bydy ~ 4y Wy,
N

W“y,agzi E <P, Tuu,i><i,Ta31p> (277)3 GQ(P—Pi —q)

‘ﬁint = —\/'G—Zz_ [ﬁyau( v +Aa) +7vvS +il—/')/5VP

+T0,gV TP . (2.2)

This is the form of the interaction we shall use in
our calculation.

The V, A interactions do not flip the helicity of
the neutrinos, whereas S, P, T interactions always
flip the helicity. Hence the cross sections can be
separated into two noninterfering parts, one arising
from V, A interactions and the other from S, P, T
interactions, and we may consider these two
classes of interactions separately. The V,A inter-
actions have already been studied in detail, and
so we shall concentrate on the S, P, T interactions.

B. The inelastic structure functions of the nucleon

For the V, A interactions, there are generally
six invariant structure functions, W,, ..., W, one
of which arises from time-reversal violation. For
the S, P, T case, we introduce the structure func-
tions W,, ..., W,, through the following definitions
(the structure functions arising from time-reversal
violation will be ignored here):

(2.3)

1
= (gu a8vg —~8valy 5) Wu +_—_(ppqu - quﬁu) (poth - qapa) le

my

1
__7;1;5 (guapupe = Zvaluls —guspupa”"guspupa) Wis

1
_W (guocquqﬁ _guaquqs “gquuqa+gyaquqa) W14

1
T [(guaPVQB"'guapuqs—guﬂpuqa+gu3puqa)+(p"’q)] W15 .

my®



12 GENERAL SPACE-TIME STRUCTURE OF THE... 115

In these equations |p) denotes a spin-averaged nu-
cleon state with four-momentum pand W, ..., W,
are the functions of the two invariant variables

=—(p-q)/my and ¢°. The mass of the nucleon is
denoted by my. Hermiticity of S, P, and T,, im-
plies that W,, Wy, Wy, Wy,, Wy, Wy, and W,
are real, whereas the transformation properties
under time reversal imply that W, and W,, are
real.

The structure functions are not completely arbi-
trary, but have to satisfy certain positivity prop-
erties. Let us introduce the Hermitian matrix W
through

Ws,s Ws,ap 0
) (2.4)

Wi, ;= WE, s Wyv,ap W5, a8
0 WP.OLB WP.P

where the index 7 or j stands for S, af, or P and
the elements Wy, 5, etc. are already defined in
Eq. (2.3). From the definition of these matrix
elements, it is clear that W is a semipositive
matrix:

E V,*Wi.jVjBO,
i,

where V is an arbitrary vector. This leads to the
following positivity properties of the structure
functions (for details, see the Appendix):

(a) W, >0, W,=>0, W,,>0,
(b) X=0, Zz=0, U=0,
() ZU=Y?,

1
dw,x= —7;1—5(1/2 -PYWS,
N

1

(e) WeW,, = P

(v =47 Wlozr

d®o(v*N) _ G?
dE'dcos® ~ 8mmy

where (2.5)
_ 1 q? 2v

X=-W,, +;1;-§ (vz—qz)W12+W13 +ZN—2‘ W14+;1; ['V15 s
_ v? q° 2v

Z=W,, - ra Wi —WWM - m'—N Wis,

1
UE_WII_? (Vz“qz)Wls s

Y=- =2 (2 —(12)"2<W13 +——51—5—W,5> .
q my v

Conditions (b) and (c) refer to the tensor struc-
ture functions alone. Condition (c) is the Schwarz
inequality relating the off-diagonal elements of the
tensor matrix W, g to the diagonal elements. In-
equalities (d) and (e) are the Schwarz inequalities
relating the S-7 and P-T interference terms to
the diagonal terms.

C. The cross section

We want to calculate the double-differential cross
section for the neutral-current inclusive process

v+ N= v*+anything ,

where we denote neutrino and antineutrino by v*
and v7, respectively. In the laboratory system
where the nucleon N is at rest, the incident neu-
trino energy is E, the final neutrino energy is E’,
and the scattering angle of the neutrino is 6. In
this system,

- R - R/
v=E-E (2.6)
q%=-4EE’'sin*(36) .

The double-differential cross section can be

written as
d?s(vEiN) G? !

= — ; ; 2.7
dE' dcos6  16mmy E iij"fW"f’ 2.7

where w, ; is the leptonic analog of the hadronic
W,,;- The final result is

5 E'2{2my? sin®(36) (W, + W) +8 sin®(36) [2EE’ sin®(36) +(E + E'?| W,

+4my?[4 - sin(36)] W, — 32EE’ sin*(0) W, + 16my(E — E”) sin®(36) W,

+8my(E +E’) sin®(36) (W, +Wm)} . (2.8)
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The function W,, does not occur in the above cross section since its contribution is proportional to the
mass of the lepton. It is important to note that the S-T and P-T interference terms change sign as we go
from the neutrino to the antineutrino.

It will take a long time before we have enough experimental data to exploit this completely general for-
mula. So, at this stage it is worthwhile to construct simple models that may be relevant at high energies.
Before we go to the models, let us write down the cross section in the deep-inelastic limit which is ob-
tained by taking E, v, and [¢°|large such that x=|q*|/2myv and y=v/E are finite. In this limit, we have

d%o(v* G?%myE E? E: E E
d)EdyN) = :;N {xyz(W., +We)+4[W (2 =) y2W,, +4 ;n"f Q=) Wy~ 2;;; x2yS Wy, +2 ;Z; xy3W15]
E 2
14— xy22 =) (Wy+ W) . (2.9)
my

This is still a model-independent formula.

III. SCALING MODEL

The first model we consider is the scaling model based on the following scaling hypothesis. For y—«
and |¢?| =« such that x is finite, the following limiting functions are supposed to exist:

14 14
W, = Fy(x), Wy~ Fy(x), W~ Fy(%), W= Fio(x), W, —~F,(x),
my my
(3.1)

v? v v v
g W, = Fiy(x), WN' W3~ Fi5(x), 71\! Wiy~ F (%), E; Wi~ Fis(x) .

This hypothesis is motivated purely by analogy with Bjorken’s scaling hypothesis’ for the V- A case. Under
this hypothesis, the cross section is asymptotically proportional to £, and dropping the terms which are
of lower order in E, we get

d? * GZ E
Zil;ym B 87'7,7le {xyz(F7 +Fy) +4[x(2 = 9)* Fy, +4(1 - y) Fia=2x%y® F\ +2xy° F ;| +4xy(2 - y) (F9+F10)} .

(3.2)

We see that the S, P interactions give a y? term, and the S-T and P-T interferences lead to a y(2 —y)
term whereas the T interaction gives a more complicated quadratic in y. Integrating over x and y,

2 1
o(viN) = G—zznﬂigf dx[x(F, + F,) +4(TxF, +6F, = 2x®F , +2xF ;) +8x(Fy + F,;)] . (3.3
0

By making use of the positivity properties of the structure functions, we can derive lower and upper

bounds for the ratio R =0(VN)/o(vN). For this purpose, let us first write down the scaled versions of the
positivity conditions (2.5):
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(a) F7’ FB? Fll = 0 ’
(b) - F,,+F,, —-2xF,+2F ;20

1
(c) F, + o F +2xF,,-2F =20,

(d) - F, + = F >0,

2x
1 1
(e)| Fy, + ﬂFm +2xF), = 2F )| = F,, + EP

(f) F; (= F,, +F,, =2xF, +2F ;) > [ Fol?,
(g) F8F11>JF10'2 .

(3.4)

1
FIS) BZ}_z (Fxs"szxs)z ’

A simple manipulation of these inequalities leads to the following bound on the sum of S-T and P-T inter-

ference terms (see the Appendix for a derivation):

4VTx(| Fgl+ | Fyy|) S%(F, + Fy) +4(TxFy +6F 5 = 2x%F , +2xF,,) . (3.5)

By using (3.5) in (3.3), we get the minimum and
maximum values of R:

vT-2
= =0.1
Roin = g =0-1389,
(3.6)
VT +2
= =7.195 .
Rmax ﬁ_z 7.195

This is the S, P, T analog of the well-known V, A
result:

Since S, P, T do not intevfere with V,A the bounds
in (3.6) ave valid in the most geneval case of
S,P, T, with V and A present. Also, in case of
puve T or S, P only R is fixed to be 1.

Next, let us be even more specific and go to the
spin-3 parton model.

1v. SPIN—-;- PARTON MODEL

If only the spin—% constituents of the nucleon
participate in the neutral-current coupling, then
we have

F,=F,=0,

(4.1)
F,=2F,x=2F,x .

These are the tensor analogs of the Callan-Gross
relations® originally derived for the V, A case.
Using Eqs. (4.1) in (3.2) one can see that the y
distribution for the tensor simplifies to (2 — y)2.

Furthermore, within the parton-model frame-
work we can explicitly calculate all the scaled
structure functions F,,..., F,,. We shall now do
this for the quark-parton model in which the nu-

cleon is assumed to be made up of an isodoublet
of quarks # and d. We shall ignore the antiquark
contribution and the strange-quark contribution,

. for simplicity.

Let us start with the explicit form of the inter-
action (including the V', A case):

G 17 7 — R
Lini = 72 [Dyav by @y “u + Ry @y %y ) +h'sOv iu

+R STy vy u +hv 0 4 gviio *Pu +(u—d)| .
(4.2)

Thus, the general interaction contains ten coupling
constants, k% h%% hE¢, W%%, and k. The stan-
dard parton model leads to the following double-
differential cross section for proton and neutron
targets:

d’o(v*p) _ G*myE
dxdy 167

[¢4(9) x U(x) + $%(») xD(x)] ,

(4.3)

Tt Sl (51(5) % D00 + $40) < U]

(4.4)

where U(x) is the probability of finding the u quark
with the fractional momentum x in the proton, D(x)
is the same for the d quark in the proton,

¢4(y) =[2(hy £h%)? +2(hy F h%)*(1 - y)?
+8h'}2 2-y2+ (h;2 +hf) y2
F4hp(hg —hy) y(2 - )] , (4.5)
and ¢%(y) is defined in a similar manner. For the

isospin-averaged nucleon N, Egs. (4.3) and (4.4)
lead to
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d?o(v*N) _ G®my

E 1685 +61(0)]2Q) , (4.6)

dxdy 167
where
Q) = U(x) ;D(x)

So, the y and x distributions factor out for the iso-
spin-averaged target.

The question one may ask at this stage is whether
it is possible to determine the space-time struc-
ture of the neutral-current interaction from the y
distribution. To answer this, let us parametrize
the y distributions in the following manner:

do(vN) _ 5 G myE
——————dy =(a+by+cy )_[-—————167r xQ(x)dx ,

do(UN)
dy

(4.7)

_ 2
=(T+by+Ty?) fg—%né:?E— xQ(x)dx .

By comparison with Eq. (4.6), we get
a=a=2((hy +hy) + (hy —h,)?] +32h%
b=—A4(hy =hy)?—32hs® = 8hplhs—hp) ,
b==A4(hy +hy)? =320s% +8hplhg~hp),  (4.8)
c=2(hy =h ) +8hy? +(hs® +hp®) +4hp(lg=hp) ,
C=2(hy +hy)? +8hy® +(hg +hp?) = dhp(hg—hp) .

Here and hereafter, all quadratic expressions are
understood to be summed over « and d; for in-
stance, (ky +h,)? stands for (kY +7%)? + (% +h4)?
and & phg stands for hiphl +h%hd.

One can see from Eq. (4.8) that there are three
relations among the six parameters a, b, ¢, @, D,
and C:

a=4d, (4.9)
(4.10)
(4.11)

2a+b+b=0,
(b-b)+2(c-c)=0.

Thus, only three independent equations are avail-
able for the determination of the coupling constants
hy, hy, hg, hp, and hy. Hence, the coupling con-
stants for the five different interactions S, P, V,A,T
cannot be determined from the y distribution.®

The three independent equations are

a=4(hy? +h %) +32h.% (4.12)
c+C=a=2(hd +hp®) =322, (4.13)
c=T=8hyhy—8hplg~hp) . (4.14)

From Eq. (4.13), we see that a nonzero value for
c+C=—a is a sure indication of the presence of

S, P, and/or T interactions. One may further
note that, if S, P, T interactions alone are present,
then the three equations (4.12), (4.13), and (4.14)

allow a determination of the amounts of each of
these three interactions. The same statement is,
in fact, valid if any three of the five interactions
are present.

It may also be pointed out that if data on a proton
target are available in addition, then by using Eqgs.
(4.3) and (4.4) a separate determination of 2* and
h? is possible.

Integrating (4.6) over y, one finds that the ratio
R=0(DN)/0(vN) has precisely the same maximum
and minimum values given in Eq. (3.6). In other
words, the quark-parton model does not restrict
the possible range of R any further than the scaling
model.

V. PARTONS WITH SPIN #
A. General remarks

Finally, let us consider the possibility of spin #%
partons in the nucleon. Inelastic electron scatter-
ing and inelastic neutrino scattering have so far
revealed the presence of only spin-3 charged con-
stituents in the nucelon. However, there are also
neutval constituents in the nucleon, which seem to
carry nearly half the momentum of the nucleon.

It is generally thought that these objects have inte-
ger spin. These neutral objects might be the ones
that participate in neutral-current weak interac-
tion. Hence, it is necessary to analyze the neu-
tral-current interaction more generally, taking
account of possible spin #3 constituents.

Once the possibility of spin #3 partons is granted,
it should be noted that the cross sections do not
scale any longer. In other words, scaling is vio-
lated. This is in sharp contrast to the situation in
the case of V, A interactions, where Bjorken scal-
ing can be maintained for spin=% as well as for
spin #3 partons.

This difference in scaling behavior between V, A
and S, P, T cases arises from the fact that V and A
currents have a unique dimension, namely 3, what-
ever may be the fields out of which the currents
are made, whereas the dimensions of S, P, T cur-
rents depend on the dimensions of the constituent
fields. For instance, the dimension of the currents
P, Pvsd, Y0, 5% made of spin-3 field y is 3; the
dimensions of ¢T¢ and (9, ¢Tau ¢-23, ¢Tau ¢) made
of spin-0 field ¢ are 2 and 4 respectively; and the
dimension of V]V, and V}V, - V] V, made of vector
field V, is 2. (Note that to construct an antisym-
metric tensor invariant from scalar fields, the
fields have to carry a new quantum number. This
is also true of vector fields if one wants to avoid
derivatives. Could this be color ?)

Hence, if we allow S, P, T interactions, we should
be prepared to see scaling violations also. The
scaling violations manifest themselves in (a) the
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energy dependence of the inclusive cross sections
being different from the conventional linear E de-
pendence and (b) the y distribution of the inclusive
cross sections also being different from what is
expected in the scaling model.

To illustrate these scaling violations, we have
worked out some examples of spin-0 and spin-1
partons.

B. Spin-0 partons
Consider the interaction
L0 =8sTVO" ¢ +ig B U8 (6050 — 0,070 0) .
(5.1)

The contributions to the structure functions aris-
ing from this interaction can be calculated in par-
ton model; these should be substituted in Eq. (2.9),
which is the general formula for the inclusive
cross section in the deep-inelastic limit. The
tensor interaction in Eq. (5.1) contributes only to
W,,, and the final result for the spin-0 contribution
is

d2a(viN)
dndy "85y +4&r my’ EX(2 - 3) yx®
S (x)
t4g5grmy EQ2 - y)yx]==, (5.2)

where S(x) is the probability of finding the spin-0
parton ¢ withfractional momentum x in the nu-
cleon. This contribution should be added to the
spin-3 contribution given in Eq. (4.6).

The scalar, tensor, and S-T7 interference terms
in Eq. (5.2) are respectively proportional to E°,
EZ2, and E. This can in fact be derived from di-
mensional arguments. For large E, the E2 term
will dominate over all other terms (including the
spin =% contributions).

The y distributions also are different from those
arising from spin-3 partons. Actually, with every
additional power of E (as compared to linear E)
one can associate an additional power of y. Nole
especially the presence of y° tevms. The y dis-
tribution is no longer a quadratic. Finally, in the
high energy limit, since only the E? term sur-
vives, the ratio R=0(VUN)/o(vN) goes to 1.

C. Spin-1 partons

We consider the interaction
Lo =fPV VLV, +ifp BB WV V= VEV,) .
(5.3)

The naive dimensional argument does not work in
this case since the spin summation for finite-mass
spin-1 partons leads to g, - p,p,/my°, where my
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is the mass of the spin-1 parton. It is the p,p,/
my® term that dominates for high energies, and
the dominant contribution to the inclusive cross
section is proportional to E2, Keeping only this
dominant contribution, we get'®

d%o(viN) _ _I_(mNE
dxdy my®

> [fY° +4fr%(2 = y)? yx?

+4f o fp(2 = 9) ¥Px] x2V(x) ,
(5.4)

487

where V(x) is the probability function for spin-1
partons. Note again that the y distributions from
all the terms are one power higher than in the
spin-3 case, i.e., »® is present in each term.
Integrating Eq. (5.4) over y, we find

o(VN) - 3fs +44fp” = 20f g fr
o(vN)  3fg +44f,” +20fs fr

The upper and lower bounds of this expression
are

R= (5.5)

v33-5
Ruin= 73375 - 0-0697,
R z\f'3§+5:1433 (5.6)
max " /835 T U

Hence in this case the bounds on R given in Eq.
(3.8) are not satisfied.

VI. SUMMARY AND DISCUSSION

If time-reversal invariance is valid, there are
nine inelastic structure functions for the nucleon.
We have obtained all the positivity conditions sat-
isfied by these functions.

The double-differential cross section for the
inclusive process has been written down in terms
of these structure functions. This formula [Eq.
(2.8)]—especially the characteristic (E +E’) de-
pendence contained in it—may be made use of in
the future when sufficient experimental data be-
come available.

We have discussed the question of scaling in
some detail. Although it is possible to construct
a scaling model such that the inclusive cross sec-
tion is proportional to the incident neutrino energy
E, is is by no means clear that the S, P, T inter-
actions would obey this scaling. I fact,the S, P,T
intevactions treated in the spin #3 pavton models
violate scaling. It will be most interesting to look
for these scaling violations, i.e., cvoss sections
vising fastev than E and y° teyms in the y distvibu-
tions, in the expevimental data on neulval-curvent
inclusive processes.

If scaling holds such that the inclusive cross
sections at high energies are proportional to E,



120 S. PAKVASA AND G. RAJASEKARAN 12

then we have shown that the ratio R =0(VUN)/o(vN)
has to lie between 0.1389 and 7.195. The scale-
violating contributions from spin-1 partons [ given
in Eq. (5.4)] evaluated in the high energy limit
violate this bound on R and satisfy a wider bound
0.0697<R<14.33.

Added notes. (a) The y distributions for S, P, T
for the spin-% parton model were written down by
Kayser ef al.® and by Kingsley, Wilczek, and Zee.!
More tests of S, P, T are also discussed by Kings-
ley et al.* (b) In the V,A case, if the neutrinos
couple to spin-1 objects in the nucleon, then scal-
ing is not satisfied because of the ¢,4,/m,” term
in the spin sum. This is discussed in detail by
Rajasekaran and Roy."
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APPENDIX: POSITIVITY PROPERTIES
OF THE STRUCTURE FUNCTIONS

The positivity conditions are simply the state-
ment that the eigenvalues of the matrix W defined
in Eq. (2.4) are positive-semidefinite.

Instead of the full matrix W it is enough to con-
sider the reduced matrix Wy obtained by consid-
ering the tensor indices ag =03, 02, 01, 23, 31,
and 12 and ignoring 30, 20, 10, 32, 13, and 21.
One can show this does not affect the positivity
conditions because of the following theorem: If
an nXn Hermitian matrix M/ has eigenvalues
Ay, ...y Ay, then the 2n X227 Hermitian matrix

M -M

-M M
has eigenvalues 22, ..
times.

It is convenient to go to the Lorentz frame in
which ¢ is purely spatial:

., 22, and 0 repeated »

q= (0, 0’ O, (_ q2)l/2) 3
p=m(1-v2/g%)""?,0,0, vn/(- ¢*)'"?) .

(A1)

In this frame, Wy is the following matrix:

S 03 02 01 23 31 12 P
£ I
S W7 Wé . . . . . .
03 |w. Xx
02 . . U +« —-Y . .
o0 |- - - U - Y - , (A2)
23 . . Y - Zz . . .
31 . . N ‘A Z
12 . . . . . t,V11 M}'l/0
P . . . . . . WIIO WB
- : -/

where the dots refer to zeros, X, Y, Z, and U
are defined in Eq. (2.5), and

1
Wg':%_(uz_qz)l/zwg ,

1 (A3)
Wio=opr (V° - 2w,
The eigenvalues of thewrrxrlatrix in (A2) are
HZ+U)£5[(Z+U) -4(2U-Y?)] /2,
W, +X) £5[(W, + X2 = 4(W, X = W;2)] /2 | (A4)
H(Wy + W) £ 3 [(Wy +W,,)2 = (W, W, = W) 1/2

where the eigenvalues given in the first line occur
twice. The positivity of these eigenvalues is ex-
pressed by the conditions given in (2.5).

The scaled versions of the positivity conditions
are given in (3.4). Let us derive the inequality
(3.5) from these. First multiply the Schwarz in-
equalities (3.4f) and (3.4g) by an arbitrary o?:

F,0(~F, + F, - 2xF,,+2F ) >| aF,|?,
F,ofF, 2| aF,|?.

From these, we can derive the following linearized
inequalities:

F,+0f (= F,+F,-2xF,,+2F,) >2a|F,], (A5)
F,+F,>2a|F,| . (A6)
From (3.4c) and (3.4d), we get

Bz<%+2xF14_2F15>30, (AT)

where B? is another arbitrary constant. Combining
(A5), (A6), and (A7), we have

(F, +F,) + d’F, + 82 %‘H(az - B%) (= 2xF +2F )
22a(| Fy|+ [ Fpl) . (A8)

The choice a=v28 and 8 =v24 leads to (3.5).
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