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The Weyl double copy (WDC) relation connects the Weyl tensor of the gravity theory and the field
strength tensor of the Maxwell theory, which provides a concrete realization of the classical double copy.
Although intensively investigated, theWDC is only limited in four-dimensional spacetime. In this Letter, we
generalize the WDC relation to five-dimensional spacetime, which offers the first example of the WDC in
higher dimensions. We show that a special class of five-dimensional type N vacuum solutions admits a
special class of degenerate Maxwell field that squares to give the Weyl tensor. The five-dimensional WDC
relation defines a scalar field that satisfies the source-free Klein-Gordon equation on the curved background.
We further verify that for five-dimensional pp-wave solution and Kundt solutions, theMaxwell fields and the
scalar fields also satisfy the Maxwell’s equations and the wave equation on five-dimensional Minkowski
spacetime.
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Introduction. Gauge and gravity theories are fundamen-
tally important in our understanding of physical phenom-
ena. It is intriguing to observe that they are intimately
linked. One such example is the celebrated AdS/CFT
correspondence [1], which relates the quantum gravity in
the anti–de Sitter (AdS) space to the conformal field theory
(CFT) on the AdS boundary. Another striking example is
the double copy relation, which interprets the perturbative
scattering amplitudes of gravity as a product of two
scattering amplitudes of gauge theory [2–4]. The double
copy perspective suggests a more efficient and elegant
way for computing the gravity scattering amplitudes than
the traditional calculations in general relativity, see, e.g.,
[5–8], which plays a crucial role in the recently established
amplitudes-based methods to derive the state-of-the-art
results of interest to the gravitational wave community
[9–12].
The remarkable success of the double copy relation has

motivated investigations at the classical level connecting
classical solutions of gauge and gravity theories which
pioneers a classical double copy relation from the Kerr-
Schild construction [13]. The classical double copy reveals

exact relations between solutions beyond perturbative
approach, which has a broader range of interests outside
of the amplitudes community and significantly extends the
scope of the double copy relation, see, e.g., [14–37].
Shortly, a second version of classical double copy, the
Weyl double copy [38], was proposed by connecting the
Weyl tensor of the gravity theory and the field strength
tensor of the Maxwell theory.
The advantage of the WDC is resided in its gauge

invariant nature, which provides a coordinate independent,
hence more general method for revealing the exact math-
ematical connections between two classical theories. The
WDC has drawn intensive attentions from various perspec-
tives [39–57], which underpins the intrinsic connection
between the Einstein equations and the Maxwell’s equa-
tions. Although, the WDC was expected to exist in higher
dimensions since it was proposed [38] and the higher-
dimensional spinorial formalism was adapted in view of this
goal [58], the current investigations are still restricted in
four-dimensional spacetime [59]. Since the independent
components of the Weyl tensor increase much faster than
the metric as the spacetime dimension increases, building
exact relations for the Weyl tensor to realize a classical
double copy in higher dimensions is much more challenging
than the Kerr-Schild construction, see, e.g., the known
examples of the later [19,28,64,65]. Whether the WDC
relation exists in higher dimensions is a vital issue for its
scope, origin [42,44], and compatibility with the Kerr-
Schild double copy [52,53]. More importantly, it restricts
how general the classical relation between gauge and
gravity theories is.
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In this Letter, we initialize the study of a five-dimensional
Weyl double copy. The construction of the four-dimensional
WDC formula constricts that it is only valid for the algebraic
type D and type N spacetime [66]. We start from the simpler
case in five dimensions, the type N vacuum solution of
Einstein gravity in the Coley-Milson-Pravda-Pravdova
(CMPP) classification [67–70]. In the five-dimensional
spinorial formalism [58], we propose an algebraic con-
struction of the WDC formula for type N solutions. We find
a self-contained reduction of the type N spacetime, where
one can confirm that any solution of this special class admits
a special class of degenerate Maxwell field that squares to
give the Weyl tensor. Moreover, a complex scalar field is
defined from this five-dimensional WDC relation and the
scalar field satisfies the wave equation on the curved
background. Hence, a concrete WDC relation is uncovered
in five dimensions. We then present two examples of exact
solutions in five dimensions, which are a special class of the
pp-wave and Kundt solutions. Remarkably, the Maxwell
fields and the scalar fields for those two cases also satisfy
the Maxwell’s equations and the wave equation on the flat
Minkowski spacetime. Our results confirm the existence of
the higher-dimensional WDC and consolidate the robust-
ness of the classical double copy relation.

4DWDC relation for type N solutions. TheWDC relation is
better appreciated in the spinorial formalism [38,41]. In
four-dimensional spacetime, the homomorphism between
the Lorentz group and SLð2;CÞ allows one to convert the
spacetime indices μ; ν… into spinor indices A;B;… and
their conjugate A0; B0;…, where the Van der Waerden
matrices σμAA0 are applied to transform between them. The
spinorial version of the Weyl tensor is fully determined by
the totally symmetric Weyl spinor ψABCD and its complex
conjugate. The WDC relation is interpreted by the decom-
position of the Weyl spinor [38]

ψABCD ¼ 3c
S
ϕðABϕCDÞ; ð1Þ

where ϕAB is a totally symmetric two-spinor defined from
the Maxwell tensor Fμν and S is a (complex) scalar field.
The WDC formula in (1) can be written in a null frame
system, such as the Newman-Penrose (NP) formalism [71].
The null bases ðl; n;m; m̄Þ of the NP formalism is con-
structed from the spinor bases foA; ιAg as

lμ ∼ σμAA0oAōA
0
; nμ ∼ σμAA0 ιA ῑA

0
;

mμ ∼ σμAA0oA ῑA
0
; m̄μ ∼ σμAA0 ιAōA

0
: ð2Þ

The spinor indices are raised and lowered by the two-
dimensional Levi-Civita tensor which can be decomposed
by the spinor bases as ϵAB ¼ oAιB − oBιA.
For a type N spacetime, the only nonzero Weyl scalar

is Ψ4 ¼ ψABCDι
AιBιCιD ¼ Cμνρσnμm̄νnρm̄σ when l is the

principal null direction. And Φ2 ¼ ϕABι
AιB ¼ Fμνm̄μnν is

the only nonzero Maxwell scalar of a degenerate Maxwell
field. The type N WDC relation in the NP formalism is
simply given by [41]

Ψ4 ¼
3c
S
Φ2Φ2: ð3Þ

This relation seems revealing a trivial connection, because
for any given Maxwell field, its square is naturally
associated to the Weyl tensor from the algebraic derivation
of the scalar field S ¼ 3cΦ2Φ2=Ψ4. The key point of the
WDC is that if one is given a type N spacetime, how can
one construct the Maxwell field which gives the Weyl
tensor from its square, and what is the property of the scalar
field. Those questions are well addressed in the seminal
work [41]. Inserting the WDC relation into the Bianchi
identity of the Weyl tensor and assuming that the Maxwell
scalar solves the Maxwell’s equation, one can obtain the
equations for the scalar field S as

D log S − ρ ¼ 0; δ log S − τ ¼ 0: ð4Þ

If a scalar field is a solution of (4), it must solve the wave
equation □S ¼ 0 on the type N background [41]. For any
scalar field solves (4), a degenerate Maxwell field can be
derived from the WDC relation (3) as the square-rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΨ4=ð3cÞ

p
. The integrability of equations in (4) guaran-

tees that all four-dimensional type N vacuum solutions
admit a degenerate Maxwell field that squares to give the
Weyl tensor and the zeroth copy (the scalar field S) solves
the wave equation. The decomposition of the Weyl tensor is
not unique in this case.
The aim of the present work is to extend the above

analysis to five dimensions. However, the four-dimensional
WDC relation cannot imply any relation in five dimensions.
The Weyl spinor in four dimensions can always be
decomposed in terms of four rank-one spinors, which
provides an alternative viewpoint of the Petrov classification
from the alignment of the rank-one spinors. Hence, the four-
dimensional WDC can only be constructed for algebraic
type D and type N solutions for two equal Maxwell fields,
which implies the intrinsic relationship between the four-
dimensional WDC and the algebraic classification, and also
simplifies the verification of the WDC, namely one just
needs to consider two types of algebraically special vacuum
solutions. In five dimensions, the algebraic classification is
only relevant to the little group four-spinors of the Weyl
tensor rather than the Weyl spinor [58]. If one insists on the
relation (1) in five dimensions, the algebraic classification
would not be of benefit to the verification of theWDC at all.
A relevant issue is that there are more components of the
Weyl tensor in five dimensions which makes the proposal of
the WDCmuch more challenging. The very first issue about
a five-dimensional WDC relation is that it should involve
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the Weyl spinor or the little group spinors. Actually, the
existence of the WDC in five dimensions is also question-
able. The four-dimensional WDC is argued to be originated
from the twistor space [42]. Though it has higher-dimen-
sional generalization, the twistor space has less direct
connection to spacetime in higher dimensions. So, it is
very doubtable that a higher-dimensional twistor space can
yield a higher-dimensional WDC that indicates a decom-
position of the spacetime Weyl tensor.

5D WDC relation for type N solutions. We follow closely
[58] for the spinorial formalism in five dimensions. Five γ
matrices are chosen as the bases to connect the spacetime
indices and spinor indices. They are given by

γμ̂AB ¼
�

0 σμ̂αβ0

σ̃μ̂α0
β 0

�
; γ4AB ¼ −i

�
ϵαβ 0

0 ϵα0β0

�
; ð5Þ

where μ̂ ¼ 0, 1, 2, 3 denotes the first four components of a
five-dimensional vector, A;B ¼ 1, 2, 3, 4 are the spacetime
spinor indices and α, β are now the spinor indices in the van
der Waerden matrices. Correspondingly, the spinor bases in
five dimensions are chosen as

kA1 ¼
�

0

ōα
0

�
; kA2 ¼

�
oα
0

�
;

nA1 ¼
�
ια

0

�
; nA2 ¼ −

�
0

ῑα
0

�
: ð6Þ

One can simply package them as kAa ¼ ðkA1 ; kA2 Þ and
nAa ¼ ðnA1 ; nA2 Þ, where indices a and b are packaged from
two basis spinors and are referred to as little group spinor
indices. A rank-two tensor ΩAB is introduced to raise or
lower the spinor index [58], which we decompose as

ΩAB ¼ ðkAanBb − kBanBbÞϵab: ð7Þ

One can verify that the right hand side of (7) fulfills all the
properties of ΩAB.
The algebraic classification in the spinorial formalism has

been constructed in [58], which reproduces the full structure
of the CMPP classification. For the five-dimensional type N
spacetime, the nonzero little group four-spinors for theWeyl

tensor are ψ ð4Þ
abcd ¼ Cμνρσσ

μν
ABσ

ρσ
CDnAanBbnCcnDd [58],

where

σμνAB ¼ 1

2
ðγμACγνCB − γνACγ

μC
BÞ: ð8Þ

A natural generalization of the WDC formula to five
dimensions for the type N spacetime can be written as

ψ ð4Þ
abcd ∝ ϕð2Þ

ðabϕ
ð2Þ
cdÞ; ð9Þ

where ϕð2Þ
ab ¼ Fμνσ

μν
ABnAanBb are the nonzero little group

two-spinors of a degenerate Maxwell tensor [58]. Here we
have not specified the scalar field as the case in four
dimensions since there are more nonzero Weyl scalars in
five dimensions. In principle, there could be more scalar
fields involved. Note that the four-dimensional case of the
WDC relation for two equal electromagnetic fields is only
valid for type D and type N spacetime where only one
(complex) Weyl scalar is nonzero. More explicitly, we
propose

ψ ð4Þ
1111 ¼

3c
S1

ϕð2Þ
11 ϕ

ð2Þ
11 ; ψ ð4Þ

2222 ¼
3c
S01

ϕð2Þ
22 ϕ

ð2Þ
22 ;

ψ ð4Þ
1112 ¼

3c
S2

ϕð2Þ
11 ϕ

ð2Þ
12 ; ψ ð4Þ

2221 ¼
3c
S02

ϕð2Þ
22 ϕ

ð2Þ
21 ;

ψ ð4Þ
1212 ¼

c
S3

½ϕð2Þ
11 ϕ

ð2Þ
22 þ 2ðϕð2Þ

12 Þ2�: ð10Þ

We have introduced two independent complex scalar fields
S1, S2 and one real scalar field S3. Then wewill transform to
a null frame to test the relations in (10) by the Bianchi
identity and the Maxwell’s equation.
In higher-dimensional spacetime, it is convenient to

construct a null frame system for describing the classi-
fication of the Weyl tensor [67–70]. The basis vectors are
typically chosen as

l ¼ e0 ¼ e1; n ¼ e1 ¼ e0;

mi ¼ ei ¼ mi ¼ ei; i ¼ 2;…; n − 1; ð11Þ

with two null vectors l and n, and n − 2 spacelike vectors
mi. They satisfy the orthogonal conditions l · l ¼ n · n ¼
l ·mi ¼ n ·mi ¼ 0, and the normalization conditions
l · n ¼ 1; mi ·mj ¼ δij. The quantities Lμν ¼ ∇νlμ; Nμν ¼
∇νnμ;Mk

μν ¼ ∇νmk
μ are defined to specify the spin

coefficients.
For a type N solution, the nonzeroWeyl scalars are ψ ij ¼

Cμνρσnμmiνnρmjσ in the null frame [67–70], see also [72].
And ϕi ¼ Fμνnμmiν are the nonzero Maxwell scalars of a
degenerate Maxwell field. Converting the WDC formu-
las (10) to the null frame yields [72]

ψ22 − ψ33 − 2iψ23 ¼
3c
S1

½ðϕ2Þ2 − ðϕ3Þ2 − 2iϕ2ϕ3�;

ψ22 − ψ33 þ 2iψ23 ¼
3c
S01

½ðϕ2Þ2 − ðϕ3Þ2 þ 2iϕ2ϕ3�;

ψ34 þ iψ24 ¼
3c
S2

ðϕ3ϕ4 þ iϕ2ϕ4Þ;

ψ34 − iψ24 ¼
3c
S02

ðϕ3ϕ4 − iϕ2ϕ4Þ;

ψ44 ¼
c
S3

½ðϕ2Þ2 þ ðϕ3Þ2 þ 4ðϕ4Þ2�: ð12Þ
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The above equations present a natural extension of the
WDC formulas to five dimensions for the type N space-
time. However, we are not able to extend the verification of
[41] to a generic five-dimensional type N spacetime.
Because the equations for the scalar fields are highly
entangled with the Maxwell scalars. We cannot separate
the equations for each scalar field. In the next section, we
will show a self-contained reduction of the type N solution
where one can realize a concrete WDC.

Reduced type N solution and the WDC relation. We now
consider a 4D-like reduction [73] of the five-dimensional
type N spacetime where we impose the restrictions
ψ4i ¼ 0 for the Weyl scalars. The traceless property of
the Weyl tensor then yields ψ22 ¼ −ψ33. Correspondingly,
the Maxwell scalars and zeroth copies should be ϕ4 ¼ 0;
S3 → ∞, where the divergent scalar field S3 is chosen to
turn off the extra component from the doubling in five
dimensions. We postpone commenting on this curious
point to the end of this section. A higher-dimensional
Goldberg-Sachs-like theorem [74,75] guarantees that
for the CMPP type N spacetime the Weyl aligned null
direction is geodesic (but no longer shear-free in general).
Thus we can affine parametrize the geodesic and then take
an appropriate spin transformation and a null rotation to
make other basis vectors parallely propagated along l. We
introduce the following definitions

Ψ4 ¼ −ðψ22 þ iψ23Þ; Ψ̄4 ¼ −ðψ22 − iψ23Þ;

φ2 ¼ −
1ffiffiffi
2

p ðϕ2 þ iϕ3Þ; φ̄2 ¼ −
1ffiffiffi
2

p ðϕ2 − iϕ3Þ;

δ ¼ 1ffiffiffi
2

p ðδ2 − iδ3Þ; δ̄ ¼ 1ffiffiffi
2

p ðδ2 þ iδ3Þ;

δ̂ ¼ iδ4; S ¼ S1
c
: ð13Þ

where D, Δ, and δi are the directional derivatives asso-
ciated to the basis vectors l, n, and mi, respectively. Then,
the Bianchi identity and the Maxwell’s equation could be
rewritten as [72]

DΨ4 ¼ −ðL22 þ iL23ÞΨ4;

δΨ4 ¼ −
1ffiffiffi
2

p ½ð2L12 þ 2M2
33 − L21Þ

þ iðL31 − 2L13 þ 2M2
32Þ�Ψ4;

δ̂Ψ4 ¼ ½ðM3
42 − 2M3

24Þ þ iðL41 − 2L14 þM2
42Þ�Ψ4; ð14Þ

and

Dφ2 ¼ −ðL22 þ iL23Þφ2;

δφ2 ¼ −
1ffiffiffi
2

p ½ðL12 þM2
33 − L21Þ

þ iðL31 − L13 þM2
32Þ�φ2;

δ̂φ2 ¼ ½ðM3
42 −M3

24Þ þ iðL41 − L14 þM2
42Þ�φ2: ð15Þ

The WDC formula in the reduced case is simply given by

Ψ4 ¼
1

S
ðφ2Þ2: ð16Þ

Now it is clear that the previously chosen divergent scalar
field S3 is to prevent the mixing term constructed from
φ2φ̄2 in the Weyl doubling. Such a term is not involved at
all in the four-dimensional WDC relation. Hence, it is
reasonable to have a special treatment in five dimensions
by simply imposing that there is no Weyl scalar associated
to the φ2φ̄2 term.
Substituting the WDC relation (16) into the Bianchi

identity and simplifying them with the Maxwell’s equation
on the type N background, we obtain the equations for the
scalar field

D log S ¼ −ðL22 þ iL23Þ;

δ log S ¼ 1ffiffiffi
2

p ðL21 − iL31Þ;

δ̂ log S ¼ M3
42 þ iðM2

42 þ L41Þ: ð17Þ

Following closely the treatment in [41], we have proven
that the integrability conditions for the above differential
equations are satisfied [72], where the commutators of the
operators D, δi in [76] and the Ricci identities in [77] are
applied. Finally, it is straightforward to verify that any
solution of (17) solves the Klein-Gordon equation □S ¼ 0
on the type N background. This completes the zeroth copy
of the five-dimensional WDC relation for the reduced type
N solutions. In the next sections, we will present two
examples of the five-dimensional WDC relation.

5D pp-wave solution. The line-element of the five-dimen-
sional pp-wave solution with respect to the reduction
introduced previously is given by [78]

ds2 ¼ 2du½dvþHðu; x2; x3; x4Þdu�
þ dx22 þ dx23 þ dx24;

Hðu; x2; x3; x4Þ ¼ fðuÞx4 þ gðu; zÞ þ ḡðu; z̄Þ; ð18Þ

where z ¼ x2 − ix3. We choose the same null frame system
as [65]. A generic solution to (17) in the spacetime (18) is
S ¼ Pðu; z̄Þ. The Weyl scalar is given by Ψ4 ¼ ∂

2
z̄ ḡðu; z̄Þ,

which allows us to determine the Maxwell scalar as
φ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðu; z̄Þ∂2z̄ ḡðu; z̄Þ

p
. We have checked directly that
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the Maxwell scalar satisfies the Maxwell’s equation. Hence,
a concrete WDC relation is constructed for the special pp-
wave solution. It is easy to prove that the Maxwell field and
the scalar field defined from the WDC for the pp-wave
solution also satisfy the Maxwell’s equation and the wave
equation on five-dimensional Minkowski spacetime.

5D Kundt solution. The type N Kundt solution in five
dimensions with reduction is given by [79]

ds2 ¼ 2du½dvþHðu;v; xkÞduþWiðu;v; xkÞdxi�
þ δijdxidxj; i; j; k¼ 2;3;4;

Hðu;v; xkÞ ¼ v2

2y2
þ fðu;x2; x3Þ þ gðu;x2; x4Þ;

gðu;x2; x4Þ ¼ 1

2
B43ðuÞ2ðx4Þ2 þ g1ðuÞx2x4

þB43ðuÞC3ðuÞx4 þ g2ðu;x2Þ;
y¼ x2; W2ðu;v; xkÞ ¼ −2

v
y
;

Wmðu;v; xkÞ ¼ xnBnmðuÞ þCmðuÞ; m;n¼ 3;4: ð19Þ

Projecting the solution into the null frame system defined in
[65], one can obtain a generic solution to (17) for the Kundt
solution (19) as S ¼ Pðu; x2 − ix3Þ=x2. The Weyl scalar of
the Kundt solution is given by

Ψ4 ¼
1

ðx2Þ3
½ðx2 þ ix3ÞB43ðuÞ2 − iB43ðuÞC4ðuÞ

− i∂x3fðu; x2; x3Þ − x2∂2x3fðu; x2; x3Þ
þ ix2∂x2∂x3fðu; x2; x3Þ�: ð20Þ

Then, one can recover the Maxwell scalar from the square-
root φ2 ¼

ffiffiffiffiffiffiffiffiffi
SΨ4

p
. It can be verified directly that the

Maxwell scalar satisfies the Maxwell’s equation. We
further verify that the Maxwell and scalar fields defined
from the Kundt solution also satisfy the Maxwell’s equation
and the wave equation on five-dimensional Minkowski
spacetime [80].

Discussions. In this Letter, we offer the first realization of a
higher-dimensional Weyl double copy relation, which
significantly enlarges the scope of the WDC relation.
The formulation of the WDC in four-dimensional spacetime
is closely related to the algebraic classification. However,
the algebraic classification of solutions in five dimensions is
only relevant to the little group four-spinors of the Weyl
tensor [58]. For type N spacetime, the little group four-
spinor of the Weyl tensor is totally symmetric and is
irreducible representations of SUð2Þ. Generically, the little
group four-spinors of the Weyl tensor are decomposed into
irreducible representations of SUð2Þ, which could consist of
totally symmetry four-spinors, symmetric bi-spinors, and a

scalar [58]. The WDC formula proposed in (10) is not
enough for algebraically special spacetime of types other
than N in five dimensions, nor even type N solutions in
dimensions higher than five. One should also deal with the
extra symmetric bi-spinors and scalar fields. Actually, this is
the main obstacle for constructing the WDC in higher
dimensions where the structure of the classification of the
Weyl tensor is much richer than four dimensions.
Nevertheless, the lesson from our construction is that one
can always expect a 4D-like reduction where the WDC can
be realized in any dimensions, at least, for algebraic type D
and type N solutions, and the reduction would impose
constraints on the components associated to all the extra
dimensions. Such idea has been recently applied to recover
the WDC for five-dimensional algebraic type D solutions
[81]. At the end of the day, the reduction reveals the
remarkable fact that interesting features in four-dimensional
spacetime are compatible with extra dimensions. The
reduction proposed for the WDC could provide a refined
algebraic classification of higher-dimensional spacetime,
which should be useful for finding new exact solutions in
higher dimensions [82].
As a future direction, it is interesting to investigate the

compatibility of the five-dimensional WDC with the Kerr-
Schild double copy, which is vital to an important aspect of
the classical double copy that the single and zeroth copies
are solutions on the flat background spacetime or the full
curved spacetime. The verification of the WDC relation in
the present work (also the generic construction in [41]) is
purely at the equations of motion level in the vielbein
formalism. We have never specified any exact solutions in
a coordinates system. Then, the directional derivatives
D;Δ; δi are not specified and their connections to the
directional derivatives associated to the flat background
spacetime are not known. Hence, we cannot use the WDC
formulas to test any relations on the flat background
spacetime. Nevertheless, we have verified for two exact
solutions that the Maxwell fields and the scalar fields
defined from the WDC formula also satisfy the Maxwell’s
equation and the wave equation on the flat background
spacetime. Moreover, it is easy to verify that if one
considers linearized gravity theory, our construction will
lead to a WDC relation for the linearized Weyl tensor and
the Maxwell tensor on the flat background spacetime,
which is consistent with the investigations from the twistor
perspective in [42,44].
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