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We confirm for the first time the existence of distinctive halo bias associated with the quadrupolar type of
statistical anisotropy (SA) of the linear matter density field using cosmological N-body simulations. We
find that the coefficient of the SA-induced bias for cluster-sized halos takes negative values and exhibits a
decreasing trend with increasing halo mass. This results in the quadrupole halo power spectra in a
statistically anisotropic universe being less amplified compared to the monopole spectra. The anisotropic
feature in halo bias that we found presents a promising new tool for testing the hypothesis of a statistically
anisotropic universe, with significant implications for the precise verification of anisotropic inflation
scenarios and vector dark matter and dark energy models.
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Introduction. Isotropy is a fundamental symmetry in
physics. Global isotropy, or equivalently statistical isot-
ropy, has been regarded as an underlying conjecture in
cosmology. Various cosmic observations also support this
symmetry,1 although slight deviations have not been
entirely ruled out. From a theoretical point of view, broken
global isotropy, known as statistical anisotropy (SA), could
indicate the presence of anisotropic sources, such as vector
fields. Various inflationary scenarios that incorporate vector
fields, motivated by magnetogenesis and axion phenom-
enology, have been extensively explored (see, e.g.,
Refs. [1–3] for review). There are also interesting studies
on vector fields in the context of dark matter and dark
energy (e.g., Refs. [4–7]). Measuring the SA can play a
crucial role in diagnosing such scenarios.
From both theoretical and observational sides, the

quadrupolar type of SA in the primordial curvature

perturbations or the linear matter density field has been
studied frequently, as it is a primary feature due to vector
fields. Its magnitude is conventionally characterized by the
parameter g�. Observational constraints on g� have been
derived from the cosmic microwave background [8–10]
and galaxy clustering [11,12]. Since future galaxy surveys
are expected to increase the constraining power dramati-
cally [13], corresponding theoretical studies have become
more important accordingly.
Recently, the impacts of SA on galaxy/halo statistics have

been discussed in Ref. [14], highlighting the presence of a
distinctive galaxy/halo bias term associated with the SA of
the linear matter density field, based on a simple linear bias
model. Particularly interestingly, the bias itself becomes
anisotropic. For the quadrupolar type of SA, notably, this
SA-induced bias manifests solely in the quadrupole power
spectra, distinguishing it completely from the conventional
linear bias. In other words, detecting a nonzero SA-induced
bias in observations would provide direct evidence of the
broken global isotropy, and give a chance to test underlying
cosmological scenarios, e.g., anisotropic inflation and vec-
tor dark matter and dark energy models.

*Contact author: shogo.masaki@gmail.com
1Cosmic isotropy is, of course, locally violated as observed in

the fluctuations of the cosmic microwave background, while this
is not equal to the global or statistical violation we mention here.
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To verify the existence of the bias associated with SA
predicted by the simple linear bias model, in this Letter, we
perform cosmological N-body simulations incorporating
the quadrupolar SA in the linear matter density field. We
develop three estimators for the coefficient of the SA-

induced halo bias, bð2Þh , which are applied to the large-scale
distribution of simulated halos. We confirm the presence of

nonzero contribution from the bð2Þh term for cluster-sized

halos. The detected bð2Þh coefficient is found to be negative,
with a decreasing trend as halo mass increases, and thus the
quadrupole halo power spectra can be less amplified than
the monopole power spectra in a statistically anisotropic
universe.

SA-induced bias. Following Ref. [14], let us briefly review
the halo bias in the statistically anisotropic universe based on
the simple analytic estimation. First, SA in thematter density
fields is characterized by the Legendre polynomial LlðxÞ.
We focus on the quadrupolar type of SA and consider the
power spectrum of the linear matter overdensity fields,
hδmðk1Þδmðk2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPmðk1Þ with

PmðkÞ ¼
�
1þ 2

3
g�L2ðμÞ

�
P̄mðkÞ; ð1Þ

where P̄mðkÞ corresponds to the isotropic component of the
matter power spectrum, L2ðμÞ≡ 1

2
ð3μ2 − 1Þ with μ≡ k̂ · d̂

and k̂≡ k=jkj, and d̂ denotes the preferred direction
associated with the SA.2 The description for δmðkÞ repro-
ducing Eq. (1) reads

δmðkÞ ¼
�
1þ 1

3
g�L2ðμÞ þOðg2�Þ

�
δ̄mðkÞ; ð2Þ

where δ̄mðkÞ is the isotropic part of the matter density field
obeying hδ̄mðk1Þδ̄mðk2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞP̄mðk1Þ.
Instead of Legendre polynomial, by introducing a global
traceless tensor field,

Gij ≡ g�

�
d̂id̂j −

1

3
δij

�
; ð3Þ

Eq. (1) can be rewritten as

PmðkÞ ¼
�
1þ Gijk̂ik̂j

�
P̄mðkÞ: ð4Þ

Thus, the quadrupolar SA can be interpreted as an aniso-
tropic distortion due to the existence of the global tensor
field, Gij. In the following, we assume that the SA is
sufficiently small, jg�j ≪ 1, to be consistent with

observations [8–12], and wewill therefore evaluate relevant
quantities up to the linear order of g�.
In a similar way to Refs. [15–20], under the presence of

Gij, we expand the halo overdensity field δh with δm and a

traceless tidal field Kij ≡ ð∂i∂j
∂
2 − 1

3
δijÞδm, leading to

δh ¼ bhδm þ 1

2
bð2Þh GijKij þOðδ2m; δmK;K2Þ: ð5Þ

Here, the coefficients bh and b
ð2Þ
h represent linear responses

on δm and Kij, respectively. Note that, in isotropic universe
models, i.e., for Gij ¼ 0, the second term vanishes and
hence any contribution due to Kij appears at higher order
[18]. At linear order of δm, its Fourier counterpart reads

δhðkÞ ¼
�
bh þ

1

2
bð2Þh Gijk̂ik̂j

�
δmðkÞ

¼
�
bh þ

1

3
bð2Þh g�L2ðμÞ

�
δmðkÞ; ð6Þ

and this equation implies that the halo bias, which is the
response of the halo overdensity field to the matter over-
density field, itself is anisotropic. Thus, Ref. [14] pointed
out for the first time that, in addition to the linear bias
parameter in isotropic universe, bh, a new kind of bias

parameter, bð2Þh , is generically introduced due to the
existence of the effective global tensor field, Gij, that is,
the SA in the matter density field.3

From Eqs. (2) and (6), we can evaluate the halo auto-
power spectrum, Ph, and the halo-matter cross-power
spectrum, Phm. By expanding these power spectra in terms
of the Legendre polynomials,

PXðkÞ ¼
X
l¼0;2

PX;lðkÞLlðμÞ; ð7Þ

for X∈ fh; hmg, we have

Ph;0ðkÞ ¼ b2hP̄mðkÞ;

Ph;2ðkÞ ¼
2

3
bh
h
bh þ bð2Þh

i
g�P̄mðkÞ;

Phm;0ðkÞ ¼ bhP̄mðkÞ;

Phm;2ðkÞ ¼
1

3

h
2bh þ bð2Þh

i
g�P̄mðkÞ; ð8Þ

at the leading order in the perturbative expansion. One can

see that if bð2Þh ≠ 0, the quadrupole (anisotropic) term is
biased differently from the monopole (isotropic) one. This
is an interesting prediction found in Ref. [14].

2We denote the quantities in the isotropic universe with “−”
throughout this work.

3See Ref. [20] for a similar analysis on anisotropic biases
induced by gravitational waves.
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Simulations. To examine the presence of the bð2Þh term
discussed above, we perform cosmological N-body simu-
lations and investigate the halo distribution in a statisti-
cally anisotropic universe. In our setup, aside from using
the statistically anisotropic matter power spectrum given
by Eq. (1), we assume a standard flat Λ-cold dark
matter cosmology with Ωm0 ¼ 0.3156;ΩΛ0 ¼ 0.6844;
H0 ¼ 100h ¼ 67.27 kms−1Mpc−1; ns ¼ 0.9645, and As ¼
2.2065 × 10−9 [21]. We use GADGET2 [22] as the cosmo-
logical N-body solver and employ 10243 simulation
particles with mass of 5 × 1012h−1M⊙ in a box with a
side length of 4h−1 Gpc. For the linear matter power
spectrum given by Eq. (1), we compute the isotropic part
of the power spectrum, P̄mðkÞ, at zini ¼ 31 using a publicly
available Boltzmann solver CAMB [23] and incorporate the
SA by multiplying it the factor ½1þ 2

3
g�L2ðμÞ�. We fix the

preferred direction of the SA to be d̂ ¼ ð0; 0; 1Þ. Based on
the obtained matter power spectrum, the initial conditions
(ICs) are generated at zini using the second-order
Lagrangian perturbation theory (2LPT) [24–26]. We gen-
erate ICs using grid pre-ICs rather than glass pre-ICs,
where the pre-IC refers to the configuration of simulation
particle distribution before adding displacements according
to 2LPT. As shown in Ref. [27], the grid pattern of the grid
pre-ICs adds artificial anisotropy to the simulated matter
distribution, especially at high redshifts and on small
scales. We checked that measurements at z ¼ 0, which
we mainly focus on in this work, do not change by the
choice of pre-IC. Although the observational constraints
are tight, e.g., jg�j ≲Oð10−2Þ [8–12], we employ slightly
larger values of g� ¼ �0.1 and �0.3 to enhance the signal
of the quadrupole power spectra in the simulations,

subsequently reducing the noise on the bð2Þh term derived
from them.We confirmed that the results from the runs with
g� ¼ �0.01 exhibit substantial noise but remain reasonably
consistent with those from our main runs shown in the
figure presented later. We also conduct isotropic simula-
tions with g� ¼ 0. For each value of g�, we run four
independent random realizations using the same four
random seeds for IC generation, resulting in a total of
20 realizations.
As a sanity check, we first compute the ratio

Pm;2ðkÞ=½23 g�P̄mðkÞ�, where Pm;2ðkÞ is the quadrupole
moment of the matter power spectrum. According to the
linear perturbation theory in the anisotropic universe, this
ratio should always be unity [see Eq. (1)]. Therefore, by
examining the evolution of this ratio on large scales where
linear theory is valid, it should be possible to check whether
our simulations are implemented to incorporate SA appro-
priately. We measure P̄mðkÞ from the isotropic simulations
of g� ¼ 0. To cancel out a noise on the ratio, we here
employ the “pairing” method, which is described below.
Quadrupole power spectra tend to be noisy on large scales
due to sample variance. We found that, roughly speaking,

the noise term ϵ appears on large scales as an additive form:

Pm;2ðkÞ ≃
2

3
g�P̄mðkÞ þ ϵðkÞ; ð9Þ

where ϵ fluctuates around zero randomly for individual
realizations. Therefore, by simply averaging the ratios
Pm;2ðkÞ=½23 g�P̄mðkÞ� from the two runs with g� ¼ gþ� > 0

and g� ¼ g−� ¼ −gþ� whose initial random seeds are iden-
tical, the noise term is largely canceled. The results from
this paring method are labeled as “jg�j ¼ gþ� .”
In Fig. 1, the symbols (jg�j ¼ 0.1) and lines (jg�j ¼ 0.3)

represent the average values of Pm;2ðkÞ=½23 g�P̄mðkÞ� over
the four paired realizations, with the standard errors shown
as the error bars. Since we are focusing on linear scales to

investigate bð2Þh as predicted by the linear bias model, we
plot the data points in the range of 0.01 < k=ðhMpc−1Þ <
0.1. The ratio at each redshift (z ¼ 31, 1, and 0) agrees with
unity within 5% on larger scales in both cases of jg�j ¼ 0.1
and 0.3, and is independent of the value of g�, indicating
that the SA has been appropriately incorporated into the
simulations. At later epochs, the ratio slightly decreases
toward smaller scales, which may be attributed to nonlinear
effects (a detailed study on nonlinear effects will be
presented separately; see also Ref. [28]).

Measurements of bð2Þh . To measure bð2Þh from the cosmo-
logical N-body simulations, we first identify halos using a
halo finder ROCKSTAR [29]. We use a halo mass definition
of 200 times the mean density denoted as M200m. We focus
on cluster-sized halos with masses in the range of
14.0 < log10½M200m=ðh−1M⊙Þ� < 15.5. Then, to measure

bð2Þh in the simulated halo distribution appropriately, we

FIG. 1. The ratio Pm;2ðkÞ=½23 g�P̄mðkÞ� measured from the
anisotropic universe simulations at z ¼ 31, 1, and 0. The points
(lines) with the error bars show the jg�j ¼ 0.1 (0.3) result. The
horizontal solid line shows unity as predicted by the linear theory.
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employ three different estimators. Two of these are
defined as

b̂ð2Þh ðkÞjh ¼
3P̂h;2ðkÞ

2g�bh ˆ̄PmðkÞ
− bh; ð10Þ

b̂ð2Þh ðkÞjhm ¼ 3P̂hm;2ðkÞ
g� ˆ̄PmðkÞ

− 2bh; ð11Þ

where quantities with hats denote the values computed

from a single realization, and we denote b̂ð2Þh ðkÞ explicitly
to reflect the wave number dependence of the estimators.
We precompute bh in the estimators using the isotropic
simulation and simply taking the average value of
P̄hm;0ðkÞ=P̄mðkÞ over the four realizations in the range of
0.01 < k=ðhMpc−1Þ < 0.1. Here, P̄hm;0ðkÞ is the monop-
ole component of the cross-power spectrum between the
halo density field and the matter distribution in the isotropic
simulations. Thanks to the isotropic simulation which
shares the random seed for IC generation with the SA
realization, we can compute Phm̄ðkÞ—the cross-power
spectrum between the halo density field in the SA simu-
lation δhðkÞ [Eq. (6)] and the matter distribution in the
isotropic simulation δ̄mðkÞ [Eq. (2)]—in addition to P̄mðkÞ.
Using these, the third estimator is defined as

b̂ð2Þh ðkÞjhm̄ ¼ 3P̂hm̄;2ðkÞ
g� ˆ̄PmðkÞ

− bh: ð12Þ

It is straightforward to verify that all three estimators are

constructed to correctly yield the bð2Þh ðkÞ coefficient within
linear theory. For validation under realistic nonlinear
conditions, results obtained from these estimators are
compared with each other.
Figure 2 shows the coefficient of the SA-induced bias,

bð2Þh ðkÞ, measured in our simulations with jg�j ¼ 0.1 and
0.3, using the three estimators. Note that the figure shows

−bð2Þh ðkÞ rather than bð2Þh ðkÞ. The pairing method is also
applied here to reduce the sample variance. As in Fig. 1, the
symbols and the error bars represent the averages and

the standard errors of b̂ð2Þh ðkÞ, respectively, calculated over
the four pair realizations. We consider three halo mass
ranges, log10½M200m=ðh−1M⊙Þ�∈ ð14; 14.5Þ (top), (14.5,
15) (middle), and (15, 15.5) (bottom), and present the
results in separate panels. As shown in this figure, the

measured bð2Þh ðkÞ converges to a nearly constant nonzero
negative value for the three estimators in the range of
0.01 < k=ðhMpc−1Þ < 0.1 depending on the halo mass.
The figure also shows the agreement between the results for
jg�j ¼ 0.1 and jg�j ¼ 0.3 at the overall range we consider,
and it means that the SA-induced bias in the linear regime
should be independent of the SA parameter g� as expected.

This confirms that the SA-induced bias contribution pre-
dicted in the linear model indeed exists for cluster-sized
halos on large scales. Moreover, this paper successfully
measured the nonzero value of this bias coefficient for the
first time.
To quantitatively assess the halo mass dependence of

bð2Þh ðkÞ, we fit the measured bð2Þh ðkÞ in the range of 0.01 <
k=ðhMpc−1Þ < 0.1 for each halo mass range shown in
Fig. 2 by a constant value in k. The obtained values are

FIG. 2. The coefficient of the SA-induced bias, bð2Þh ðkÞ,
measured in our simulations with jg�j ¼ 0.1 and 0.3. The top,
middle, and bottom panels show the results for the halo mass
range of log10½M200m=ðh−1M⊙Þ�∈ ð14; 14.5Þ; ð14.5; 15Þ, and (15,
15.5), respectively. bð2Þh ðkÞ estimated by Eqs. (10)–(12) are
labeled by “Ph;2,” “Phm;2,” and “Phm̄;2,” respectively.
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denoted as bð2Þh , with the k dependence omitted. Figure 3

shows −bð2Þh obtained from the three estimators [Eqs. (10)–
(12)] for both the jg�j ¼ 0.3 and 0.1 runs, as a function of
the average halo mass hM200mi in the three mass ranges. We

observe a consistent dependence of bð2Þh on halo mass
across all six cases, for the different estimators and the
different values of jg�j. For comparison, we overplot
0.45ðbh − 1Þ obtained from our estimates of bh taking
values for 2.4 ≤ bh ≤ 6.5. Interestingly, there seems to be a

scaling relation, bð2Þh ∝ −ðbh − 1Þ, as also seen in other-
origin tidal biases [17,20]. As a result, the quadrupole
moment is biased differently from the monopole moment,

with the ratio being 0.62≲ ðbh þ bð2Þh Þ=bh ≲ 0.74. In other
words, in a statistically anisotropic universe, the quadru-
pole cluster-sized halo power spectra are consistently less
amplified than monopoles.

Since our estimates of bð2Þh are derived for the cluster-
sized halos, they are applicable to constraining g� by
analyzing the clustering of galaxy clusters [30].4 The
constraining power from current galaxy cluster surveys
would, however, be significantly weak because of
their very limited sample numbers and survey volumes.
It would be hard indeed to hunt the anisotropic signal with
jg�j ¼ Oð10−2Þ if any. In light of this, analyzing distribu-

tions of (not galaxy clusters but) galaxies is somewhat more
promising and could potentially capture it [13]. Therefore,

estimating bð2Þh of galaxy-sized halos would also be an
important topic.

Conclusions. Using cosmological N-body simulations
incorporating the quadrupolar SA, we studied the coef-

ficient of the SA-induced halo bias, bð2Þh , predicted in the
linear bias model. To achieve this, we have introduced three
simulation-based estimators defined as Eqs. (10)–(12), and
successfully confirmed the existence of the SA-induced

halo bias. We showed that bð2Þh ðkÞ is negative on large
scales, approximately constant in wave number (Fig. 2),
and its absolute value increases with halo mass within the
mass range considered in this work (Fig. 3). As a result, the
quadrupole moment of the halo power spectrum gains an
additional dependence on the new bias parameter, which is
absent for the monopole in a statistically anisotropic
universe. Such anisotropic features in the halo bias provide
a new tool for testing the statistically anisotropic universe
and are expected to lead to more precise verification of
anisotropic inflation scenarios, as well as models involving
vector dark matter and dark energy.
In this Letter, we focused on the halo distribution on

large scales, which approximately correspond to the linear
regime, and did not address the behavior on smaller
scales where the nonlinear structure growth becomes
significant. The nonlinear effects on the SA are intriguing
and will be explored in future work. In addition, we plan

to investigate bð2Þh of less massive galaxy-sized halos, its
time evolution, and halo bias potentially induced by various
forms of the SA, as discussed in, e.g., Refs. [32–34].
These studies would further provide deeper insights into the
SA and its implications for underlying cosmological
scenarios.
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FIG. 3. The coefficient of the SA-induced bias, bð2Þh , obtained
from the three estimators [Eqs. (10)–(12)] with both jg�j ¼ 0.3
and 0.1 runs as a function of the average halo mass hM200mi in the
three mass ranges. For comparison, 0.45ðbh − 1Þ obtained from
the isotropic realizations is also shown.

4In practical data analyses, nonprimordial anisotropies due to,
e.g., the redshift-space distortion, the Alcock-Paczyński effect,
and peculiar survey geometries must be properly subtracted. It
would be feasible by means of the polypolar spherical harmonic
decomposition technique [13,14,31] as demonstrated in Ref. [12].
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