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The quantum mechanics of solitary-wave classical solutions of nonlinear wave equations is discussed in detail

for the kink solution of two-dimensional P' field theory. The formalism provides a natural interpretation of an

extended particle, the soliton, for the classical kink. The perturbation theory around the extended particle is

developed and used to calculate the radiative corrections for the mass of soliton up to one loop. The mass

renormalization is discussed in detail to show that the mass counterterm to the nonsoliton sector also does
the job for the present case, i.e. one-soliton sector. Although our formalism is not manifestly Lorentz-
covariant, the Lorentz covariance is shown explicitly by calculating the soliton energy for a fixed momentum.

The paper also contains the perturbation calculation of matrix element of P fields between one-soliton states.

I. INTRODUCTION

Recently we proposed a method which deals with
the quantum mechanics of classical solitary wave
solutions of nonlinear field theories. ' The method
is a generalization of the collective coordinate
method of many-body theory to quantum field theo-
ries, ' and it has previously been applied to the
study of strong-coupling theory in static models. '
In the two-dimensional 4'4 theory with the wrong
sign of the mass term, a classical solution is the
kink solution and the position of the kink is treated
as a collective coordinate. The system is then
considered as an interacting system of a particle
with a field with constraint. Thus, the theory
naturally provides the interpretation of the kink
as an extended particle, "which we call the soli-
ton.

The quantization of classical solutions of non-
linear field theories has also been discussed by
Dashen, Hasslacher, and Neveu, ' and by Goldstone
and Jackiw. ' The former authors developed an
elegant field-theoretic generalization of the WKB
method to this problem. As in the ordinary quan-
tum mechanics, however, the precise correction
to the approximation is hard to estimate by this
method. The latter authors, on the other hand,
developed a method which consists of a set of self-
consistent equations for the matrix elements of the
field between physical states. In this method it is
in principle possible to calculate all the matrix
elements as a power series of coupling constant by
successive iterations. But it is difficult to obtain
systematic expansion rules.

As has been emphasized in Ref. 1, it is straight-
forward in our formalism to develop a perturbation
theory in terms of the method used in Ref. 3. We
discuss this problem in detail in the present paper.

In order to make the paper self-contained and
also to make the method more transparent, in Sec.
II we briefly describe the method using the Hamil-
tonian formalism and rederive the main results
of the previous paper. '

In Sec. III we will present a systematic perturba-
tion expansion in the coupling constant. It is es-
sentially the same as the strong-coupling expan-
sion of Ref. 3 and our definition of the coupling
constant as 1/&2 is actually made in order to em-
phasize the similarity with the strong-coupling
case. We derive the Feynman rules which can be
used to perform perturbative calculations in the
one-soliton sector to arbitrary orders in the cou-
pling constant.

As the first example of such calculations we
compute the corrections to the soliton energy,
which is analogous to the computation of the cor-
rections to the isobar energy levels in the static
strong-coupling model. In the lowest order this
energy is equal to M, +P'/2M, and, since our
approach is not manifestly relativistic, the im-
portant question is whether the Lorentz invariance
is restored with the higher-order contributions.
We show in Sec. IV that all tree-graph corrections
sum up to give the correct Lorentz-invariant form
for the soliton energy F. = (P'+M, ')'~'. Thus we
see that the coupling-constant expansion is in the
same time a nonrelativistic expansion and so the
formalism is indeed Lorentz-invariant.

In Sec. V we perform one-loop computations and
show that all ultraviolet divergences can be re-
moved by renormalization. The remarkable fact
is that the one-soliton sector is made finite by
the same mass counterterms which renormalize
the meson sector of our theory. The first two
quantum corrections to the soliton energy which
we calculated are of the form n.M- (P'/2M, ')n.M,
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with &M being the same as that given by Dashen,
Hasslacher, and Neveu. From this we see that
one can consistently interpret &M as the first
quantum correction to the soliton mass.

In Sec. VI we will make perturbative calcula-
tions of the P field matrix elements and Green's
functions in the one-soliton sector.

II. DESCRIPTION OF THE METHOD

The Lagrangian of the two-dimensional field
theory we consider is

that

so that f and q as well as
conjugates to each other.

P
Ma[1 + (1/Mo) g]

s(I),(x -X(t)}
] x

Bx

s p,(x -X(t}}

(2 6)

8 (p,(x —X (t))
Bx (2.'T }

y(t, x)

P and X are canonical
The solution is

I = ngdx —H n', P,
(2.1)

H(x, (t)) = — w2 + (t)" —(t)2 i Q4 +—P (ix, .

(2.3)
P 9$„(x-X(t))

[1 + (1/Mo) $] sx

s y.(x -X(t))
d~

a 0 ~
~ ~ x )Bx 7

(,(x-x)-=~)ash(*
)

. (2.2)

where p'=s(t)/sx This. field theory possesses the

so-called kink solutions
where Mo is the bare mass of the kink,

o 3
(2.9)

The parameter X indicates the kink position. The
transition amplitude between initial and final states
described by the wave functions +, and +& is given

by the following phase space functional integration:

r
S„= "J uyn«' '4", [y(+, x)]4',[4(-,x)].

(2.3}

and

~ („(*—x(t)) aq(t),
Bx Bx

(2.10)

The subsidiary conditions, F =0 and F, =0, still
contain the kink coordinate X(t). We eliminate it
from the subsidiary conditions using the kink fixed-
coordinate system

p =x -X(t) (2.11)
We then regard X as a dynamical variable, ac-
cordingly a function of ~, and introduce a corre-
sponding conjugate momentum P through the fol-
lowing change of variables in the integration'.

P(t, x}= $0(x -X(t)}+q(t,x},
g(t, x) = (x));OP(t), X(t))+)(t, ). x

We extract X and P out of P and m by inserting the
identity

(2.4}

g)X SP & Fj X) {I} ~ F2 P
~ 1T)

(2.5}

into (2.3) and find the forms of wo, +„and F, such

We define the canonical meson fields in this sys-
tem by

}t(t, p) = q(t, x),

z(t, p) = &(t, x)

and the momentum by

(2.12}

P =P — ng'dp, (2.13)

where y'=dg/sp. Although we used m in (2.12}we

like to note that this m is not identical to the r ap-
pearing in the previous expressions [e.g. , (2.1)].

After some straightforward calculations we ob-
tain

Sf; —— ''' SXSPGX&&~ ~o Xdp ~ Po'adp exp i l, dt 4'& X , g 4'] X -~, g (2.14)

and

L =PX+ njdp -H,
(2.13)



1040 J.-L. GEBVAIS, A. JEVICKI, AND B. SAKITA

which is the main result of Ref. 1.
A soliton wave function with momentum P should

be a function of & only and is described by

l~,[~J= '"=(~lp&. (2.16)

III. PERTURBATION THEORY AND FEYNMAN RULES

If one restricts the initial and final state to a soli-
ton state, the corresponding operator expression
of (2.14) would be (P!S!P&. One would also be in-
terested in the time-ordered Green's function such
as

(p'I T(4(x)4(y) ")lp&.

This can be obtained from (2.14}by inserting cor-
responding (j)'s into the integrand and using (2.4),
(2.11), and (2.12). The integration over x and [[

can be done by a standard perturbation method
which will be discussed in the following section.
The resulting expression is then a functional in-
tegration over.Y and P, for which we shall use a
corresponding operator method.

where & = fdp (j),'X'. Then the generating functional
can be written in the form

Z[ JK]=e p — J(dlII ('~,—.
) Z[J,K],,

(3.4)

where Z,[&,KJ is the free generating functional

~.[~, ~]=jaxu ) j(.x)() (. .)
1, 1~exp i dtdp zj- —v'- —g"
2 2

1 3(I},'-——1- " x2+dx+Kz [.

(3.5)

This quadratic functional integral can easily be
evaluated by expanding the fields X and n in terms
of eigenfunctions g„which are solutions of the
e igenequation

Based on the formalism described in Sec. II,
one can formulate a systematic perturbative theory
in powers of the coupling constant. In our notation,
the expansion parameter is actually 1/X', and since
it is a dimensional parameter, the expansion is
valid for small ratio m'/X'. We will present in this
section the derivation of Feynman rules. Using
these rules, one can then make perturbative com-
putations of energy, matrix elements, and Green's
functions to arbitrary orders in the coupling con-
stant.

Let us consider the generating functiona&

z[~,x]= j~x~.~ j(, x)~ j(;
&exp t dt dp([tX+ JX+K[[)—H

8p
(3.6)

Nk

&& [3 tanh'(p/v2 ) —3 tent)t2 tanh(p/v2 ) —1 —2k'J,

(3.7)
t)t =2L(k +2)(2& +1)—12)t2 (& +1)

Here I is the length of the box, since we use the
box normalization and periodic boundary condi-
tions. Introducing the notation

There are two discreet eigenvalues for n =0 and
n =1, and the ~0=0 eigenfunction is just (1/)tM )(t),'.
There is also a continuous spectrum for &uk'=k'+2
and the normalized scattering eigenfunctions are

(3.1)

where H is the total Hamiltonian given by Eq. (2.15)
and ~ and K are external sources. We separate
the Hamiltonian into a free g-field part and an in-
teraction part given by

x.(t) = dpx(t, p)4. (p) = (x, 4.), -

(~) j~"(~;. )(=(~) (( ). =-, .
we have

(3.8)

1 2 1,2 1 3(I}0
yp —g'+ —y" ——1—

A.' (3.2) x(t, p) = P x.(t) p.*(p),

(3.9)
(t'+ fdp vX')'

2M~(1 + $/M, )' &' 4~

(3.3)

)[(t, p} =g v„(t}[j)„*(p)

an. d the n integral is now

II~v„6(~,) exp, i dt Q [--,' n„*v„+v„*(X„+&„)J =exp [ dt-,'Q (X„*+&,*)(X,+&,)).
n n n

(3.10)
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Here the sum Q' is such that the zero-frequency mode (n =0) is omitted.
Next, one has the g integral

where

g SX,5(X())exp)& Q HX„ tG„'X„+(J„-K„}X„]
n n

(3.11)

t G„' = (-sd2 —(d)„2+ te)5(t —t'),

and the answer is

(3.12)

exp i —,
' 4„-K„*iG„J„-K„

n

Now in the (p, t) representation the Green's function is given by

(3.13)

defining

n ff

(3.14)

t), (t —t' pp') =-t 5(t —t')g (C) (p)(t)*(p') (3.15)

We can write the final form for the generating functional

d(PK)=eeP —JdtdP Jd td 'P( ((d t )1—tt(t p))G(t —t;PP )(d(t', P')-t((', P'll

~ lt((tp)tt(t t :P, P )K('-P')))'. ' (3.16)

From this free generating functional one can
deduce the Feynman propagators. We see that
there are three types of propagators, i.e., by dif-
ferentiating with respect to sources ~ and K we get
the X-g, g-~, and the rr-n propagators, respec-
tively:

, Z,[J,K]
1 6 1 6

5J(t, p) t 5J(t', p')

=G(t t'; pp'), -(3.»)
6 1 6

5J(t, p) t 5K(t', p') J=E=p

=a, G(t —t'; pp'), (3.18)

6 1 6

5K(t, p) i 5K(t', p')

=s 5 G(t- t';pp')+&(t t'; pp')-
Their graphical representation is given in Fig. 1.

It is important to note that since in (3.14) and
(3.15) the zero frequency mode is excluded, these
propagators avoid the infrared divergences asso-
ciated with it. This is the consequence of the sub-
sidiary conditions, i.e. , 6-function conditions in

(3.1}.
The vertices of our perturbation theory are

determined by the interaction part 8'. Besides the
ordinary vertices ((t),/X')X' and (1/4X')X' which are
represented by Fig. 2(a) and Fig. 2(b), respec-
tively, we have an infinite series of vertices com-
ing from the first term in H':

(P + fvX'}'
2MG(1+ (/MG)~

'

Since f/MG is of the order I/& our perturbation
expansion will be in the powers of 1/&. Expanding
1/(1 + $/M, }' one gets the first set of vertices pro-

(b)

x
3 1

i
g X

4X

(c)

FIG. 1. Meson propagators in the one-soliton sector:
(a) X-X, (b) x-&, and (c) &-~.

(a) (b)

FIG. 2. Meson field vertices.
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portional to P',
p2 ( (2 (3

2M0 Mo M M (3.20)

which are of the order of 1/&', 1/X', . . . succes-
sively and are graphically represented by Fig.
3 (a).

The second set of vertices is proportional to P
and is given by

4o ~X d~
0

dt(4&o', X)', 3 p
0

«(«, x'}(e,x}
0

(3.21)

The first two terms are represented by the graphs
in Fig. 3(b).

It is important to observe here that these ver-
tices are local in time but nonlocal in the space
variable.

It is trivial to generalize these Feynman rules
to arbitrary two-dimensional field theory de-
scribed by the Z =& (&Q}' —U(P), which has a clas-
sical solitary wave solution Po(x). Then the propa-
gators have the same forms as those given by Eq.
(3.14) and Etl. (3.15), but now with it„and &o„' ob-
tained from the eigenequation

(3.22)

The meson field vertices are given by the cubic and

higher terms in the expansion of the potential
U(4),

FIG. 3. Meson-soliton vertices.

}

exp -i dt H, «(P) = &XS«5 po'X 5
L t

x exp. i. nXdP —H

where

(P+ f«x'dp)'
o+

2Mo[1+(1/M )(]o

(4.2)

tivistic treatment of the soliton is connected with
the nature of our weak-coupling perturbation ex-
pansion. Thus it looks very appealing to us that
the I orentz-invariant form for the energy is re-
covered with the higher-order calculation.

One defines an effective soliton Hamiltonian
given by

U(go + X}=g—,X U "'(Qo),
, , lt (3.23)

+2 ~p )7 +X — 1 —
) X+ ~ ~oX +2

1 2 t2 3~0 2 2, 1 4

and depend on the specific form of the potential.
Finally, we observe that the meson-soliton ver-
tices remain the same as those given by Eqs.
(3.20) and (3.21) and are thus independent of the
form of U(Q).

IV. TREE DIAGRAMS AND LORENTZ INVARIANCE

The separation of soliton degrees of freedom de-
scribed in the Introduction is obviously not Lo-
rentz-invariant. The free soliton Hamiltonian has
a Galilei-invariant form so that in the leading
orders the soliton energy is E(P}= M, +P'/2M,
These are just the first two terms of the relativis-
tic expans ion:

E(P) (P2 +M 2)1/2

p2 1 p4 1 pe

M0 4 M0 16 M0

(4.1)

This expansion in P' is at the same time an ex-
pansion in 1/X2 so it is obvious that the nonrela-

(4.3)

(P!S!P)=exp —i dt E(P), (4.4)

it is enough to treat P as a constant.
In this section we calculate the corrections to

the soliton energy Mo+P'/2M„keeping only the
leading term in 1/X' expansion for a given power
of P2. It is easily seen that these corrections
come from the connected tree graphs only. We

will prove that summing all these contributions,
one indeed recovers the Lorentz-invariant form.
Besides these, the computations are to demon-
strate how one can perform explicit calculations
using the complicated Feynman rules derived in

the previous section.
We start with the first tree-diagram contribu-

which can then be computed perturbatively. If we

are only interested in calculations where the soli-
ton momentum is conserved as in the case of soli-
ton energy given by
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tion which is proportional to P4 and is represented
graphically in Fig. 4. It gives the following ex-
pression for the energy:

1 . P2
—LAE4 ————L

2 0

x d7 dpdp' 0,"t',p C T pp

FIG. 4. I' power tree graph contributing to the soliton
energy.

Thus one obtains

(4.5)

(4.6)(40, ~n) =-~(4'o»)l)n)~n

and, accordingly (G is the Fourier transform of G),

(4 7)

Direct calculation of this expression, using the ex-
plicit forms for g„and P„would lead to a com-
plicated integral, although it still can be evaluated
analytically. Here, instead, we use the identity
d/dp =2[p, 0'], with 0' =-6'+U" (p, ), to show that

0

1 P4

8
(4 6)

because of JQ,"dp =M, .
This result encourages us to go on to the next

contribution which is proportional to P'. There are
four diagrams shown in Fig. 5 and the expressions
are more comp1. icated. We start with the first one
[Fig. 5(a)], which gives

pi &0"(pi ~ &0"(p. p. &0"( . p;a
0

Using the relation (4.'t) we obtain

P2 '1
=6

0

X dTy6 Ty, p p dT2G T2,' p2p dT t-r T3y p3p

(4 9)

(4.10)

After rearranging the integral, we end up with

, [2(g,', p'0, ') —1].
0

The contribution of Fig. 5(b) is given by

(4.11)

P2
),nz, =-(-),)'—

0

which can be calculated

1 3 P'
16 2 M

2

Q,
"

p G; pp' P,
" p' d dpdp'

0

in a similar manner to that used before to find

(4.12)

(4.13)

The contribution from Fig. 5(c) is given by

& d~) "(~) &~, 4.', G);a~)J«&(&;n, ~ )J,« do ) (~. )&G'( '';~.~"')',
2 0

(4.14)

since the &,&, G(i- &'; pp') does not contribute.
After a similar calculation to those performed
before we obtain

tional to P' is

@c=
16 ~ 5 [2(0 ps Poigo)+2] ~ (4.15)

The last graph [Fig. 5(d)] is equal to zero. There-
fore, the total contribution to the energy propor-

Pe
16 m, '' (4.16)

~ 5 [2(PO, P (i'0 )+2( Ip~)')opt ) 101+
0
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which is just the fourth term in the expansion
(4.1).

These calculations lead us to expect that by
summing all tree graphs, one would recover the
relativistic form for the energy. It is more and
more difficult to compute further terms in these
series and we will now use a more powerful method
to sum all tree diagrams contributing to the soli-
ton energy. Since the total energy is given by the
path integral form

mxm«p, 'x &

X eCS(X ~ ~ 0H (4.17}

=
J

&vexp i dtdp v(t)(po'(p)n(t, p),

so that the total action is given by

x...(,x,)', x, ) =x(x, ,x'1+ fIxx.'x ylx(x(~ ,x'x
(4.19}

it is equal to the sum of all connected vacuum dia-
grams' with an external source P present. It has
an expansion in number of loops E(P) =E,(P)
+E,(P)+ . Then the sum of all tree diagrams
E,(P) can be evaluated by the stationary phase
method and it is equal to the value of the action
S[X, n, P] evaluated with n and X being the solutions
of the equations of motion. Here, a little more
care is needed because of the &-function con-
straints in E(l. (4.17). We can rewrite the con-
straints using Lagrange multipliers &(t) and v(t),

ll()(f 0, (~)x(', ()x(}x'x

5)~exp i dtdpx t y0' p X t, p

(4.18)

}'4 ((x)x(( (x)X(x)

(b) (c)

FIG. 5. P6 power tree graphs contributing to the soli-
ton energy.

tain time derivatives of fields since we are looking
for the time-independent solutions for a constant
P. One can eliminate v from (4.21}and one can
obtain

p+ fnX', $ p+ fnX'
Mo(1 + g/Mo} O

Mo Mo(1 + (/Mop

(4.23)

Next, multiplying this by X' and integrating, we
find that

P+fnX'
MD+2)+ fX" M (1+ F/M }' '

Now, using this relation and eliminating n' from
(4.22), we end up with a single nonlocal integro-
diff erential equation

(4.24}

-X- 1 — X+ X+ X
3

A,
2

A,
2

P2
+(X'+(po")

( „„)2+&$0'=0. (4.25}M0+2j+ X
2 2 0

This looks very complicated to solve, but, after
the shift X =-$0+@0we get a simpler equation,

p2 "+y~ '=0+( d 0'

(4.26)
The corresponding equations of motion are

dPP0' PX~, P =0,

dp 0,'( p) (n tp) = o,

P+fnX'
M, (1 + (/M, }

(4.20)

(4.21)

Denoting

P2

(fn."dp)' ' (4.27)

(4.28)

we have the solution of this equation in the form

y, (p) = 4,(p/(1 —a') '),
X =0.

3$,' 3$, , 1, , P+ fnX'
X 1

X2 X+
Xm

X + x2X n
M(1 (/M)2

(P+ fnX')'
+4'0 M (1+$/M P

+ 4o'=0. (4.22)

In these equations we omitted the terms which con-

x I

n.(p)=a 4.'( ) pM
' -V.'(p) .

0
(4.29)

Next, substituting this solution back into (4.26) we
get the relation 1/(1 —a') =1+P2/Mo2 Now it is.
easy to find the solution for m:
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Thus the sum of all connected tree diagrams con-
tributing to the soliton energy is given by the value
of action (4.19) evaluated with this time-indepen-
dent solution for X and n:

E(p) =-s(-4.+9., &.,&l. (4.30}

After some computation we found E(P) = (P2+M, ') '.

V. ONE-LOOP CALCULATIONS AND RENORMALIZATION

In this section we discuss the one-loop contribu-
tions to the soliton energy. Because of the loga-
rithmic divergences appearing in the calculations,
one has to face the problem of renormalization in

the one-soliton sector. It is well known that these
two-dimensional field theories require only a mass
renormalization, and thus in the Lagrangian one
has the infinite bare mass m, instead of the finite
parameter m'. The remarkable fact is that the
mass counterterm ~m' =mo'- m', which makes
the nonsoliton sector of our field theory finite,
also renormalizes the one-soliton sector. Thus,
one needs no new counterterm to cancel all the
divergences which appear. This is similar to the
situation with spontaneously broken field theories,
where the divergence structure of a renormaliza-
ble theory is not affected by the occurrence of
spontaneous symmetry breakdown, so that the

same counterterms which renormalize the theory
with the unbroken vacuum are enough to renor-
malize the corresponding theory with the spon-
taneously broken vacuum. "

Thus, if we are interested in, at most, one-loop
calculations, then the Lagrangian which appears
in the functional integral expression for the S-
matrix element in the one-soliton sector contains
the one-loop mass counterterm. To be specific,
for the P4 theory the Lagrangian is given by

graphs, Figs. 6(a) and 6(b), due to (5.3) to the
Feynman rules described in Sec. III.

First, let us write down, just for completeness,
the order 1/&' correction to the energy, which is
given by the bubble diagram and is equivalent to
the sum of zero-point energies:

(5.4)

(s.s}

is now finite and was evaluated in detail by Dashen,
Hasslacher, and Neveu. ' We simply quote here
their derivation. The relation between ~„and ~„'

for scattering states is given by

k + —6(k )=k'= 27m
n L n ff (5.6}

and ~„=(k„'+2)'~'. 5(k„}is the scattering phase
shift of the wave equation (3.6) and its derivative
is given by

ds(k} 12&2(k'+1)
dk 2(k'+2)(2k'+1) ' (5.7)

Using (5.6) and (5.7), one finds

1 3 dk ds(k) 1

2 ' ~2 2v dk 2

This expression is both linearly and logarithmical-
ly divergent, and the first divergence is cancelled
by subtracting out the infinite vacuum energy.
With the box normalization, this vacuum energy is
proportional to the length of the box L. The sec-
ond divergence is cancelled by the contribution
coming from the mass counterterm —,'Sm'(Q, ' —X').
The total expression

~(4) =k(sA)'+~a(~'+6m')(0'- x')- (1/+.')(0'- x'),

(5.1} ——Qm2 dp (t)
' - )P . (5.8)

with 6m' given by

s
2v& (k 2)' (s.2)

obtained from the one-loop renormalization of the
nonsoliton sector. Next, one can perform exactly
the same canonical transformation as that de-
scribed in the Introduction, with (t)0 still being the
solution of the equation of motion without the mass
counterterm. Then we end up with an additional
term in the Hamiltonian of the form

We will now explicitly evaluate the next correc-
tion to the energy which is proportional to I" and

of the order 1/&4 in the coupling constant. Since
Mo = ~&2&2, it is of the form (P2/2MO)(DM'/Mo-}.

If the interpretation of &M as the quantum correc-
tion to the soliton mass is correct, then 4M'
should be equal to &M. The loop diagrams which

2
yam

If~.2 =-25~'[(4,'- x')+24,x+x'1, (5.3)

which will be sufficient to cancel out all the di-
vergences which appear in the one-soliton-sector
calculations. Thus, one should add the additional

—
X Om

i 2
2

FIG. 6. Mass counterterm vertices.
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contribute to this order are shown in Figs. 7(a},
7(b}, and 7(c). Using the Feynman rules of Sec.
III, one gets, corresponding respectively to the
graphs 7(a}, 7(b), and '7(c),

-3 dt, dpdp' 0" p
0

I

x d7G ~pp' ', G Op'p', (a) (b) (c)

(5.9)

g2
dt 2 dp dp' d7 b, 7; pp' —28~2G 7; pp'

0

x s p sp' G(T; pp'), (5.10)

~«. =()E'((.", y) ', I«(„'(p) 1, G(o;ap),

(5.12}

Q2dt, dpdp' y,
"

p G 0;pp' y,
" p',

0

(5.11)

and the corresponding contributions to the mass
&M' are

FIG. 7. One-loop graph proportional to P .

plicated thai it is not possible to evaluate them
analytically. " Instead, we will first rearrange
the expressions for &M, and &M, so that after
evaluating some parts explicitly, we end up with
the expression for &M' which is the same as that
for AM.

Let us start with bM„using the identity d/dp
= ~[p, 0'] and partially integrating to get

(pe, G(-0; p p)) I'i'y,
8

+ dp (1),
' G 0; pp +pG' 0; pp

(e. , 4')(0, e.') g (4.', &.')
n. m n+ ~ n 2n The first term is for large L, given by

(5.17}

(g., P.')(P., ()'.')
2 (d„

(5.13) LR 2

~, IP 4,'(P)&(0; pp)1 I
'i™g,= Q"

2

(5.14)

As for the divergences in these expressions, one
can see that only &M, has a logarithmic diver-
gence, while &M, and &M, are finite. There are
no linear divergences, and that is encouraging,
since we would have no way to remove them. The
logarithmic divergence of &M, is exactly can-
celled by the contribution of graph Fig. 8, which
is of the form

where

~," =LE'.(kL) 4.*(2L)

2L(k„'+2}(2k„'pl)
2L(k +2)(2k +1}—12~2(k +1)

(5.18)

(5.19)

(5.15)

Using the identity for d/dp we can show that the
corresponding contribution to the mass &M' is

For the last step in (5.19) we used the explicit
form of d6(k)/dk, i.e. , Eq. (5.7). The states n =0
and & =1 do not contribute to the sum in (5.18) and
the Q" denotes that the summation is over scat-
tering states only. Next, using the identity

AM„= -~6m' dp Q
2 —~~, (5.16)

which is the same as that in relation (5.8}.
Owing to the special nature of our Feynman

rules, it is extremely difficult to evaluate these
three expressions. If one writes down directly
the corresponding integrals using the explicit
form for the eigenfunctions, P„, they are so com- FIG. 8. Mass counterterm graph proportional to P2.
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3P,'/)P =0'+8'+1, one obtains for the second
term of (5.17)

3'po G(0. )
~' (~n +1)

P ~' '~~ ~ 2n ~n

(5.20)

and after some calculations, the last term is found
to be

3Q 2 +$
J' dP ~,

' PG'(0;PP) =-Q

~II 2k 2+3 I.R
2+„N„2

Using the relation

(4n~ 4m ) = n (~m —&6 )(any P Pm) +&nm,

where

S„„=-,'i(k„+k„)l.g„*(-,'L) P (-,'f, )

= —,'i(k„+k )
(-1)"+"R„R

n m

we write this double sum as

(5.24)

(5.25)

(5.26)

(5 21)
n 2&n

Thus, the total expression for &M, is given by

(Pn y
n') g n n (522)

2&n n 2~n Nn

Next, we will evaluate the complicated double
sum which appears in the expression (5.13) for
4M~..

(5.23)

Defining g„=P„'—i&„P„, one can write the first
term as

LRn' ~"S. (0, Tn)+~
n 2n &n n, nt n + nt

(5.2V)

In the Appendix, we show that the second part of
this expression is equal to zero. Since the second
term in (5.26) is logarithmically divergent, one has
to cut off the number of modes in the summation.
Then, using the completeness relation for the
eigenfunctions, P„, we can reduce it to a form

LR 2 II

-4Q "'
2

' +Q z~n- Q n~n ~ n + ~n(gn, Plm)(hami kn ) ~

n 2 COn n n in) —ar

) m) g+~

(5.28)

The last sum in this expression is evaluated in the Appendix to be -3/v&2 . Then, using (5.20), one ob-
tains the following total expression for the double sum (5.23):

(5.29)

Now, summing all the contributions to 4M', we

get

ZM'=ZM. +~M, +~M, +aM„

3 dk d 1
= —

CV — —+ —&u(k)
2 ' nv'2 J 2 g d& 2

2 g2

there and then keep, only the quadratic part in the
quantum fields which gives all the one-loop graph
contributions. Then, performing a similar cal-
culation to the one in this section, we expect to
obtain the result ~/P"+M, ')' ' so that the total
energy in the one-loop approximation is

2 2 1/2(P +Mn ) + ~2 M, )~n

which is identical to (5.8), so that &M'=&M. Thus
we found that the first two quantum corrections to
the soliton energy are given by
nE =6M —(Pn/2M )(nM/Mn).

One can calculate the total one-loop correction,
extending the method used in Sec. IV. We have to
shift the fields X and n' by the classical fields found

VI. MESON FIELD GREEN'S FUNCTIONS
IN ONE-SOLITON SECTOR

With the systematic perturbation theory devel-
oped in Sec. III, one can make perturbative cal-
culations of other quantities besides the soliton
energy. Of special interest are the calculations
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& p'I y(o, x)lp&= & p'I y,(x -x(o)) Ip&

+ (p'I x(&l, x -&(0))Ip&, (6.1)

where X is the coordinate operator. The first
term is of the order ~, while the second term
gives, at most, ~ contributions. Inserting the
identity, we can easily evaluate the leading term:

of Green's functions in the one-soliton sector.
The Q field matrix elements between the one-
soliton and many-meson states &p'&k;) I (plp&t;)&
were first considered by Goldstone and Jackiw'
in their treatment of these two-dimensional ex-
tended particle theories. They used the method of
Kerman and Klein, assuming that the connected
matrix elements between ~ and n mesons have an
expansion in powers of ~ ' and that the leading
order is ~' ". These assumptions can now

easily be justified.
Let us start with the matrix element

(p'I (p(0, x)lp&. Performing the canonical trans-
formation described in the Introduction, we get

with

f( y-) = J)dp G(0; y-, p);, G(o; pp)
84. p)

, +U" ((p,) f(x) = ', ('(0;xx),
d' „3$,(x)

(6.6)

where we used the fact that ((I),(x), $,(x)G(0;xx)) =0.
Next, we will compute the leading term of the

one-meson matrix element &P'I4'IP; (G„&, where P
is the total momentum of the soliton and meson and
())„=(k'+2)'' is the meson energy. This matrix
element is equal to

(6 5)

It is logarithmically divergent and the divergence
is cancelled out by the contribution coming from
the mass counterterm &m'Jog which also gives a
tadpole graph of the order 0(X '). Finally, in order
to see the connection with the result of Ref. 7, we
observe that f(x) satisfies

& p'I &.(x -&(0))lp& = dy e'"-'"
A, (x -y).

(6.2)

(p'Iy, (x-x(0))lp; ~„&+&p'Ix(o, x-x(0))lp, ~„&

(6.7)

and here the first classical term has no contribu-
tion to the leading order. To evaluate the second
term we expand the field X(p, t) in terms of the
eigenfunctions P„:

This essentially classical part of the matrix ele-
ment was the initial ansatz of Goldstone and Jac-
kiw. Next, one can compute the first quantum
correction coming from the second term in (6.2).
From the path-integral representation of
&p'Ix(o, x-&)lp& we see that one first has to find
the "vacuum" expectation value of x, (0, p) and then
make the substitution p =&-X to evaluate this
operator between the soliton states. Thus the first
quantum correction is given by the tadpole graph of
order 0(X ') and we have

x(t, p) =q(t))t), (p)

+g' „&, [a.(t)0.(p)+a.'(t)&.*(p)J,
n 2 (()nF

(6.8)

where the n =0 mode is omitted because of the &-

function conditions in Eq. (2.14). Now the n =1
mode describes the internal soliton degree of free-
dom and not a quantum particle. Therefore, the
soliton can have energetically excited states. The
continuum modes correspond to the meson degrees
of freedom since, neglecting the interaction a„
satisfies the equation a„(t) =-(()„a„, with
(G„'=(k'+2)''. Thus, in the first approximation
the one-meson matrix element is

(6.2)

This contribution is again of the form

) dy e'" '"f(x —y),J
(6.4)

& p'Ix(o, x -&)Ip&

= O' J(d (0 G&,0')»0. G(0;0 0 )0). ''

(6.9)

so that

&i (P-P') v

&p'14 (O, x)lp; ~„& = dy '2 ~, g„(x-y)
2 (0)n)

(6.10)

is in agreement with the ansatz of Ref. 7.
The n-point Green s functions in the one-soliton sector can also be computed perturbatively. For sim-
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plicity we will calculate the two-point function and it is then trivial to generalize the result to the arbi-
trary n-point function. Let us consider the Fourier-transformed form:

G(0', Ir , 0, 6')= fdt'd*' 't ' '"' ""}dtd*e 'r "" '(0'(T(0(t '), (0't)ll,p).

Making the canonical transformation in the operator form, the time-ordered product is equal to

T[(P,(x' X-(t'))(P,(x-X(t))]+T[(P,(x'-X(t'))&t(t, x -X(t))]

(6.11)

+T[&t(t', x' X(t')-)P,(x -X(t))]+T[&t(t', x'-X(t'))y(t, x -X(t))J, (6.12)

where X is now the coordinate operator. %'e will first evaluate the contribution from the first term which
is of the order 0(l) ), while the others give smaller-order contributions. The time-ordered product can be
split into two parts,

8(t'- t}(p ( 'x-X(t')) t(()x -X(t)) 0 8(t —t')dpG(x -X(t))(pG(x'-X(t')) .
Inserting the identity Jdy~y, tp (y, t

~
=1 into the matrix element of the first part,

(p'~8(t' t)y,(x' X(t'))y,(x-X(t))~p&,

for both I" and I we see that it is equal to

(6.13)

(6.14)

dy'dy e '(p" "'"'(p (x'-y')(y', t'~y, t& e'n" "'"(t) (x-y)
~ ~

(6.15)

and after translation of the time and space variables, we get the following contribution to the Green's func-
t lOll:

(2 }'v6(E(P ') ~+(k') - E(P) —~(k))6(P'+ k'- p - k)
(ed

dx, '" 0 (*,) ' d* " ' '* Ifdt ''*' " ' "'(x t(0 0) Jd* "' 0 (— ) (6 16)

The presence of the & functions shows that tran-
sitional invariance is indeed respected by the
formalism. Recognizing the nonrelativistic propa-
gator we get for the factor multiplying the & func-
tions

' E(P')+ (u(k') —M, —(P'+k'P/2M,

(6.17)

There is also a similar term coming from the
second part of the ordered product (6.13):

E(p')- (u(k') -M, —(p'- k)'/2M, ~'(

(6.16}

This is the classical part of Green's function and
the first quantum correction can also be computed
in a similar way. It is of the order 0(&G} and
comes from the last three terms in Eq. (6.12}. We
will just demonstrate for example how one com-

(p'~TG(t' t;x' X(t'), x X-(t))-~p&, (6.20)

where G(t; p'p) is the propagator. This gives the
following contribution to the Green's function:

putes the corrections coming from the last term
of Eq. (6.12) which is the Fourier transform of

(p'~ T[&t(t', xX(t'))y(t, x -X(t))]~p&. (6.19)

This rather unconventional form can be understood
if we write down the corresponding path-integral
expression, since the canonical transformation
was originally carried out in the path-integral for-
malism. Then we see that one has first to find the
"vacuum" expectation value of T[y(t', p')y(t, p)]
and next after substitution p =x -X(t) and p'=x'
-X(t') to evaluate this operator between the one-
soliton states. Since the operators X(t) and X(t')
do not commute, this operator between the soliton
states has to be time-ordered. So, in the first
approximation, we have that the 0(l6'} contribution
to the matrix element (6.19) is given by

(6606(E(0') ~ (6') —E(0) — (6))6(0 ~ 6 -0 —6) Jdx ''"" " ' *'(
( (ti*0- T(Gt), - ( E))l ).E00(6.21 }

Now we can continue in the same way as in the preceding calculation, obtaining for the 8(t) part of the
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time-ordered product

2n(u''- (u„m co+ E(P') +(o( k') —Mo —(P'+k')'/2MO (6.22)

and a similar formula for the 6(-t) part of the
time-ordered product.

(-1)
(4n, P&m)

(k k )
.

n
(A4)
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Inserting (AS) and (A4) into (AI) and using the fact
that the main contribution in (A1} comes from the
region m-N and m-n =I«E, one obtains the fol-
lowing expression for (A1):

APPENDIX
2 ~ 1»~[(v/~2)k, ]

' (A5)

In this appendix we prove

(P., pN. )(0., P.') =

and

(A1)

Next, we use the following variation of Euler-
Maclaurin formula:

N

g (-I)"g(k. ) =
2

[S(A)-a(p)]+ 2L
Z'(A)

(A2)

In (Al) N is a sufficiently large integer such that
N/L» 1.

Using the explicit expression (3.7) for i(„, one
obtains

(4., N. ') = fk.6..
3iv (k ' —k„')

N„N sinh[(s/~g)(k„— k„)]

(A6)

where A =2'/L and N is an even number. This
expression can be proven easily be using the stan-
dard Euler-Maclaur in formula"

N N

g f( ) = f d f( ) ~ —,'[f(M) —f(0)]
m=g 0

+g 2+ [f (2& 1) (le) f (2+ 1) (P)](2n)!
x(2+k ~+k„2). (As} (A7)

To the sum in (A1), only the second term contrib-
utes. The denominator of this term gets expo-
nentially large for m —n so that m -n -N contribute
dominantly in the sum of (Al }. So we approximate
P„-(1/WL)e' ~ for the calculation of (g„,pP ):

where 8,„'s are Bernouilli numbers.
Application of (A6) to (A5) immediately leads

to (Al).
The proof of (A2} can be done in a similar fashion

by using (A6}.
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