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Several long-range force models of quark confinement are considered, with particular emphasis on gluon
exchange analogous to hnear and harmonic potentials. First, the nonrelativistic case is discussed and the
connection between the rise of the Regge trajectories and the power of the potential is derived. Then
semirelativistic and relativistic equations are considered. It is shown that in each case the rising trajectories
result from large quark-gluon coupling constants. It is also shown that an asymptotic power decrease of
bound-state form factors follows only if the interaction contains an additional Coulomb- or Yukawa-type part,
and only in the spacelike or the timelike domain. The significance of infrared cutoffs is examined, violations of
unitarity are pointed out, and the behavior in the static limit is discussed.

I. INTRODUCTION

Considerable experimental evidence has accum-
ulated in recent years in support of the idea that
hadrons are composite. Also the most popular
model of composite hadrons, the quark model, has
been successful in explaining several high-energy
phenomena. Yet all attempts to isolate and observe
the quarks have failed to date. Consequently John-
son's suggestion' that the elementary constituents
possibly never appear singly and instead are con-
fined permanently in bounded regions of space has
aroused widespread interest. The reason is that
if quarks are somehow confined, then an under-
standing of their physics necessitates an under-
standing of the implications of the confining mech-
anism for observable quantities.

Numerous approaches to the problem of [perm-
anent or temporary (high threshold)] quark con-
finement have been developed recently. All of
these approaches assume that quarks may be clas-
sified in triplets carrying SU(3} color, that had-
rons are color singlets, and that the sea of quark-
antiquark pairs carries no quantum numbers.
Many models assume that the quarks are effec-
tively light, others that they are heavy, and that
their relative motion is practically nonrelativistic.
Roughly speaking, there are three types of models. :
(a)' those based on the Nambu mechanism' in which
the unbinding of color nonsinglets is due to the
repulsive nature of the quark interaction mediated
by gauge vector bosons, whereas the binding of
the color singlets is due to a scalar field' (and is
unaffected by the gauge vector bosons}; (b)' those
employing classical field theory supplemented by
suitable boundary conditions such that the quarks
are cordined to finite regions of space called bags;
and (c)' " those employing a long-range force,
such as is provided by the classical simple har-
monic oscillator or similar potentials in the static

limit. [Not:e that type (c) models can be related to
those of type (a) if the energy needed to remove a
quark from a color singlet is proportional to a
power of its distance of separation. ]

In the following we are concerned with models of
type (c). The aim of our investigation is to under-
stand —in the context of various models —the com-
patibility between those phenomenological features
which (at the present stage) a dynamical model of
elementary particles is expected to exhibit. These
are particles classified as in the quar'k model,
rising Regge trajectories (equivalently a funda-
mental length related to their slope), the nonob-
servability of free quarks, power-law falloff of
form factors, and (presumably} scaling in the
scaling limit. Our investigation is mainly con-
cerned with confinement of quarks, rising Regge
trajectories, and the asymptotic behavior of form
factors. Incorporating unitary spin" and color is
assumed to be a technical problem which does not
destroy the general features of the models, but is
convenient to be ignored here in order to allow the
equations to be solved with relative ease. Also
scaling will not be considered because it is related
to the built-in compositeness of hadrons and so
follows along the lines investigated by Drell and
Lee" (in the context of Bethe-Salpeter-type bound-
state models).

It is generally believed that if physical (i.e.,
dressed} quarks exist, then they would have a
mass of several GeV because otherwise they would
(presumably} have been seen. But if they are
heavy, their binding has to be appropriately strong
in order to yield masses typical of hadrons. If,
in addition, this force is assumed to be not too
singular and to increase with increasing separation
(thus making it difficult for a single quark to
escape) their relative motion is essentially non-
relativistic. " The interaction is also expected to
be infrared divergent. However, if the confined
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quarks are not extremely massive, which is an
open possibility, the nonrelativistic model can no
longer be trusted. It is therefore not a priori
clear that a nonrelativistic or semirelativistic
approximation to the equation governing their rela-
tive motion is to be preferred. For this reason
we shall consider both relativistic and semirela-
tivistic models.

It is common knowledge that the nonrelativistic
harmonic oscillator leads to rising trajectories.
An oscillator type of interaction also implies quark
confinement because it is infinitely attractive and
its spectrum of discrete eigenvalues is complete.
However, as a model it is obviously too naive.
Numerous theories which have been discussed
recently suggest quark-quark interactions equiva-
lent to a linear potential, ' ""which may be as-
sociated with a dipole gluon propagator. In order
to obtain a better understanding of the type of in-
teraction required we consider in the following
various classes of power potentials, with particu-
lar emphasis on the relativistic generalization of
the harmonic oscillator because of its mathemat-
ical tractability.

Few models of quark confinement have (so far)
been investigated with regard to the asymptotic
behavior of form factors. In view of the consid-
erable experimental evidence favoring a power
decrease, it seems essential that this behavior
should also be exhibited by realistic models. In
the following we concentrate particularly on the
compatibility between the rising nature of Regge
trajectories and the asymptotic power decrease
of the form factors. We show that the latter re-
quires an additional Coulomb- or Yukawa-type
interaction and even then leads to violations of
unitarity in either the spacelike or the timelike
region. Of course, writing the quark-quark inter-
action as the sum of two terms, one representing
the (mysterious) gluon exchange, the other a cus-
tomary Yukawa force, is an arbitrary and so un-
satisfactory procedure. Ideally one would prefer
a single interaction which exists in two phases"
and which can then be approximated by these two
terms in certain limits. In the following we find
that the rising trajectories are invariably related
to large values of the quark-gluon coupling con-
stant (which therefore cannot have a small value
around zero), whereas the Yukawa force may be
treated as a perturbation. If the latter (or equiv-
alently the anomalous dimension of a renormaliz-
able interaction} is allowed to vanish, the asymp-
totic power decrease of the form factor is de-
stroyed. These observations strongly support a
two-phase model such as that discussed by Wilson"
in which the two phases correspond to strong cou-
pling and weak coupling with a critical region in

between. The similarity of such models with mag-
netostatics and the BCS theory of superconductivity
is particularly striking. In magnetostatics no free
magnetic poles exist; the force binding them into
pairs (corresponding to gluon exchange) is the in-
ternal force of the magnets. In the BCS theory of
superconductivity the superconducting phase is due
to a dominance of the quasiparticle-phonon inter-
action (phonon exchange corresponding to gluon
exchange) over the screened Coulomb repulsion to
give a net attraction for quasiparticles near the
Fermi surface. The reason why the BCS theory
works so well is that in real metals pair-pair cor-
relations are almost entirely due to Pauli prin-
ciple restrictions, rather than true dynamical
interactions between pairs. Consequently the sys-
tem can in lowest order be treated as if dynamical
interactions exist only between the mates of a pair.

This article is organized as follows. In Sec. II
we consider briefly the nonrelativistic case of
infinitely attractivepotentials and derive in par-
ticular the dependence of the rise of the trajec-
tories on the power of the potential. This case
demonstrates explicitly the connection between the
power of the potential and the resulting mass spec-
trum. It also serves a better understanding of the
physics underlying the relativistic cases discussed
later in the so-called static limit. In Sec. III we
consider semirelativistic and relativistic models
in the limit of infinite target mass. Here the equa-
tions are of the type used by Feynman et al. ,

"
Montvay, "and Rivers. ' We derive the Regge tra-
jectories and show that the Coulomb and Yukawa
interaction leads to a distortion of the lower part
of the rising trajectories obtained for the harmonic
gluon interaction. We then investigate the asymp-
totic behavior of the form factor of the ground
state of the two-body bound state. We show that
only if the Coulomb or Yukawa coupling is nonzero
will the form factor exhibit an asymptotic power
decrease in the spacelike region, but not in the
timelike region where it diverges exponentially,
thus violating unitarity. This result is then veri-
fied by an examination of the momentum space
equation. In Sec. IV we consider fully relativistic
models and arrive at roughly similar though not
identical results for the relativistic harmonic
interaction. We also consider various types of
interaction kernels and derive their counterparts
in four-dimensional Euclidean configuration space
and in the static limit. Finally, in Sec. V, we
summarize our conclusions.

II. THE NONRELATIVISTIC ANALOG

It is often instructive in particle physics to keep
in mind nonrelativistic analogs. For this reason
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we shall first consider briefly ordinary spinless
two-body nonrelativistic potential scattering. In
this case the motion of the center of mass may be
separated off and for spherically symmetric inter-
actions V(r) the relative motion of the two particles
is described by the radial Schrodinger equation.
It is convenient for our purposes to consider this
equation in the normal form

ment is that in a theory with states having infinite
energy, the Hamiltonian 8 is not a well-defined
operator. Using instead e ", the expectation value
for a quark-antiquark state with large separation
r may be written

&qqle "'Iqe&=&qle "'Iq&&pie "'Iq&+o(e """).
For mass m of the quarks we then have

d'[I[, L(l + 1)
dr2 r22 + k —,—V(r) /=0,

where, as usual,

(2.1)
e -z{r)t e 2m-t 0(e b{t )-rq

If nc- ~ this relation yields for the energy E(r),
consisting of kinetic and potential energy, the rela-
tion

E(r)t=b(t)r, i.e., E~r .

and S=c=1, reduced mass%=2 ~ The type of po-
tential we wish to consider first is

v(r) =g'Ir —roI', 1 ~s

or more specifically the cases

(2.2a)

(2.2b)

(2.2c)

We consider r, as being a separation of the quarks
such that for r«r, they can —to a reasonable ap-
proximation —be considered as moving freely,
i.e., independently of each other [as far as inter-
actions of type (2.2a) are concerned]. Thus, for
r«r,

V(r)=g'I —rol' 1 ——
0 ~

and the force acting between the quarks is roughly
constant. For quark separations r of the order of
r, the potential is approximately zero. For s &1
the force is also approximately zero for r of the
order of r„whereas for s = 1 the force is con-
stant as a function of distance (r &ro). For quark
separations r»r, we have

V(r)=g'r' .

For s &1 the force acting between the quarks then
increases with the separation, whereas for s = 1
it stays constant independent of their separation.
Thus for s =1 the quarks in the two-quark system
are necessarily confined permanently (independent
of the magnitude of the coupling g'}. Permanent
quark confinement (for finite coupling g') there-
fore requires a potential having s ~ 1. A linear
potential of the type (2.2b} has several phenom-
enologically appealing consequences as we shall
show. This applies also to its relativistic analog,
which we discuss later on. We might add here that
a linear total energy and so potential energy" may
be regarded as a natural consequence of locality
for isolated quarks of infinite mass as was argued
by Wilson' (see also Kogut"). Briefly, the argu-

d'{{[ l(L + 1) {,)+ 1- 2 g =0az z (2.5)

are [t[ "(z) = v z Z„,y, (z), where Z, is a Bessel
function. A solution satisfying the boundary con-
dition of regularity at r =0 is given by Z, =J„. For
l =0 the appropriate solution of (2.5) is sinz. Now,
the eigenvalues of the problem —and thus the Regge
trajectories —are determined largely by the oscil-
latory behavior of the solution g and so by its be-
havior in the region where k' —V(r) is positive,
as will be seen below.

Since sinz has zeros at z = nn, n = 0, 1, . . . , the
number of zeros in the interval (0, E), where E
is given by k' —V(E) = 0, is the integral part of
z(R)/w. In the case l &0 the zeros of [l[{0[ are
easiest to determine in the region of large Iz I,
which implies large values of n. The solution
[I[(r) satisfying the boundary condition [t[(0) = 0 is
obtained for

[I[ "(z}= v z J„,y, (z) .

For large Iz I the Bessel function has the asymp-

Our next objective is to calculate the Regge tra-
jectories for potentials of the type (2.2a). We
shall use a simplified WKB method and set

r
z(r) = [k'- V(r)]'t'dr

0

r(d V/dr)dr
[k' —V(r)] '"

1=[I' —v( )['~' +0([, [,~, . (2.31

The radial wave equation may then be written

d'{[[ l(l +1) 1
[lP —V( l["*)'

For sufficiently large I
k' —V(r) I the right-hand

side of this equation may be neglected to a first
approximation. The solutions of the zero-order
equation
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totic behavior
1/2-

1 1Jg, )2(z) = — cos(z —
2t z—27l)+0

i.e., z=(n+-,'I+1)z, where n=0, 1, 2, . . . . Using
(2.8), we may rewrite this expression in the form

li ~ i~)--' J &a*- v( )}"*s,
0

(2.6)

where correction terms are of 0(0) in k' or n It.
is known that a more detailed analysis" taking into
account terms of 0(Q) yields the corrected version

R
(n+-,'l +-,') = — [k'- V(r)]'t'dr+0 — . (2."I)

lT 0 n

We now insert in (2.7) the potential (2.2a). Then
taking r, =0, for simplicity, we have

A1+ 2/~ 1

(n+ 'l+-,')= — -(1—t)' 't' ' 'dt
Sg

1+0
n

sg" ' z r(-,'+ 1/s) n

Thus

2 r(-,') r(1/s) k""
2g ~ + +0

2 r(zm-+ I/s) sg"'w

(2.8)

For the linear potential (2.2b) this becomes

3 4 k' 1
u„(k) = —2n ——+ —,+0 — (r, =0), (2.9)

2 3 g w pl

and for the oscillator potential (2.2c}

which is periodic for real values of z. Clearly,
the number of zeros in an interval (0, 8}and hence
the eigenvalues are given by

1 1z ——,lz--, z=(2n+1)—2'

the energy k'. From (2.8) we see that the linear
potential yields the most rapidly rising trajectory
(considering only integer power potentials r',
s &0). The oscillator potential (2.2c), of course,
yields the linearly rising trajectory, as is well
known. Regge trajectories for the harmonic po-
tential and related versions have been discussed
by several authors and so need not be considered
in further detail here. " Its spectrum of infinitely
many pure bound states for k'&0 is, of course, un-
physical. In order to make it physically meaning-
ful it is necessary to imagine the introduction of
a deviation of the potential from the pure r' be-
havior which introduces sufficient nonanalyticity
so that the "bound states" become resonances (i.e. ,
all except possibly the lowest for energies &2M),
a continuous spectrum thereby being introduced.
This problem is related to the infrared divergence
and thus to the nonexistence of the Fourier trans-
form of the power potential. It can presumably be
cured by taking into account vacuum polarization
effects which have a screening effect on the bare
power potential. This aspect will be discussed in
more detail later on.

Regge trajectories for Yukawa potentials have
been discussed in considerable detail in the litera-
ture. It is well known that they do not rise linearly
but fall off rapidly with increasing energy; this
applies also in the strong-coupling limit. " How-
ever, as pointed out in the Introduction, a Yukawa-
type force (i.e. , particle exchange) seems to be
responsible for the power-law falloff of form fac-
tors and so vertex functions. It is therefore of
interest to understand the behavior of wave func-
tions and Regge trajectories when the potential
contains a harmonic as well as a Yukawa-type part.
Unfortunately, however, the radial wave equation
is difficult to solve except when one of the poten-
tials may be neglected. We therefore do not pur-
sue this case further except later in the context
of relativistic models.

There are several other types of potentials which
are of interest in this connection. One which has
recently attracted some interest is a potential
with a finite range singularity, i.e., a potential
Vz(r} which is singular at a point r = X, where

A, &0 or ~. The example discussed by Filippov"
is

3 A2 1
a„(k) = —2n ——+—+0 — (ro=0) .

2 2g il
(2.10) V (r)=— (2.11a)

In the latter case our result agrees in fact with
the exact expression (which can be derived from
the complete solution of the differential equation
as in the next section).

We now interpret the results (2.8), (2.9), and
(2.10}as being applicable over the entire range of

(with the distribution or principal value prescrip-
tion when the Fourier transform is calculated).
Such a potential can be obtained by taking the static
limit of the configuration space representation of
the superpropagator of a nonpolynomial field the-
ory. Thus, for r+&,
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g2 y2 y2
V„(r) =+—1+—+ —+ ~ ~ ~ 8(A —r)

g2 g2 y2 2

1+—+ —+ ~ ~ ~ 8(r- P.) .r2 r2 y2

(2.11b)

We observe that for y «& the potential behaves
like a modified harmonic oscillator. Its eigen-
values and Regge trajectories (which can be easily
calculated perturbation theoretically to any desired
order in I/g) follow from the condition of continuity
of the wave function at y = ~ or, approximately,
from (2.10):

o.„(k) =-2n ——+ +0(go) .
$2g2 g2

2 2g
(2.12)

The quark is now trapped inside the range deter-
mined by the finite distance singularity. We ob-
serve that for ~ approaching zero the linear rise
of the trajectory is lost, the potential thereby re-
ducing to one of centrifugal type.

Another potential we might mention is
2~2

V~(r} =+g'r'e ""

, (-g'e ~"') .
8 p.

(2.13}

For large values of g' and small values of p' the
Schrodinger eigenvalues for this potential are
easily calculated by the methods used in Ref. 24.
One finds an expression similar to (2.12), which,
of course, reduces to (2.10} in the limit p-0. We
return to a discussion of these potentials in the
relativistic context later on.

III. SEMIRELATIVISTIC AND RELATIVISTIC MODELS
IN THE LIMIT OF INFINITE TARGET MASS

A. A semirelativistic model with rising trajectories

Guided by the nonrelativistic considerations of
the preceding section we now consider a dynamical

model in which quarks interact via a neutral vec-
tor-gluon field V„(x). We assume that the quarks
have a bare (unrenormalized) mass m and leave
open (for the moment) the question as to whether
the physical mass of a quark is meaningful or not,
i.e., whether quarks do arise as asymptotic states
(and so are only temporarily confined) or not. The
equation for the spin-& quark field q(x) may then
be written" (using the metric g» = —1, g;; =+ 1 for
i = 1, 2, 3)

(iy" 8~+m) q(x) =gy" V„q(x), (3.1)

t'.0IT(e ( ')q.( ))lq &=x. (t) (3.2)

where n and P are spinor indices and the expres-
sion on the right-hand side shows the separation
of relative and center-of-mass coordinates
t'=x-x', rl=-,'(x+x'). We assume now that the
gluon field may be replaced by a c-number poten-
tial which depends only on the relative coordinate

Then rewriting (3.1) in terms of t and q and
using (3.2) we obtain (ignoring a 5 function)

[+2P"y +iy" 8, gy" V„((-)+m]X(()=0 (3.3)

as the equation describing the relative motion of
the quark and antiquark. Multiplying the equation
from the left by the differential operator with m
replaced by -m, it becomes

where g is the coupling of the gluon to the quark.
The equation, describing the motion of one quark
in the limit of infinite mass of another quark is,
of course, analogous to the equation describing
the motion of a charged spin- —,

' particle in the field
of a force. Like the Bethe-Salpeter amplitude, the
wave function for a quark-antiquark pair of total
momentum I'„ is given by

[-» P'-g'V'+8'-m'+gP V-iP 8+2igV 8 —ig(y8„V„)y" ]lt(t') =0 . (3.4)

In general this equation is difficult to solve. We
therefore make some plausible approximations
which are analogous to thoseused inthe discussion
of the nonrelativistic case. In fact, we will assume
that both l P& l and g are considerably larger than
1. In this domain Eq. (3.4) may be written

[--'P'-8'V'+8'-~'+ZP V]X($) =0(IP„l,g),
(3.5)

where X is now proportional to the unit matrix;
the left-hand side of (3.5) represents in effect the

equation for scalar instead of spinor quarks. It is
this equation which we shall study in detail in the
following.

In solving (3.5) we could proceed in two (effec-
tively equivalent) ways. In a three-dimensional
configuration of the hadrons we could consider V

as a function of the three-dimensional radial dis-
tance y given by

r'=+('-(P $)'/P'

in the rest frame of the hadron (considered as the
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bound state of a quark-antiquark pair). In this
case the time dependence of }((E}is first separated
from the configuration space dependence, and then
the resulting three-dimensional equation is solved.
Alternatively one may use the four-dimensional
treatment familiar from its application to the
Bethe-Salpeter equation. Here we shall use the
former method because it is more appropriate for
the treatment of the nonrelativistic potential which
we shall use. Thus, we go to the rest frame of
the hadron (P =0) and write

e ""
Vo=- n +Pr, &=0 . (3.6)

within our approximation of ignoring terms of
O(~ P„(,g) for quarks of spin —,'. Also, we have set
b = P,/2. Substituting into (3.7) the potential (3.6),
we have (for p=0)

dp 2 d|I) 2 C
dr' y dr l

y'+ ——+ Ar +B+—(=0 (3.8)

where

A=g p

B= g2 m2 2~Pg2

C =g'o, ' —I(l +1) = —I (I. +1) .

(3.9)

Also we have neglected on the left-hand side the

Here the first part represents the (nonrelativistic)
exchange of a spin-zero particle of mass p., which
we will subsequently assume to be zero (although
it is not difficult —in the context of the equation
used below —to derive a perturbation expansion
in rising powers of p}." The second term again
is the linear potential representing the gluon ex-
change between the quarks. Inserting this linear
potential as the fourth component of the four-vec-
tor potential into the Dirac equation we are con-
fronted with the problem of the Klein paradox for
large distance. The crux of this difficulty is that
as the potential and thus the energy become larger
and larger, creation and annihilation processes
(vacuum polarization effects) become increasingly
important. These effects are, however, not in-
cluded in our simple treatment of the Dirac equa-
tion. We shall indicate later that (much as in
quantum electrodynamic s) vacuum polarization
effects screen the bare propagator potential, so
that the inconsistency of the Klein paradox is re-
moved when these effects are included.

Substituting (3.6) into (3.5) and separating off the
angular part of the wave function we obtain for the
radial part of }t, i.e., g(r), the equation

d'y 2 dy I(l +1)
Nfl p Qg

+ ——+ +(h-gV)'-m' /=0
(3.7}

term

2$g ——Prr
which contributes significantly only in the transi-
tion region, and so does not control the behavior
of the solutions in the regions around r =0 and
r =~ in which we are primarily interested. In
principle this term could be dealt with perturba-
tion theoretically (in a suitable range of a and P)
like the Yukawa terms in p, .

Our next step is to solve Eq. (3.8}. Its general
solution in any finite region of r, 8, and g which
satisfies the condition of regularity at the origin is
found to be (apart from an over-all constant)

g(r) =z e '/'4(a, b; —,'z'), (3.10)

where we have set

z (2igl/2}1/2 r
and

1 3 BI + — — .A, , &=I+—.

(3.11)

(3.12)

The function I (a, b; s) is the confluent hypergeo-
metric function which is defined as any solution
of the equation

d'4 dcs +(b —s) —-a4 =0 .ds' ds

3 BI =-2n-— (3.13)

We observe that since B is proportional to the
square of the total energy 8', the trajectory
a„($}=I„, which is obtained by solving Eq. (3.13)
for l, also rises with the energy. It is clear from
the relation between / and I that sufficiently mod-
erate values of the coupling constant n distort the
Regge trajectories generated by the pure gluon
(i.e., n =0) interaction in an appropriately mod-
erate way in the region of small l. Hence the
Coulomb (or more generally Yukawa) part of the
interaction does not destroy the rising behavior of
the trajectories. However, from (3.13) we also
deduce that the gluon coupling A cannot be zero;
in fact it must be large enough in order not to
represent simply a perturbation on the Coulomb
potential, and so to destroy the linearly rising be-
havior of the trajectories.

We note here in passing that in the context of a

In analogy to the familiar treatment of the hydro-
gen atom, the eigenvalues and thus the Regge tra-
jectories are determined by those values of the
energy for which

a=-n, n=0, 1, 2, . . .
l.e.

y
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relativistic wave equation the Coulomb potential
gives rise to anomalous dimensions. This can be
seen by looking at the behavior of the wave function
near the origin which is

y(+) +& +-1/2+[&(&+ o+1/4 E-a f

and is seen to depend on the coupling constant.
These anomalous dimensions appear in general
whenever the interaction has the same dimension
as the kinetic energy term, i.e., for renormaliz-
able interactions.

Of course, a self-consistent scheme requires in
addition to the quark equation with gluon and meson
sources, also gluon and meson equations with
sources involving the quark current. However,
since such a system of simultaneous equations is
vastly more difficult to solve than our equation
above, we will not consider these here. Still, for
the discussion in later sections, it is useful to
keep in mind that the linear potential (2.2b) satis-
fies the equation

like interaction (i.e. , the scalar quarks of bare
mass m interact through exchange of scalar par-
ticles of mass p) in addition to their interaction
with gluons, which we assume to have the form
of a four-dimensional scalar harmonic potential
in configuration space. Then the equation of mo-
tion of a quark is given by

( —a +m ) g(x) = U(x) g(x), (3.14)

4'(x„x,) =(0
I T(q(x) &(x'})

I q ~)

=g($) e (3.15)

where the last expression shows the separation of
relative and center-of-mass coordinates. Pro-
ceeding as before, i.e., writing

where v(x) represents its relativistic interaction
with the scalars and gluons.

The wave function of the bound state of two scalar
quarks of total four-momentum P„ is given by

Then, since

we have

v' v'IrI = —8xa(r) .

In three dimensions the equation of the free gluon
y (corresponding to the linear potential) is thus

2x =0

One may therefore speculate that in four dimen-
sions the equation of the free gluon is given by

( '=a„a~)

The propagator of the free gluon is then

(I/&')'

however, its configuration space representation
is not the four-dimensional IrI, as will be seen
later, although Ir I may be regarded as its static
limit in the sense of the above equations (corre-
sponding to the relationship between the spinless
particle propagator and the Yukawa potential). In
the case of the harmonic potential (2.2c) it is more
difficult to calculate the propagator. We return
to this problem in Sec. IV.

B. Another model with rising trajectories

We consider a second semirelativistic example.
We ignore the spin of the quarks and assume a P'-

I(- a, '+m') +(- a, . '+m')]4 (x„x,)

=2v(x, —x,)4(x„x,) . (3.17)

This equation is sometimes called the Goldstein
equation and the bilocal field 4 (x„x,) the Goldstein
field. The equation was used by Feynman et al."
and Rivers. ' For the bound-state solution of the
form (3.15) we then have the equation in the rela-
tive coordinates („

(- 2a'+-,' P'+2m') 4(() =2~(F) g($), (3.18)

which is identical with (3.16) except for the term
iP ~g in that equation. We shall ignore this term
in the following, and so work effectively with

(3.18).
We assume now, as mentioned earlier, that the

interaction U(t') is the sum of a P'-like scalar ex-
change and a harmonic-oscillator-like gluon in-
teraction. Also, we work in terms of a four-di-
mensional Euclidean metric. Then

(3.19a)

and in the Wick-rotated four-dimensional Euclidean
space, with r = (g;, $; ')' ', $, = —i(„

and acting on 4(x„x,), we obtain the equation in
l.e. a

(- a'+-,' P'+m'+i P a) P(() = v(]) q($), (3.16)

assuming that U(x) = U(,"). A slightly different mod-
el equation for the bound-state wave function is ob-
tained by writing it as a two-particle wave equation
containing a coupling potential



1110 HARALD J ~ W. MULLER-KIRSTEN 12

and

V($) —V(r) = ' for p &0

(3.19b)

a = z (L'+2) +

b=L'+2 .
(3.26)

V(t')- V(r) = +, for g=0.1

In view of the O(4} symmetry of E(I. (3.18) we can
expand the solutions (j)(r) in terms of four-dimen-
sional spherical harmonics HI, , which we write

Hc( ((I), e, p) =&c((sing)'Ci ((cos(j') E',„(8,(j)),

Of course, the Regge trajectories are again de-
termined by the condition of normalizability of the
bound-state wave function, i.e., by

a= —n, n=0, 1, 2, . . .

or

(3.20)
L' = —2n —2 —,(m2+z P')2 & 2

2i (3.2V)

where

(n(, (
(I (L

so that

jI 2'
sin'/de sin8de d(f) (H i' =1 .

0 0 0

Separating off the angular part of the wave func-
tion, we are left with the equation for the four-
dimensional radial wave function (j)z(r), i.e.,

d' 3 d I(L+2)
dy' y dy y'

+f 'r' —4 P' -m' (j)z(r) =0, (3.21)

where physically +if= if i, i.e., f is pure imagin-
ary.

For simplicity we consider explicitly again only
the case p.=0 in (3.19). Thus, setting

C. Form factor for two-body bound states

Our next objective is to obtain the asymptotic
behavior of the form factor shown in Fig. 1 of the
two-body bound state at large momentum transfer.
We consider only the spinless case and assume
that only one particle is charged. In this case the
charge form factor P,(q') is the convolution inte-
gral of the ingoing and outgoing bound-state wave
functions in momentum space, "i.e.,

E,(q') = d'k (C)*(k) g(k —q), (3.28)

for which the confluent hypergeometric function
becomes a Laguerre polynomial. Again the Cou-
lomb interaction or, equivalently, the anomalous
dimension, leads to a moderate distortion of the
Toiler poles L = o(„(P') and so of the Regge parent
(m=0) and daughter (m= 1, 2, 3, . . . ) trajectories
I = o.„(P')=L —m in the region of small l. And
again the trajectories rise linearly with the square
of the energy, i.e., t= —P2.

2

L'(L'+2) =L(L+2)—

we may rewrite E(I. (3.21}

(3.22)
where

()" -'&* *)('(&)=J (lt —)") )()")&'k',1(3.2())

d2 3 d L'(L'+2), + ———,--,'P'-m'+f 'r' Pz(r} =0 .Ldy2 y dy y2

(3.23)

and

(a)= 2, J (()e "'d'(

(3.24)

where

(3.25)

The regular solution of this equation may be
written down from our knowledge of the solution
(3.10) of E(I. (3.8). Thus, taking into account the
different coefficient of the first derivative, we
have (apart from an over-all multiplicative con-
stant)

(j (z) =z e ' ' 4(a b. -'z')

[and correspondingly for g(k)]. We observe that

FIG. 1. Triangle diagram for the electromagnetic
vertex. The heavy line corresponds to the infinite-mass
limit for one constituent.
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Eq. (3.28) is simply the Fourier transform of the
product of the conf iguration-space representations
of the respective wave functions, i.e.,

l t " ' dt J, (a 't ) e
0

F,(&') = 2, it*(g)q(g)e""d'~ .1
(3.30)

(a/2P)" F((v+ tL)/2) + p,

2P" I'(v+ 1} 2 ' ' 4p'

Since we know the solutions P(t') for the models
described above, we can calculate the form factor.

We have

we find

- „) A 2 F((L'+4)/2) L'+4 k'
(2ii)' (if)' 2 ' ' 2if

P(5) = Q &Li (0, 6, 4) it'L(r) .
Llm

For simplicity we consider in the following only
the ground state of the spinless composite particle.
Thus n=0 and L=l =m=0. Then

From (3.22) we have

I /2
L'=-1(') 1-

4m

= —g'/8z' for ~g'~«47i' .

(3.34)

(3.35)

4

4(k) = g 2, . g«e "'&..(0, e, 4}0 (r)
Lim /= i

400 y' gy'sjn

gyes

(2w)'

xsinsdeditie """' itiL=0(r),

(3.31)

where

$, =it„r'= g t;', and k= vk

Also, in writing down this expression we have
chosen the direction of the Euclidean vector k„
parallel to the 4-axis, so that the angle between
k„and $„ is g. Performing the angle integrations
in (3.31) with the help of the relation

(z/2) iiccosA ~ 2!IJ', (z}=
&) (,}

e sin

and

4(a, b; z) = (-z) ' 1+0I'(b}, 1
F(b -a) z

(3.36)

for Re(z) ——~ .

Hence for k'-+ ~ (i.e. , spacelike with the metric
we are using} and since if =

~ f ~
[cf. (3.21}J

In order to ensure the regularity of the bound-state
wave function at the origin in configuration space
we must choose the upper sign in (3.35) (implying
L'=0 for g'=0).

The large k' asymptotic behavior of the wave
function now follows from that of the confluent
hypergeometric function. We quote the latter ex-
plicitly in order to exhibit the source of the dif-
ferent asymptotic behavior of i'(k) in the spacelike
and timelike regions. Thus

C (a, b; z) = —e'z' ' 1-+0
I'b) . . . 1

F(a)

for Re(z)-+~

we obtain

[Re(v+ —,') &0], (3.32) A 2 F((L'+4)/2) k'
(2ii)'(if}' F(- L'/2) 2if

OO

iti(k) = ", r' dr J,(kr) itiL, (r} . (3.33) x 1+0 (3.3'la)

Inserting here the solution (3.24) for itL (note that
this solution incorporates the boundary condition
of regularity in configuration space), we have

(2tf )( i/2) L'

it(k) =ADO, r "dr J( rk)

xe & /2~i @(a, b ~ ifr )

Since we are considering the ground state for
which + = —n=0, the confluent hypergeometric
function under the integral is simply 1. Then,
using the formula

whereas for k' &0 (i.e. , timelike)

Aoo 2 ( k ) ~ 2/2i/ 1
0( ) (2v)2 (if)2+(I/23L' k2

(3.3"Ib)

Thus in the spacelike region of k', the wave func-
tion falls off asymptotically like a power, whereas
in the timelike region it diverges exponentially.
We also observe that if we set the Coulomb cou-
pling g (or the anomalous dimension} equal to zero,
we have [cf. (3.35)] L' =0 and the confluent hyper-
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geometric function in (3.34) reduces to an exponen-
tial. Hence for g-0

P(k) oo e k/2-&f

(2w)' (if)' (3.38)

Thus (since if =
If I ) the wave function now falls off

exponentially in the spacelike region, the diverg-
ing behavior in the timelike region remaining un-
affected. The discussion of the momentum space
equations given in the next section will verify these
findings.

Finally we consider the form factor itself. It is
clear from its definition (3.28) that its asymptotic
behavior in &' follows immediately from that of
P(q), i.e., for q'-+~

F (q2) (q2) 2 -( 1 /2)2 (3.39a)

and for g'-- ~

i((k) = 1 +f 2]2 e (k' 5 d4)
(2w)'

2
=

(2„)4k2
- f '

(:Ik ' ~'(k) .

Equation (3.29) may then be written

2

(k'+4 P'+m2))I)(k) =
)4 „,2

(3.40)

Thus here (also in order to make the discussion
of the Bethe-Salpeter equation in the next section
more transparent) we will discuss briefly the equa-
tion considered above in its momentum space rep-
resentation together with some related problems.

We consider Eq. (3.29). The momentum-space
representation of the interaction defined by Eq.
(3.19) is

F2(q') -(-q') /' exp(-q'/2if) . (3.39b)
—f '

Cl 2 &'(k —k ') f(k ') d'k '

The Coulomb or Yukawa interaction thus serves
to ensure the (physically plausible) asymptotic
power falloff of the form factor in the spacelike
region, but not in the timelike region where it
diverges exponentially. Of course, this power
falloff in the spacelike region is simply a reflec-
tion of the regular power behavior of the bound-
state wave function near the origin in configuration
space, and this is determined by the Coulomb or
Yukawa interaction. However, it is not completely
trivial to see that this power behavior is not
swamped by an exponential due to the harmonic
gluon interaction. On the other hand, the diver-
gent and thus unitarity violating behavior in the
timelike region is related to the infinite rise of
the Regge trajectories. The model shows that this
infinite rise is unphysical.

D. Rehtivistic wave equations in momentum space

The Bethe-Salpeter equation is mostly treated
in the momentum space representation. Consid-
erable insight into its tractability and into the
plausibility of approximations used in solving it
is often gained by comparing it with its counter-
part when one of the particles has infinite mass.

or (3.41)

(k 7 4P2+m -)2iI)(k) = -f 2 0» 2 P(k} +

Using the relation'9

1
0»

(k k )2
—-4w & (k —k'),

we can rewrite the equation as

(3.42)

2

(2, '(»*+-,'2" m')4(k)=-, f* , * ())()
4n

x iI)(k) . (3.43}

0(k) = Q Oi( I k
I )&i) (4, s 4)

Llm

and using the relations

We investigate the equation a little further in the
form (3.41). After the Wick rotation the equation
possesses O(4} symmetry in the four-dimensional
Euclidean space of O'„. The solutions therefore
transform like the four-dimensional spherical
harmonics HI, , (g, 8, 4)), which have been defined
earlier. Thus, setting

(Ikl Ik I)=
(k (

+ s(lk I Ikl)+ (~( + s(lkl Ik I)

s.u'

)
yI

) L 1 +Lcm kv ~v 4 +L/m 0 s ~
y 0

nc= —l

we obtain

(3.44)
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2
(&* ~ !8+m*)c4(l&I)=-f*D,(I&I&u,(l&I) B,~„ fa(l,&II+, I)+'"+ P, l'l& I),' (3.45)

we obtain the radial form of Eq. (3.43):

(3.47)

D (Ikl)(k'+lP'+m')O (Ikl)=-f'D '(Ikl)0 (lkl)
2

(3.48)

We consider Eq. (3.45). Dividing by f' (the gluon
coupling has to be large, as pointed out earlier)
we may write the equation

d' 3 d L(L+2) k'+~ P'+m'
(,f)2 Az(l I)

=0 —, . 3.49)

where

1 s 8 L(L+2)
z(l I)-=IkIs sIkI 'sI

(3.46)

Using the relation

I

(3.50) leaves uncompensated on the right-hand
side of (3.49) the contribution

2

v($)=, +f'$', (3.52)

which corresponds to a near harmonic interaction.
-g', of course, has the meaning of a potential
well parameter. The Fourier transform of (3.52}
is

(3.53}

xdk'II&;I(lk'I} .

This integral may be evaluated in terms of incom-
plete I functions which can be reexpressed in
terms of confluent hypergeometric functions. How-

ever, the next step of calculating the first-order
perturbation corrections to g~" and its eigenvalue
are complicated. We therefore do not go into fur-
ther details here. Of course the fourth-order dif-
ferential equation (3.48) has the same solution, as
is easily verified.

Another example of interest is the potential

The solution p&~" of this equation with the right-
hand side zero may be read off Eqs. (3.23) to
(3.26). Thus

and the equation describing the relative motion of
the quark-antiquark system is

P~'(Ikl) =z e ' "* 4(a, k; z'),
where

(3.50} (k' + 4 P +m ) p(k) =
2 g(k) —f CI„ g(k) .

(3.54)

z = (2/if }'~'
v k

a = z (L, + 2) + (3.51)

b=L+2 .

The eigenvalues are again given, by the condition
that the infinite Kummer series in (3.50) be broken
off after a finite number of terms, i.e.,

a=-n, n=0, 1, 2, . . .

provided z2 & 0, i.e., k & 0 for if =
If I

& 0 to ensure
normalizability of the wave function. We observe
that this condition is identical with (3.27) in the
limit g-0 (the case under discussion here) We.
also observe that for 4'- —~ the bound-state wave
function gz(k) diverges exponentially as seen in

the preceding section. The next step in solving
(3.49} is clearly to develop perturbation expan-
sions in rising powers of g'/f ' for both the solu-
tions and eigenvalues. The zero-order solution

Thus in this case one obtains a simple equation,
the solutions of which can be read off Eqs. (3.49)
and (3.50). We note in particular that the potential
well does not lead to an asymptotic power behavior
of the electromagnetic form factor of the bound

state.

IV. BETHE-SALPETER MODELS

A. Tractable, approximate form of the Wick-Cutkosky

Bethe-Salpeter equation

For the discussion which follows it is useful to
have for reference a standard equation which is
known to be easy to solve. It is well known that
the Bethe-Salpeter equation of the %'ick-Cutkosky
model (in which the exchanged scalar particle is
massless) can be solved explicitly in the ladder
approximation, even in the case of unequal mas-
ses. Explicit perturbation solutions have, for
instance, been given in Ref. 30. However, for in-
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vestigating certain principal properties of vertex
functions it is much more convenient to use sim-
ple, but approximate forms rather than compli-
cated complete and explicit solutions. For this
reason we derive first a more tractable approxi-
mate form of the Wick-Cutkosky Bethe-Salpeter
equation, which in standard notation reads

(P, q) = 4„,,
I'(P', q)d'P'

[(p'+!q)*+m'] [(p'- mq)*+m*] (p -p')',
(4.1)

where P and q are defined in terms of the momenta
P„P, of the external scalar particles of mass m:
P= —,(P, —P,), q=P, +P, . The equation may be re-
written

I'(p, q) [(p +-q}'+m '] [(p —-'q)'+m']

1(p q}dP
(4 2)4v'f (P —P')'

where

n„„=n„i(,, —n„+1+n =-n +O(q'} (4.7)

where n„are the Taller poles. [Note that the tra-
jectories (4.7) rise linearly with q' only for I q'I
&4m', see Ref. 30.] These eigenvalues (deter-
mined by the vanishing of f'I. in the limit P'-~,
and so for q'«P') are in fact identical with those
calculated from the exact equation for small dif-
ference between the masses. The differential
form of E(I. (4.4} follows immediately with the
help of (3.42):

a,mr(P, q)(P'+m'+ —'q')'+~I'(P, q) =0. (4.8)

The radial part of this equation is, of course, (4.5).
In the following it is also useful to have for com-

parison the configuration space equations obtained
by Fourier transformation of the above. We have

where

n =-,'[1+(I+X)'(']

The Regge parent and daughter poles n„„, n, p. =0,
1 2 are given by

r(p, q) = r(p, q)[(p+-.'q)'+m'] [(p —,'q)'+m ] .

Here

[(p+ q)'+m') [(p ——,'q)'+m'] = (p'+m'+~q')',

provided

(-&&' +-'q'+ m')'I'(h) = —,I'(5),

where X =g'/4v' in our earlier notation and

('((', s) =
2, .f ('(()

(4.9)

(p q)'
(p'+m '+ ' q')' (4.3}

Expanding the solutions of (4.9) in terms of four-
dimensional spherical harmonics one obtains the
radial equation

This approximation is valid if q &&P or P'«q .
On Wick-rotating E(I. (4.2) we obtain [Dg(r) -m' ~q']'&L, (&) =—"-, Pq(&) . (4.10)

I (P, q) (P'+m'+ kq')' =
4,, (4.4)

(Euclidean metric understood). Our approxima-
tion has also made the equation invariant under
rotations in the four-dimensional Euclidean space
of P. Hence expanding I'(P, q) in terms of four-
dimensional spherical harmonics, we obtain the
radial equation in momentum space, i.e.,

+m +4q ]
(4 5)

The close connection between this equation and
(3.48) is obvious. In fact, for f= 0 the latter fol-
lows from (4.5) if we replace I'z, by I'I, and go to
the limit in which the mass of one of the external
scalar particles is allowed to approach infinity
together with X/m remaining finite and nonzero.
The solution of E(I. (4.5) is given in terms of the
hyper geometric function

I' (I(l)=(PI P(ri, l —ri;I ~);. . . , , (46)
P +W +4q

In the limit of infinite mass of one of the external
particles (as considered earlier) the kinetic ener-
gy represented by the operator D~(r) may be con-
sidered to be negligible compared to its mass, and
so the fourth-order differential equation reduces
to a second-order differential equation. It is easy
to convince oneself that the extreme simplicity of
the equations of the Wick-Cutkosky model in mo-
mentum space is due to the relation (3.42), which

says that the Wick-Cutkosky potential is the
Green's function of the D'Alembertian.

B. Interaction kernels

We have seen that the three-dimensional linear
potential suggests the gluon propagator (1/h')'.
The propagator corresponding to the three-dimen-
sional harmonic potential does not follow from a
similar simple reasoning. It is therefore sugges-
tive to consider four-dimensional generalizations
which simulate rising three-dimensional poten-
tials, e.g. , in the approximation in which retar-
dation effects are neglected. Alternatively one
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TABLE I. Four-dimensional Euclidean Fourier transforms FU& (r) of interaction kernels
U„(r).

pK& (pr)
(a)

47(' r

{b) p, "r"K (pr)

(C) e jf2r2

(d) e ~r

~-jf r
(e) r

(f) r2(pr)K& (IL(,r}

U„(r) FU) (r)

1
) )

RedL(, 0, k 0

(v 2 p)2" 1 (v+ 2)
2~ 2{k2 +p2)fr+2

Step& )Rev[ —1, Rep& [Imk[)

4 (p 0 [a gk) g )(47j) p

3
2 { k 2)p/2 {Re@&

~
Imk

2n' {p, +k )

1
4 2 (~2 k 2)3/2

48~2 (P2 k 2) 1 2
7j2 (k2+ 2)5 4~2 ~ I =0 ~ ~ ~ k2+~2

(I&/t I &l, ~~O)

(g) r(pr)K&(pr)

+ ——~ J( — (pw 0)

[ p,
& (pr) —p'K& Q'r)]

1
( ~ t)

{2g)4(k 2 +@2)(k 2 +~I2)

(i) (lnr) 8(p -r )
1 1—)L2(1m@)J2{p.k)+kg. J, (j k)

+2J0gk) -2 (0 &P (~)

may consider classes of four-dimensional Euclid-
ean potentials which can then be related to the
problems of quark confinement and rising trajec-
tories. This is the approach we shall follow here.

Now, in finding the momentum space represen-
tation of the four-dimensional linear or harmonic
gluon interaction, one is immediately confronted
with the fact that the four-dimensional Euclidean
Fourier transform of r or x' does not exist. It
is therefore necessary to use a method of infra-
red regularization, or the well-known artifice of
differentiation with respect to a parameter which
(if permissible and desired) is allowed to approach
zero at the end of the integration or, in some ca-
ses, the trick of absorbing a vanishing mass into
an infinitely large coupling constant. From the
study of the Veneziano and other dual models it
is well known that infinitely rising linear Regge
trajectories (due to potentials increasing without
bound at infinite separations) do not lead to ampli-
tudes satisfying unitarity. Thus the introduction
of a mass parameter which has a damping effect
on the potential and wave functions and which is

not strictly zero may in fact be desirable in order
to restore unitarity (which then would also have
to imply a bending over of the Regge trajectories
at highest energies).

In the following p. is the mass or reciprocal
length parameter which is in some way a measure
of the finite extent of the quark-confining region
of space. Of course, if one attributes to p, such
a significance, then the meaning of the limit Ij, -0
is anything but clear. It may be argued, however,
that this difficulty is related to the fact that p. it-
self (i.e., the damping) should follow from the un-
derlying dynamics of gluon confinement (by vac-
uum polarization). Unless one imposes further
constraints there is, of course, in general, an
unlimited number of possible p, -dependent momen-
tum space representations of the interaction which
are such that their Fourier transforms reduce to
or behave like r or r' in the limit of vanishing p. .
This nonuniqueness of the momentum space rep-
resentation is inherent in our phenomenological
approach (as also in the analogous work of Bender
et al. '), which does not include an equivalent and
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over-all self-consistent treatment of the gluon
wave equations together with the corresponding
problem of gluon confinement. Such an over-all
consistent treatment —as, for instance, the field-
theoretic model discussed by Blaha'0 —would lead
naturally to a damping of the (e.g. ) three dimen-
sional linear potential at large distances due to
important vacuum polarization effects (i.e., gluon
propagator self-energy insertions) which result
in a powerlike asymptotic decrease of the poten-
tial thereby avoiding a violation of unitarity.

In Table I we list several interaction kernels
g'U&(r) together with their four-dimensional Eu-
clidean Fourier transforms g FU&(r) defined by

PU(r) =
&, , J d'5e "''U„(8

3 15(k' —6 ')
8 p 2rr'(k'+p')' ' 2rr'(k'+ir')"'

15
2' 2)7/2 t

m (0

which is independent of p, .
Quark and gluon confinement models involving

the free gluon propagator (1/k')' have been dis-
cussed by several authors. " " From (h) we see
that this propagator would arise in the limits
p, , p. '- 0. Can we take this limit in the configura-
tion space representation? For p. , p.

' e 0 but r - 0
one finds from the expansion defining the modi-
fied Bessel functionK, (pr) the following behavior
of Uq q (r):

1 r'dr J,(kr)U„(r)
7l 0

(4.11)

with the momentum space representation

(here d'$ = Q4r,d)r}, where we have used Eq. (3.32).
For orientation purposes we include in Table I also
the well-known case of the Yukawa potential (ex-
change of spinless mesons}.

For p(p, ') positive and nonzero each of the ker-
nels given in Table I has a decreasing behavior for
r- ~ I recall that K„(x)= (rr/2x)'r'e ' for x-+~].
The conditions of validity stated in Table I are
those which result from the integration; in sever-
al cases they may be relaxed to allow the limit
p, —0 to be taken. The results in Table I allow
the following observations. Constructing poten-
tials along the lines suggested by the well-known
case of the Yukawa potential, we see that the lin-
ear potential (g} (i.e., linear for p, - 0) has a most
unpleasant momentum space representation,
whereas the Fourier transform of the harmonic
potential (f) (i.e. , harmonic for p, - 0) looks sur-
prisingly simple (our expression has the same
form as that quoted by Sundaresan and Watson" ).
The propagator (1/k'}' implies, of course, a
strong infrared divergence which is made worse
by a multiplicative factor 1/p, ' in the configuration
space potential which cannot be absorbed in the
coupling constant. Various forms of potentials
which are constant in the limit p-0 are given by
(b), again accompanied by factors of p. The po-
tentials (c), (d), and (e) are included because they
lead to power-behaved interactions when differen-
tiated with respect to p or p, '. For instance, from
(d} we have

+o(r'; p, , p, '} (4.13)

where y is Euler's constant, =0.577. This result
agrees with that discussed by Kiskis" for "the
cygne~ = p,

' =0." We observe that not both p and p,
'

can be zero, otherwise the constant in (4.13) would
be undefined. We point out here that a propagator
behaving like ln x is also obtained in one-spaee-
one-time dimensional quantum electrodynamics"
(there, of course, with the normal type of—but
two-dimensional —propagator) and in Wilson's
four-dimensional lattice gauge field theory. '
However, from entry (i) in Table 1 it can be seen
that the (singular) logarithmic interaction with in-
frared cutoff does not correspond to a propagator
behaving like (1/k')'. Extreme caution, therefore,
seems advisable in the use of such an interaction.
We observe that the Fourier transform depends
on the method used to regularize the integral.
This is particularly clear for the case under dis-
cussion because the propagator (1/k')' may also
be extracted from entry (b) in Table I, which for
v =0 and

gives

1 1
2rr (k + )

U„(r) K, (rr, r) = — y+ln-pt'

for lprl -0, in agreement with Eq. (4.13) pro-
vided p.

' =0. Nonetheless it is interesting to ob-
serve that the propagator (1/k2)' may be related
to the superposition of an attractive and a repul-
sive Yukawa potential with the same coupling (and
so looks similar to a bubble in q&' theory)

In the literature reference is frequently made
to the so-called static limit of a relativistic prop-
agator What is m. eant is the case k'=k'(1-k~ /P)
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=P so that the off-shell propagator 1/(k'+ p')
= I/$+p, x), i.e., ~k,x/(P+p')~ & 1, and its four-
dimensional Minkowskian Four ier transform is
the Yukawa potential, i.e.,

1 &~d~k 1 -q) XI

(22 )' p+gx 4w l xl
=—5(x,)

or

$+p) w x

where E, means "three-dimensional Four ier
transform. " Using now the well-known theorem
which states that the Fourier transform of a prod-
uct of two functions is the convolution of the Fou-
r ier transforms of those functions, we find that
for p. - 0 but still t 0

(22)' P+p, x (2w)' 4w lxl
'

Thus, in searching for suitable representations
of the gluon propagator, we could look at the spa-
tial Fourier transform of a power-behaved poten-
tial

~
x~' and therein replace P by k' so that the

propagator is 5(x, )~ x~' in the static limit. Then,
for integral values of s ) 0 and p, & 0 we have

T xdx„(„~x -2lxl
(2w)'

2(s +1)!Im(+ilTtl +p.)"2

(2w)'l % l(P + g')" '

where we have inserted an exponential in the ihf8&
red cutoff p, in order to ensure the existence of
the Fourier integral. " Replacing k by p we have
(in conformity with Table I) the gluon propagator

(,) 2(s +1)!Im(iMkx+l(, )'"
( 2)wvxk (k'+px}'"

which in the static limit and for p. -0 corresponds
to 5(x, )~ x~'. Particular cases are

(o) 4&FU '"' =
(2w) (k +p. )

-4(k'+ 3!(,2)
2 ( } (2w}2(k2+ 2)2

48!2(g' —k')
(2w)'(k'+ p, ')' '

48(k' —10kxpx+ 5p. ')
(2w)'(k'+ gx)2

We see from EU'„'!(r}that if the potential is to be
linear in the static limit, then the gluon propaga-
tor is ( in the limit p —0) (1/k')' apart from a mul-
tiplicative constant (ignoring vacuum polarization
effects}. We have observed earlier that in the
four -dimensional Euclidean configuration space
the corresponding potential behaves like In(p, r).
(Aspects of this case as well as EU(22! have also
been discussed by Blaha. ")

In the following we consider in detail the four-
dimensional Euclidean harmonic interaction given
by entry (f) in Table I. In order to obtain the cor-
responding three-dimensional potential in the stat-

icc

limit, we obse rve that

(P+p, )

where g and 5 are numbers. Of course, this ex-
pression is still to be multiplied by a coupling
constant g'. The potential is meaningful if g /p,

'
=f' is finite. It behaves like a constant for
(x( - I/!(, having 0&a & 1, and like (x(2
(apart from an additive constant) for

~ x) - I/p,
having 1&(w &~. Thus, if ~x~ is sufficiently large
in relation to I/p, the static potential is again x',
for smaller values of ) x~ it behaves like a lower
power of

~ x~ or even like a constant (correspond-
ing to a zero binding force).

C. Bethe -Salpeter models

From the table of phenomenological gluon inter-
action kernels discussed above it appears that one
of the simpler candidates to deal with is U„(r)
= rx(!2r)K, (pr) near the limit p, -0. In order to en-
sure that both its momentum space and conf igura-
tion space represe ntations are physically mean-
ingful it will be essential to assume that p. is small
but nonzero, thereby providing also the otherwise
essential infrared cutoff. Further, the product of

and the quark-gluon coupling must be assumed
to be finite, but nonzero; in fact„ in the following
it turns out that this coupling will again have to be
large.

The momentum space representation of the
Bethe -Salpeter equation is in standard notation
(Euclidean metric understood)

r(P', q)(f'P' v(t -P')
[(p' + 2'q)2+eP][(t, - —,q)'+m']

or

[(p+-2'q)'+m'][(p —2'q!'+mx]i(p, q)

v —P')F ', q)d P', 4.14)

where

r(p, q) = r(p, q)/([Q&+-'q)'+mx][(p ——,'q)'+m'1)

is the Fourie r transform of the amplitude

( 0 IT(q(x) q(0)}ly, ),
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In terms of the approximation discussed previous-
ly the Bethe-Salpeter equation can be written

(p'+ —,'q +m') I'(p, q) = —f'O~ r (p, q)

r(p', q)d'p'
(2s)' (p -p')'

(4.16)

(Euclidean metric and infrared cutoff understood).
In writing down (4.15}we have again made use of
the fact that the (four-dimensional, "spherically
symmetric") harmonic gluon interaction can be
simulated by the action of the D'Alembertian on the
four-dimensional delta function, i.e., we have

r' =r'(l(, r}K,(gr) for p,-o
and

@~2 de( ~-fIt' g(21

(2 v)4

= -0 '6(4'()t)

Using (3.42), this becomes (for )(, small but non-
zero)

1 2, 1
+& =

4 ~ &boa ~24& 0 +p.

which agrees with the Fourier transform calculated
from (4.11)[see entry (f} in Table I].

We now observe the close analogy between Eqs.
(4.16) and (3.41). In solving (4.16) we may there-
fore proceed in a similar way, and we obtain after
separating off the angular dependence the following
equation for the radial wave function r~(lPl) in
momentum space

D, (l pl) {p'+-,'q'+m')'r~(l pl) = -f 'D,'(l pl) r, (l pl)

(4.17)

The corresponding radial equation in configuration
space is

(Note that here the dimensions of g and f are
different from those in Sec. III.)

(4.18)

a,nd v is the interaction kernel.
In keeping with the motivation of our investiga-

tion we assume that 8 consists of the sum of a
gluon and a massless scalar exchange interaction.
We assume therefore that v(P) is given by (3.40),
l.e. ,

2

(4.15)

In general, when both f andg are nonzero, these
equations are not easy to solve. For this reason
we are compelled to consider various approximate
cases separately which taken together give an
understanding of the complete solution. We dis-
cuss first the eigenvalues, i.e. , Regge trajecto-
ries. For f =0 Eq. (4.17) reduces to the equation
of the Wick-Cutkosky model for which the solutions
are known. Qn the other hand, for g =0 and f &0
the equation can be written

2 1 22
D (Ipl)+ 'f, ' r, (lpl) =o (g=o}. (4.18)

Setting

r, (lpl) =y, (p)/p", L'=L+l,

Eq. (4.19}can be rewritten

d L'(L'+1) (p'+m'+~q')'
dp- p

' f
'

(p)

(4.20)

As in Sec. II we can now use the WKB method for
an approximate calculation of the Regge trajecto-
ries. For t =——q' & 4m' (and beyond by analytic
continuation) one finds the Toiler poles

L =-2n —2(+) [- (,q'+m')]3~'+—0
3wf n

(4.21)

(For the relation to Regge poles, see Sec. III B.)
We observe that the larger number of dimensions
compared to previous cases has no effect on the
intercept term. Also, I is real in the timelike
(i.e. , resonance} region q'+4m'&0 if f'&0. But
the fully relativistic treatment makes the trajecto-
ry rise more steeply with energy for f&0 and in
the region of validity of the WKB approximation
which is where n is large.

In order to obtain an estimate of the Regge tra-
jectories when neither g norf is zero, we use yet
another modified WKB approximation but applied to
the configuration space Eq. (4.18). We argue that
for fixed values of the coupling constants g and f
the maximum value of L(L+2) and so of L is ob-
tained when the radial kinetic term

3
X(r) =—— + ——

dr2 r dZ

in Eq. (4.18}becomes minimal. This may be jus-
tified as follows for the nonsingular Bethe-Salpeter
potentials considered here. The eigenvalue pro-
blem X()(=&'()( (with ()( square integrable) is equiva-
lent to that of

2+~ —
2 st2 4
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-m' —,q' = — » +f r . (4.22)~ ~

L(L+2), , 5 g

This equation defines L or N = L(L+2) as a func-
tion of r. Next, we find that value of r, say r„
for which fq(r) is a maximum. We have

X/2

N(r) =r' f 'r'+ —(m'+»q')
4 g2r2

2
=fr'+ ——(m'+ —,'q')r'

8mf r

for lg'l & l4v f5r l. Setting dN/dr = 0 we obtain the
equation

2

6f r»-4f (m5+-'q5)r55= (4.23)

This equation may be solved for r, by first ignor-
ing the term on the right-hand side. Then, since
we are looking for a maximum and f &0, m5+ —,'q5

&0 (as in the previous case)

2m +4qr0

Adding a correction term e to this expression,
substituting r, back into Eq. (4.23), and calcula-
ting e by ignoring terms which are nonlinear in

e, we find

2 m +»qr0 3 f
g'f

64m' (m'+-,'q')' '

Finally we calculate L from the relation

Further, the eigenvalues of the operator d'/dr'
are bounded from below by zero. Thus it is pos-
sible to expand the solutions of Eq. (4.18) in the
neighborhood of that value of r for which X(r) be-
comes minimal. Then (see below}r'-O(L(L+2))
and the effect of the term 3/4r is of 0 (1/L» '}.
(Note that interactions behaving like r ' are of the
same order as the kinetic part, whereas in the
case of more singular interactions the kinetic part
dominates in the region of large r.) Thus, ignor-
ing the radial kinetic term, the four-dimensional
angular momentum L for a classical circular orbit
of radius r is given by

If we approximate 4 x27 =108 by 9v5 (implying an
error of 18% in the coefficient), then the first term
in Eq. (4.24) agrees with the corresponding term
in Eq. (4.21). The expression (4.24) has the struc-
ture expected for large values off ' and small val-
ues of g5. Again we observe that the harmonic
gluon interaction with large quark-gluon coupling
constant leads to the rising trajectory.

Our next step is to obtain the large P' asymptotic
behavior of the momentum space representation
of the wave function since this determines the
corresponding asymptotic behavior of the form
factor. Vfe consider first the case g =0, i.e., pure
harmonic gluon interaction. Changing the variable
in Eq. (4.19) to x =p', this equation can be written

d 2 d L(L+2)
dx' x dx 4x' 4f'

5 m55
(( ~

5 )
('

((I&'I&. (4.»&

where Z„ is a solution of Bessel's equation. The
particular choice of Z„ to be made is dictated by
the condition of regularity of the bound-state wave
function, i.e.,

XS/20(')&;((l'(ll —„, .5&,&.,(, „.„&( 5& )—
» 5 (p2)5 /2

(p2) 5/» p 3f (4.26)

for p'-+ ~ and for f &0, where c is a (complex)
constant. Thus, in the timelike region where
p' &0, &(p = +i leap l, the wave function I'~(l pl) falls
off exponentially, whereas in the spacelike region
it falls off like 1/(P'}' » with a superimposed os-
cillatory behavior. Since the vertex function
I' (lpl) is related to the wave function Il, (lpl) by

For lxl» l
—,'q'+m'l and ~ )

Ill�

»1, the terms on the
right-hand side are small compared to the last
term on the left-hand side. The large-x asymptotic
behavior of F~ is therefore

1 XS!2I (I pl) = „, , ~„i„(

L' =N(r5),

and find for the lowest (r» =0) eigenvalue

( m5 &q5)$
L2 —+—

27 2

3g 2

16v5 (m5+»q5) ' (4.24)

we see that in the timelike region the vertex func-
tion falls off exponentially, but in the spacelike
region it diverges like (P')" i».

%e now consider the case g +0. Then it is clear
from Eq. (4.18) that the behavior of the wave func-
tion p~(r) near r =0 [and so of 1~(lpl) near p'- ~]
is determined by the singular Coulomb or Yukawa
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interaction. From a detailed study of the Wick-
Cutkosky model" we know that this interaction
leads to a power-behaved asymptotic behavior of
the vertex function, i.e.,

Thus, in the presence of both interactions one ex-
pects the ground-state vertex function to behave
like O(1/P') in the region P2- —~ but to diverge in

the region p~ —+~.
The form factor +(q') of the Bethe-Salpeter

bound state" is given by the coefficient of (P+2P)„
in the current matrix element

(&+q lj„lp& = » ~'pi&(l pl) i, , (&+2p+q)» ~ 2 ~~(IP +ql2))
1 1 1

(4.27)

It is clear that if I~((P() =O(P') ' for P'- —~, then
E(q~) =O(q') ' ' for q'- —~. Thus in our case
E(q') = O(q ') for q'- —~ whereas it diverges in
the spacelike region.

V. CONCLUSION

In the foregoing we investigated various aspects
of phenomenological models exhibiting quark con-
finement, rising Regge trajectories, and asymp-
totic power decrease of form factors. In view of
some successes of the nonrelativistic quark mod-
el, we considered first the nonrelativistic case of
infinitely attractive, quark-confining potentials and
showed how the resulting mass spectrum depends
on the power of the potential. The effect of screen-
ing is required in order to endow the trajectories
with physically acceptable analyticity properties
without destroying appreciably their linear be-
havior. This case illustrated also approximately
the properties of semirelativistic or fully relativ-
istic models in the static limit. We then considered
semirelativistic models for interactions consisting
of harmoniclike and a Coulomb- or Yukawa-type
part and showed that both parts are necessary in
order to ensure a linear rise of the trajectories
as well as a power decrease of bound-state form
factors in the spacelike region. Finally we con-
sidered the fully relativistic (though suitably ap-
proximated) Bethe-Salpeter equation for appropri-
ately generalized interaction kernels. The tra-
jectories were found to rise more steeply, and
the power decrease of form factors was found to
occur in the timelike region. Thus these semi-
relativistic and relativistic models possess the
defect of violation of unitarity in either the time-
like or the spacelike region [a well-known property
of (unmodified} Veneziano models possessing

linear trajectories]. A characteristic feature of
all models is that the rising trajectories require
strong quark-gluon coupling.

In Sec. IV we considered also classes of quark-
confining interactions, i.e., phenomenological
gluon exchange propagators, particularly the di-
pole propagator, and investigated their behavior in
the four-dimensional Euclidean space and in the
so-called static limit. Strong infrared divergences
are evident. E.g. , if we calculated the quark self-
energy in perturbation theory, we would find a re-
sult which diverges as the infrared cutoff p. is al-
lowed to approach zero (in contrast to quantum
electrodynamics where the result depends on an
ultraviolet cutoff}.

For simplicity we considered throughout only
the equations of motion of the quarks with effective
gluon sources. An over-all self-consistent treat-
ment would have required the simultaneous con-
sideration of appropriate gluon equations; also,
we did not deal with such problems as acausality,
indefinite metric in the Hilbert space of state vec-
tors, and the violation of spectral conditions
which are known to arise in Abelian quark-confi-
ning gluon field theories of the type considered
here (see, e.g. , Refs. 8, 10, and 12, where these
problems are alluded to or discussed). It is pos-
sible that few or none of these difficulties are en-
countered in the context of pure Yang-Mills theo-
ries which, moreover, are known to be charac-
terized by long-range forces screened by vacuum
polarization (see, e.g. , the last paper mentioned
in Ref. 32). However, in such theories explicit
calculations are formidable.
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