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We use machine learning methods to search for parity violations in the large-scale structure (LSS) of the
Universe, motivated by recent claims of chirality detection using the 4-point correlation function (4PCF),
which would suggest new physics during the epoch of inflation. This work seeks to reproduce these claims
using methods originating from high energy collider analyses. Our machine learning methods optimize
some underlying parity odd function of the data, and use it to evaluate the parity odd fraction. We
demonstrate the effectiveness and suitability of these methods and then apply them to the Baryon
Oscillation Spectroscopic Survey (BOSS) catalog. No strong evidence for parity violation is detected.
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I. INTRODUCTION

A parity transformation acts to spatially invert a system
and parity has, for a long time, been a defining symmetry
of the Standard Model of particle physics. Over the past
30 years, progress has been made in investigating whether
parity has a role to play in cosmology. Until very recently
most of that work was focused on cosmic microwave
background (CMB) polarization [1–6], or on gravitational
waves [7–11].
In recent years, following the proposal of Cahn et al. [12]

the large-scale structure (LSS) of the Universe has been
probed for parity violations using the 4-point correlation
function (4PCF). So far these studies have used the Baryon
Oscillation Spectroscopic Survey (BOSS) [13] of the Sloan
Digital Sky Survey (SDSS)-III [14,15] and have reported
findings of parity violation at the 8.1σ [16], 7.1σ [17], and
2.9σ-levels [18].
In three dimensions the lowest order polyhedron subject

to parity asymmetry is the tetrahedron, as shown in Fig. 1.
The 4PCF is, therefore, the lowest orderN-point correlation
function which can be probed for parity violations [12].
Tetrahedra are constructed with galaxies at each of the four
vertices, and the relative positions are used to calculate the
4PCF. This method facilitates searches across groups of

four galaxies but is, by design, constrained to only search
for parity violations at the four-point level. This limits the
type and order of parity violations that could be detected. It
is possible to consider higher N-point correlation functions,
but these quickly become intractable. On top of this there
could be parity violations which manifest through multiple
orders of correlation, which would be undetectable.
A second drawback of the method is the apparent

difficulty in quantifying the significance of the detection.
Philcox [18] performed both a rank test and a χ2 test, and
compared the results to 2048 MultiDarkPATCHY simu-
lations. These simulations are calibrated to match the
BOSS two- and three-point clustering statistics [20,21],
not the 4-point, which could lead to an underestimate of the
uncertainty in the 4PCF calculations. Hou et al. [17]
quantify the significance by calculating the uncertainty
in the covariance matrix, this could be influenced by
observational effects and instrumental systematics [17],
and assumes that the 4PCF follows a Gaussian distribution
[22]. In fact, recent work by Krolewski et al. [23] shows
that correctly accounting for 8-point contributions reduces
the significance of detection down to between 0 and 2.5σ.
The aim of this paper is to demonstrate that more general

methods can be used to search for parity violations in the
LSS. Such methods do not have to be specifically 4-point,
or even N-point, but rather consider the data in spatially
localized regions and search for underlying parity viola-
tions across all N-point correlations. A more specialized
method will than be implemented for the 4-point case,
constructed with no knowledge of a 4PCF, and
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implemented to see if the results of Hou et al. [17] and
Philcox [18] can be reproduced.
Similar methods to the ones we applied have also been

proposed and tested with CNNs and neural field scattering
transforms (NSFT) [19,24]. With the recent data release
from the Dark Energy Spectroscopic Instrument (DESI)
[25,26] and the upcoming releases from EUCLID [27,28]
and the Nancy Grace Roman Space Telescope [29,30], the
methods proposed her will be useful in future exploration
of the LSS.

II. THEORY AND METHODS

A. Theory of parity

In quantummechanics the parity operator, P̂ is defined to
spatially invert the wave function of a particle, such that a
wave function ΨðxÞ is Parity-even if ΨðP̂xÞ ¼ ΨðxÞ and

Parity-odd if ΨðP̂xÞ ¼ −ΨðxÞ. The importance of parity
pervades throughout physics, most notably in the Standard
Model of particle physics, where parity is a symmetry of
both quantum electrodynamic (QED) and quantum
chromodynamic (QCD) interactions, but is violated by
weak interactions [31,32]. The creation of the present-day
matter-antimatter asymmetry would require baryogenesis
processes that violate charge and parity conservation
[33,34], but since gravity is parity symmetric [35], all
cosmological correlators should be too. This means that
parity asymmetry in the LSS would require new physics in
the epoch of inflation.

B. Method of Lester and Tombs

Current theoretical models predict parity violating mech-
anisms which are not observable at the Large Hadron
Collider (LHC) [36], and accordingly the LHC has not been
used to search for these. Parity may however be violated by
unknown means, which could be detectable in LHC deposit
data. Motivated by this possibility, Lester and Tombs [37]
demonstrated that machine learning can be used to detect
parity violating functions within datasets without any
required knowledge of what is causing the violation. By
training an image classification convolutional neural net-
work (CNN) and rewarding it for detecting asymmetry, a
measure of the parity of the image dataset can be deter-
mined. To demonstrate this method, Lester and Tombs [37]
applied their algorithm to the MNIST data as well as more
general symmetries [38]. The success of the algorithm on
the MNIST data also displays the generality of the method,
and its applicability outside particle physics. To further
demonstrate the general success of the Lester and Tombs
[37] method, a Master’s project was run in 2022=3 aiming
to use the method to test for parity violations in snails [39].
The population was known to be parity violating as most
snail species have a strong preference for the handedness of
their shells’ spirals. It was successfully shown that the
unsupervised learning method could detect parity viola-
tions within the images.

1. Algorithm

To quantify any parity violations existing in a sample,
consider some function gðxÞ, where g represents the outputs
of the CNN with inputs x. Then construct fðxÞ to be the
difference between the outputs from x, and the parity
transform of x

fðxÞ ¼ gðxÞ − gðP̂xÞ ð1Þ

from which it is immediately clear that fðP̂xÞ ¼ −fðxÞ.
In fact further symmetries of the system can be specified:
let S ¼ fS1; S2;…; Sig be the set of all the symmetries of
the system. Then fðxÞ can be defined as the sum over Si of

FIG. 1. Top: a tetrahedron is the lowest order polygon subject to
parity violation in three dimensions, therefore the 4PCF is the
lowest order N-point correlation function which can be probed
for parity violations. Bottom: three points can be parity violating
in two dimensions, but in three dimensions the 2D parity
operation becomes equivalent to a 180° rotation. Consider
rotating into the page about the reflection axis. Figure adapted
from Taylor et al. [19].
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the difference between the outputs from the original and
parity transformed inputs as demonstrated in Eq. (2)

fðxÞ ¼
X
i

gðŜixÞ − gðŜi P̂ xÞ: ð2Þ

Equation (3) is an example of this where fðxÞ has been
constructed to obey invariance under 180° rotations, rep-
resented by R̂180.

fðxÞ ¼ gðxÞ þ gðR̂180xÞ − gðP̂xÞ þ gðR̂180P̂xÞ ð3Þ

This creates a function for which fðxÞ ¼ fðR̂180xÞ, enforc-
ing 180° rotational symmetry and removing any idea of a
top from the images. Accounting for symmetries in
f means they do not need to be accounted for in the
subnetwork g, reducing the processing required on the
inputs. Further symmetries are enforced by max-pooling
layers within the network.
Equation (1) will output zero for a parity even function

gðxÞ, and the network can be constructed to return outputs g
such that the difference of f from zero is maximized. For
each batch B ¼ fx1; x2;…; xjBjg, the mean value of f is
calculated.

μB ¼ 1

jBj
X
x∈B

fðxÞ: ð4Þ

The loss function is defined

LB ¼ −μB=σB; ð5Þ

where

σ2B ¼ 1

jBj

 X
x∈B

½fðxÞ�2
!

− μ2B ð6Þ

is the variance of f over batches, which ensures that
the network will not trivially increase the loss under
fðxÞ ↦ λfðxÞ for λ > 1.
After training the neural net, the function fðxÞ can be

evaluated on the testing data. If the mean value of f on that
dataset differs from zero by a statistically significant
amount, some parity-violating feature in the data has been
detected. We compute the fraction of the outputs for which
fðxÞ > 0. This positive fraction quantifies the proportion of
the inputs that exist in a parity violating way, which means
achiral datasets are expected to output 50%, and deviations
from this imply a parity violating dataset.
It is important to note here that when searching for a

violation of some symmetry then a function f can provide
evidence if both:
(1) f has the correct symmetry properties to permit the

discovery, and

(2) f yields statistically significant outputs when evalu-
ated on independent datasets that it has not seen
before and that were not used in its construction

Here we have constructed f by hand to be parity-odd,
which satisfies the first requirement. The second require-
ment is demonstrated in Sec. IV. From these principles it
follows that the most important step here is the construction
of f. This method could, in principle, work without any
training. The training step just acts to increase the like-
lihood of a discovery by optimizing, but not changing the
form, of f. This also means that the net has the benefit of
never creating a false positive from overtraining. If there is
a positive detection, the data must inherently contain the
parity violation specified by the function f, regardless of
whether that f was obtained by overtraining.

III. DATASET

Following from Hou et al. [17] and Philcox [18], we
use data release 12 (DR12) of the BOSS catalog, which
contains LOWZ and CMASS samples, each being split into
the North Galactic Cap (NGC) and South Galactic Cap
(SGC). The target selection algorithm results in samples
of primarily luminous red galaxies (LRGs), with CMASS
further specified to select objects of uniform redshift [40].
This leads to a roughly mass-limited sample down to a
stellar massM ∼ 1011.3h−1M⊙ [41–44]. A redshift cutoff of
0.43 < z < 0.7 is applied, which raises the purity of the
CMASS sample by adding more LRGs [17]. For this
investigation, the CMASS NGC was used, and the catalog
of galaxies was treated as a field of points in three-
dimensional space, a 2D projection of this is shown
in Fig. 2. The BOSS dataset contains data in the form
of right ascension, declination and redshift. This was
converted into spatial coordinates using the fiducial cos-
mology specified by the BOSS collaboration [45]. Namely,
a flat ΛCDM model, with matter density Ωm ¼ 0.31,
Hubble constant h≡H0=ð100 km s−1 Mpc−1Þ ¼ 0.676,
baryon density Ωbh2 ¼ 0.022, fluctuation amplitude
σ8 ¼ 0.8 and spectral tilt ns ¼ 0.97. From this, the question
can be asked: Is the spatial distribution of the points in the
field parity violating? More specifically, is the spatial
distribution of the points in the field parity violating on
a given scale? The scale of the parity violation is specified
to match the work of Hou et al. [17]. This means for the
geometric analyses, groups are constructed such that points
within a group are separated by a distance, ranging from
20h−1 Mpc to 160h−1 Mpc.
To each galaxy a weight was applied

w ¼ wfkpwsysðwrf þ wcp − 1Þ ð7Þ

where wrf is the redshift failure weight and wcp the fibre
collision weight; these are additive weights with default
value of unity. wsys is the systematic weight, which
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accounts for stellar density and seeing [46], and the FKP
weight is defined as wfkp ¼ ½1þ nðzÞP0�−1 [47], where
nðzÞ is the weighted number density as a function of
redshift, and P0 ¼ 104½h−1 Mpc�−3.

IV. VALIDATING THE METHODS

To begin, in Sec. IVA we use the CNN architecture of
Lester and Tombs [37] to examine a two-dimensional
projection of the data. This is followed in Sec. IV B by
the addition of color channels to the images, with the aim
of representing three-dimensional information via color.
Finally, we investigate more geometric approaches in
Sec. IV C, which have the drawback of being constrained
to some order of polyhedron, much like N-point correlation
functions, but consequently allow direct comparison with
the 4PCF.

A. 2D convolution

We begin by using the same architecture as Lester and
Tombs [37]: 2D convolutional layers, with image inputs.
For our investigations, the data can be treated as a field of
points, from which we constructed images to represent
localized regions of the field. To ensure that this method is
suitable for detecting parity violations in image data, we ran
a number of tests using simulated data. These not only
verify that the network is able to detect parity asymmetric
data, but also help to determine a level of significance, i.e.,
what net fraction of the data must contain a parity violating
object to result in a nonzero detection. The choice of how to
represent galaxies in the images is somewhat arbitrary, and
two possible examples are shown in Fig. 3. After testing
multiple methods (Appendix A), we decided to use PNG
images generated from scatter plots of data points. An
outline of this method follows:
To begin, a field of random data points was generated,

and image samples created in the following manner:
(1) Sample a random point from the dataset, O

(2) Generate a square of side length l, centered on O
(3) Rotate the square by a random angle, θ∈ ½0; 2π�
(4) Get all the data points lying within the rotated square
(5) Create an image of the square of data points
This ensures that all the images are the same size,

64 × 64 pixels, following the work of James Gibbon [39].
Testing images are generated first, and then training ones
with the added condition that these images may not overlap
with the testing set, to avoid overfitting. An exaggerated
sample is displayed in Fig. 4 to clearly show the method of
sampling squares.

1. Testing method with toy data

The toy data tests were constructed on the same scale
as the real images would be. As outlined in Sec. V images
covering 0.5° x 0.5° were chosen, giving an average of 22.3
galaxies per image. For the toy models we generated

FIG. 2. The North Galactic Cap of the CMASS catalog.

FIG. 3. Two demonstration images generated from random
data. Left: an image where each galaxy has its localized pixels
colorized. Right: an image where each galaxy is represented by a
scatter point.

FIG. 4. A demonstration of the image sampling technique, on a
background random field of 500,000 data points, with 12 testing
samples shown in black and 48 training samples shown in red.
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12,000 images, split into 9,600 training and 2,400 testing,
with each image averaging 22.3 data points.
A number of toy datasets were curated in order to

investigate the effectiveness of the method under different
scenarios. The critical datasets are outlined with a
description and purpose in Table I, with example images

displayed in Fig. 5. Each dataset has an associated control
dataset, which ensures the function of the net. A control
group is generated by iterating through the real group,
and flipping each image with a 50% probability. For any
large parity odd dataset this symmetrization process
always creates an achiral dataset, which can act as a

TABLE I. A summary of the crucial image based toy datasets. Each dataset is given a code and a description and has its testing purpose
outlined. The detection column contains the positive fraction detection, and the control column shows the positive fraction for the
control group for each test.

Data code Description Purpose Detection Control

RI Random Generated Image Data Check sampling method is not
introducing parity violation

49.9� 0.3% 49.8� 0.3%

MNIST-RI RI with random MNIST image overlaid in
random position

Check detection of complex parity
violation

87.5� 0.3% 50.3� 0.3%

F-MNIST-RI MNIST-RI, but each MNIST image has a
50% chance of being flipped vertically
before inserting

Check method of insertion is not
causing spurious detection

50.0� 0.3% 50.4� 0.3%

SPR-RI-100 RI with 100 point spiral inserted in random
position and random radius

Is parity violation in the same form
as the data detected

98.2� 0.1% 49.5� 0.3%

F-SPR-RI-100 SPR-RI-100, but each spiral has a 50%
chance of being flipped vertically before
inserting

Check method of insertion is not
causing spurious detection

49.6� 0.3% 49.5� 0.3%

SPR-RI-10 RI with 10 point spiral inserted in random
position and random radius

Is parity violation detectable on a
more realistic scale

97.9� 0.1% 50.1� 0.3%

F-SPR-RI-10 SPR-RI-10, but each spiral has a 50% chance
of being flipped vertically before inserting

Check method of insertion is not
causing spurious detection

49.8� 0.1% 51.6� 0.3%

SPR-RI-3 RI with 3 point spirals (triangles) inserted in
random position and of random radius

Is parity violation detectable on the
smallest scales

93.5� 0.2% 51.1� 0.3%

F-SPR-RI-3 SPR-RI-3, but each spiral has a 50% chance
of being flipped vertically before inserting

Check method of insertion is not
causing spurious detection

51.9� 0.3% 49.2� 0.3%

LH-RI-0.1 RI where every point has 2 extra points
generated close to it forcing a parity odd
“left-handed” triangle on the scale of 1
tenth of the average interpoint distance

Can other types of parity violation
be detected

74.6� 0.3% 49.6� 0.3%

LH-RI-1 LH-RI-0.1 with extra points on the scale of
the average interpoint distance

Can more realistic types of LH-RI-
0.1 parity violation be detected

67.6� 0.3% 49.2� 0.3%

LH-RI-10 LH-RI-0.1 with extra points on the scale of
ten times the average interpoint distance

Can more realistic types of LH-RI-
0.1 parity violation be detected

52.3� 0.3% 49.13� 0.3%

SPR-RI-5-1% RI with 5 point spiral inserted in random
position and random radius in 1% of
images

How sensitive is the detection 57.6� 0.3% 49.8� 0.3%

SPR-RI-5-0.1% RI with 5 point spiral inserted in random
position and random radius in 0.1% of
images

How sensitive is the detection 47.6� 0.3% 49.5� 0.3%

SPR-RI-5-0.01% RI with 5 point spiral inserted in random
position and random radius in 0.01% of
images

How sensitive is the detection 48.0� 0.3% 48.8� 0.3%
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control.1 Each data type was created from the same
randomly generated background field, repeated over 10
different background fields to create 10 variations of each

data type. The average positive fraction over the 10
repeats is listed in Table I.

2. Summary of tests

The results of the toy data samples demonstrate that the
net does not find parity violations where there are none and
that it does detect parity violations where they exist on large
enough scales. Crucially, it also shows that the method of
sampling is not creating spurious detection. The ability to
detect varying types of complex parity violation suggests
that this method should be successful in finding any such
violations in the real data.
These tests also give insight into the sensitivity of the

method: having just 0.1% of the images contain parity
violation is enough for it to be successfully detected.
Perhaps the most powerful tests are SPR-RI-3 and LH-
RI-10, which show that images without any visible asym-
metry, can be detected by the net.

B. 2D Convolution with color

The 2D CNN is constrained by its loss of 3 dimensional
information, meaning not all forms of 3D parity violation
are detectable. A first attempt to resolve this is made by
introducing color to the images. By normalizing the axis
into the page and translating it to pixel color, it is possible
to add extra information to the two-dimensional images.
With this modification each image represents a voxel of the
space displayed as a 2D projection, with the third dimen-
sional information encoded in the color of a given point,
this creates a color CNN (cCNN).
As in the previous case, we generate a random field of

points, now in 3D space. Images are constructed following
the same process outlined in Sec. IVA, with the additional
step of using z values and weights to color the pixels. Under
this construction, each pixel has two degrees of freedom we
need to express. The first is the distance of the galaxy and
the second is its weight. To represent these degrees of
freedom we assign RGB values to the pixels in the
following manner:

ðr; g; bÞjk ¼
X
i∈ jk

wi · cðziÞ ð8Þ

cðzÞ ¼ z · Rþ ð1 − zÞ · B ð9Þ

Where wi is the weight of the ith galaxy in pixel jk and
R ¼ ð1; 0; 0Þ and B ¼ ð0; 0; 1Þ. In this way the distance
correlates to the ratio between the red and blue channels,
and the weight is represented by the intensity of the pixel.
The background is set to (0, 0, 0), so the net is looking at
Oð1Þ deviations from 0. A demonstration of this is visible
in Fig. 6.
To account for the slight issues that arise from the fact

that some of the weights are larger than 1.0 and the fact that
the clipping of values to fit in the integer range (0, 255) will

FIG. 5. A sample of toy images labeled by their data codes from
Table I. For the purpose of demonstration, smaller spirals that
have been overlaid have been colored green. During testing, all
images where in black and white.

1A right-handed figure drawn on a flat piece of tracing paper
becomes left-handed if you are allowed to turn the tracing paper
over and view it from the back. The handedness of two-dimen-
sional objects are therefore only well-defined if the surfaces on
which they live are orientable or are oriented in some special way
(s). The toy datasets in Table I are all intrinsically two-dimen-
sional and so, for the reason just given, any of these datasets
which violate parity only do so on account of the embedded
objects being implicitly pasted the inside of the celestial sphere,
centered on earth, from where they are viewed. Such geocentric
parity violation is, of course, entirely unlike the sorts of large
scale parity violation one might want to see in the real universe.
Any large scale parity violation will (presumably) not rely on the
earth being at a special place in the universe. The geocentric
nature of the parity violation in these toy datasets does not prevent
them being used for the purposes they were created, however.
Furthermore, this geocentricity is completely removed in the
parity violating datasets introduced later in Table II. These later
toy datasets contain projections of intrinsically three-dimensional
(parity violating) structures without any preferred orientations,
and so are representative of a sort of parity violation that one
might hope to see in reality.
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cause some rounding issues, we also create an array dataset.
This dataset contains the same 3 color channel arrays
of 64 × 64 pixels as would be extracted from the images,
but contains slightly improved accuracy values. This array
can then easily be manipulated in the same way as the
image data.
Under this construction we use the following identity to

simplify the parity operator, to just consider an x flip

P̂≡ P̂xP̂yP̂z ¼ P̂i∈ fx;y;zgR̂ ð10Þ

We then enforce rotational invariance in the 2D plane, so
for inputs α construct fðαÞ in the following way:

fðαÞ ¼
X
R̂i

½gðR̂iαÞ − gðR̂iP̂xαÞ�; ð11Þ

where R̂i ∈ ½R̂0; R̂90; R̂180; R̂270�. For this setup then, we can
use the same net as we used for the black and white images.

1. Testing method with toy data

To effectively test the functionality of this method,
various datasets were constructed in three-dimensional
space. The key results follow in Table II and a full list
of the important test can be found in Appendix B. Because
we are using the same net as for the 2D convolutions, we
can directly compare the coloration scheme outlined in
Sec. IV B with inputs where all galaxies are monochrome
points, as show in Fig. 7. This shows significant improve-
ment in detection, and results in detections that would not
otherwise be made. These tests illustrate the success of the
introduction of color channels as a method for including the
third dimensional information.

C. 2D angle based method

To further the investigation into three dimensions, and
facilitate testing a corollary to the 4PCF a new neural net was
constructed with the same guiding principles as the CNN.
Since the inputs were numeric, two options were considered:
1D convolutions or linear layers. We performed the tests on
the toy data using both separately. We find that both perform
equally well, but the linear layers are marginally faster, so
these were chosen to be used on the real data. We begin by
considering the two-dimensional case. In 2D the lowest
order polyhedron subject to parity violation is the triangle.
A triangle in 2D space, is defined by six degrees of freedom
(d.o.f.)—three two-dimensional coordinates—to which the
constraints of rotational and scale invariance are added, these
reduce the six d.o.f. down to two. Two element inputs are
then sufficient, and a convenient choice is the internal angles
of the triangle. To make the angles subject to parity violation,
they require ordering in a way that would change under the
action of a parity operator. The method used is outlined as
follows for groups of 3 points:
(1) Find the mean position of the group and shift it to be

the origin

FIG. 6. Sample images containing helices. The coloration
creates a parity violating dataset. Left: all galaxies have weight
1.0, and therefore are all the same intensity. Right: Galaxies have
a randomly assigned weight from (0.25, 0.5, 0.75), this affects
intensity.

TABLE II. A summary of the crucial color image based toy datasets. Each dataset is given a code and a description and has its testing
purpose outlined. The detection column contains the positive fraction detection; the control column shows the positive fraction for the
control group and the uncolored column shows the detection for the same images colored monochrome.

Data code Description Purpose Detection Control Uncolored

RCI Random generated image data Check sampling method is not
introducing parity violation

49.8� 0.3% 50.3� 0.3% 49.9� 0.3%

HE-RCI RCI with 1 left-handed helix inserted
into the dataset for every 100
random points

Check detection of complex parity
violation

57.5� 0.3% 50.2� 0.3% 49.8� 0.3%

F-HE-RCI HE-RCI, but each helix has a 50%
chance of being left- or
right-handed

Check method of insertion is not
causing spurious detection

50.5� 0.3% 50.4� 0.3% 50.2� 0.3%

PV-RCI Parity violating groups of 4 points
randomly oriented and distributed.
Local separation ≪ average
interpoint distance.

Can parity violations be detected
where the 2D dataset does not
detect

87.2� 0.1% 49.6� 0.3% 50.8� 0.3%
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(2) Compute the distances of the points to the origin use
this to order the points with the closest as the first

(3) Reorder the second and third in an anticlockwise
direction from the first

(4) Compute the angles between the points in an
anticlockwise fashion

(5) Define P̂ to swap the first and third angles
(6) Use the first two angles in every group of 3 as the net

inputs
The principles of this method are displayed in Fig. 8,

which illustrates why this is the appropriate parity operator.
In fact this method is generally extensible to any n-gon
in 2D, with the first n − 1 angles being the input and the
parity operator inverting the order of the angles as shown
in Eq. (12). Conveniently for the function of the neural
net, the nth angle can be calculated from the others, as
given in Eq. (13).

P̂½θ1; θ2;…; θn−1� ¼ ½θn; θn−1;…; θ2� ð12Þ

θn ¼ 2π −
Xn−1
i¼1

θi ð13Þ

1. Testing method with toy data

As with the CNN, our first step was to test the efficacy
and sensitivity of this method. This began with testing a
random field and then working through a number of toy

data scenarios, the critical ones are outlined in Table III, and
the full list can be found in Appendix B. These results
crucially demonstrate that this method does not detect
parity violation if not present, and can detect parity
violation if it is present in at least 1% of the input data.
The main drawback of this method is that for it to be
successful, the input data must be sampled such that it
faithfully represents the parity of the system. Conceptualize
this by considering a random uniform field of two-
dimensional data points. For every point in the field
generate two more points, positioned relative to the first
so that they form a chiral triangle, and enforce the average
separation of the points in each group of three to be one
tenth of the average interpoint distance. This creates a
visually parity-violating dataset, as displayed in Fig. 9. If
the inputs to the net are calculated from these groups of
three, there is a strong parity detection, as expected.
However, the real data will not have the benefit of being
preselected into parity violating groups, and therefore to
produce a fair test it is necessary to generate the field as
before, and then sample groups of three randomly from the
total field. In this scenario, it becomes almost impossible to
find the parity violation, because each point in a group is
being sampled from a 500,000-point field, so the chances of
selecting a group that represents the chirality is negligible.
This is shown in Table III with datasets PV-0.1-R2d and
S-PV-0.1-R2d. This issue can be mitigated by requiring
samples to be drawn on a given scale. With this additional
requirement, detection of parity violation becomes signifi-
cant, as long as the scale constraint matches the scale on
which the parity violation exists. This idea is demonstrated
in Fig. 10 and shown in Table III with dataset C-PV-0.1-
R2d. Testing over different constraint scales, the data can
be investigated in an analogous way to power spectrum
analyses.

FIG. 7. Sample images from a 3D dataset containing left-
handed helices and a random field of points. Top: images where
points are colored by their distance into the page. The 3D
information creates a parity violating dataset. Bottom: all points
are the same color, the loss of information creates a dataset which
is not parity violating.

FIG. 8. A demonstration of the angle method in 2D. The line
connecting the closest vertex to the centroid is shown in green.
Working anticlockwise from this line, the initial angles are
ordered [1,2,3], under a parity transformation this changes
to [3,2,1].

HEWSON, HANDLEY, and LESTER PHYS. REV. D 111, 123528 (2025)

123528-8



2. Summary of tests

After adding the constraint on the scale of the groups, a
detection is made with a high level of significance if the
constraint appropriately selects groups of data with at least
∼1.0% containing parity violation. These tests were also
extended to groups of 4 and 5 points, the full results of
which can be found in Appendix C.

D. 3D angle based method

Now that the success of an angle based method in 2D has
been demonstrated, this motivates exploration of a 3D
equivalent. To detect parity violation, groups of four points
are the smallest scale on which this method will work, and
so this can act as a direct comparison to the 4PCF. As in the
two-dimensional case, the critical part of this method is

defining an ordering of the angles and understanding how
this ordering changes under a parity operator. There are a
number of ways to define an ordering, the process used for
groups of four points is outlined as follows, and displayed
in Fig. 11:
(1) Compute the mean position of the group and shift it

to be the origin
(2) Calculate the distances of the points to the origin,

and order the points by distance with the closest
point as the first

(3) Use the first position as an axis, and starting from the
second-closest point, work around the axis in a right-
handed manner to determine the order of points 3
and 4

(4) Compute the internal angles and order them
as ½θ12; θ13; θ14; θ23; θ34; θ24�

TABLE III. 2D toy datasets. Each dataset is given a code and a description and has its testing purpose outlined. The detection column
contains the positive fraction detection, and the control column shows the positive fraction for the control group for each test.

Data code Description Purpose Detection Control

R2d Random generated 2D point data Check parity violation is not
detected where there is none

50.41� 0.10% 50.10� 0.09%

PV-0.1-R2d R2d with two extra points generated near
each R2d point, these are generated in a
way that all groups of three are of the
same chirality. Groups of three are
separated on the scale of one tenth the
average interpoint distance

Check detection of parity violating
inputs

90.77� 0.06% 49.74� 0.10%

S-PV-0.1-R2d PV-0.1-R2d, but after generating parity
violating groups all points shuffled
together and new groups drawn at
random

Can parity violations be detected
when they are visibly present,
and groups sampled randomly
from the dataset

49.70� 0.10% 49.68� 0.10%

C-PV-0.1-R2d S-PV-0.1-R2d, with a distance constraint
when generating groups from the
shuffled data

Can parity violations become
detectable by constraining the
scale

65.10� 0.04% 49.85� 0.04%

FIG. 9. An illustration of the failure of the 2 dimensional angles
method to find parity violations across arbitrary scales. Left: a
localized region of the field demonstrating the observable parity
violation in the data. Right: the full field of points, with a
randomly sampled group of 3 three shown in red. This demon-
strates the impossibility of finding the parity violation when
sampling across any scale: the chance of picking three points that
exist in a parity violating way is negligible.

FIG. 10. By constraining the scale on which to construct a
group of points, the net has a significantly improved likelihood of
detection. Left: a localized region of the field of points. The field
is chiral by construction, and each group of three has been
colored to show the asymmetry. Right: adding a constraint on the
scale over which groups can be constructed significantly in-
creases the chances of detection.
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This method fixes the positions of the first two points
because that only depends on their distance to the mean.
The ordering of the third and fourth points is dependent
on the chirality of the group of points. This suggests an
appropriate parity operator would swap positions three and
four, which would reorder the angles as shown in Eq. (14).

P̂½θ12; θ13; θ14; θ23; θ34; θ24� ¼ ½θ12; θ14; θ13; θ24; θ34; θ23�
ð14Þ

To ensure this is always the appropriate parity operator,
we generated 100,000 tetrahedra, and determined their
orders by the process above, giving [1, 2, 3, 4]. Parity
operators in three-dimensional space were defined: P̂x; P̂y;
P̂z, flipping in the yz; zx and xy planes respectively.
Combinations of these parity operators were applied to
each tetrahedral group. The four combinations that do not
change the parity are ½1; P̂xP̂y; P̂yP̂z; P̂zP̂x� and these all
leave the order as [1, 2, 3, 4]. The four parity flipping
combinations are ½P̂x; P̂y; P̂z; P̂xP̂yP̂z� and all were found
to change the order of the points to [1, 2, 4, 3]. This
confirmed that the parity operator given in Eq. (14) is the
correct operator in this angular description. A group
of 4 points in three-dimensional space has 12 degrees of
freedom—4, 3D coordinates—and after accounting for
rotational and scaling invariance, this reduces to 5 d.o.f.
Since a tetrahedron has 6 internal angles (6C2), the inputs
are chosen to be the first 5: ½θ12; θ13; θ14; θ23; θ34�. In the 2D
case the final angle, which is needed for the parity trans-
formation, can be calculated from the others, as shown
in Eq. (13). In the 3D case it is not so simple. Trying
to use the first five angles gives four choices for the
sixth. To overcome this issue, we created a custom data
class, so that every data entry has all six internal angles,
the first five of which provide the basic inputs to the net,

and the sixth, which can be accessed to generate the parity
transformed inputs.

1. Testing method with toy data

Once again, the significant work in creating the net was
establishing its accuracy and sensitivity. Numerous tests
were carried out, with the results listed in Table IV.
The main conclusions of the tests were that the method

does detect significant parity violations, as long as at least
1.2% of the inputs are net parity violating. The main
drawback of the method is the difficulty of ensuring the
groups of four points are sampled such that if there is parity
violation, it is appropriately represented. The dataset S-PV-
0.1-R3 shows that some constraints are needed, and as in
the 2D case, it was shown (C-PV-0.1-R3) that constraining
the scale on which groups are generated is sufficient to
capture the parity violation, as long as the scales are
aligned. Group C-PV-1-R3 shows that parity violations
are detected where the human eye would be unable to, a
powerful demonstration of this method.

E. Vector input method

To finalize the search for parity violations at the 4-point
level, we construct a vector method. For this net the inputs
are components of the vectors describing a group of points
in their mean at origin frame. To account for the scaling
invariance, all inputs are normalized to make the longest
vector in the group have a length of unity. The rotational
invariance of the setup is accounted for in the construction
of fðxÞ:

fðxÞ ¼
X
R̂i

�
gðR̂ixÞ −

X
i

gðR̂iP̂ixÞ

þ 1

2

X
i≠j

gðR̂iP̂iP̂jxÞ − gðR̂iP̂xP̂yP̂zxÞ
�

ð15Þ

where R̂i ∈ ½R̂0; R̂90; R̂180; R̂270�. This ensures that every
orientation of each handedness is equally represented.

1. Testing method with toy data

Because this also considers 3D distributions, we used the
same tests as those in Sec. IV D 1 on the 3D angle method.
The results are listed in Table V and show the efficacy and
suitability of this method. As with the previous geometric
methods, the only way to detect parity violations is to issue
a constraint on the scale of the testing groups. It is
important to note that the deviations from 50% are much
smaller in this case, because of the sampling over 3D, thus
significance is shown using σ-levels in Sec. V.

F. Summary of sensitivities

After extensively testing each method, the net fraction
of the inputs required to contain parity violating objects

FIG. 11. An illustration of the ordering of angles in 3
dimensions. The images show a group of four points with their
mean position in red. Left: the points are initially ordered by
distance from the mean. Right: the ordering is finalized by
starting from the second point and working in a right-handed
manner about the vector describing the position of the first point.
In this case points three and four are reordered.
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in order to make a detection significant from nonzero
was determined. The level for each method is outlined
in Table VI. For a null detection, these are the levels
above which we can conclude that parity violations are
not present.

V. GENERATING INPUTS AND RESULTS

A. Curation for 2D CNN

To generate images from the BOSS catalog the method
outlined in Sec. IVA was used. 12,000 images were
sampled, split into 2,400 testing and 9,600 training images,
each covering a 0.5° x 0.5° patch of the sky, a sample is
shown in Fig. 12. This size was chosen to create a large
enough image dataset that suitably covered the full field of
galaxy data. Smaller images also offset issues with

TABLE IV. 3D toy datasets. Each dataset is given a code and a description and has its testing purpose outlined. The detection column
contains the positive fraction detection, and the control column shows the positive fraction for the control group for each test.

Data code Description Purpose Detection Control

R3 Random generated 3D point data Check parity violation is not
detected where there is none

49.90� 0.11% 50.11� 0.10%

PV-0.1-R3 R3 with three extra points generated near
each R3 point, these are generated in a
way that all groups of four are of the
same chirality. Groups of four are
separated on the scale of one tenth the
average inter point distance

Check detection of parity violating
inputs

87.59� 0.11% 49.69� 0.07%

S-PV-0.1-R3 PV-0.1-R3, but after generating parity
violating groups all points shuffled
together and new groups drawn at
random

Can parity violations be detected
when they are visibly present,
and groups sampled randomly
from the dataset

50.37� 0.08% 50.15� 0.08%

C-PV-0.1-R3 S-PV-0.1-R3, with a distance constraint
when generating groups from the
shuffled date

Can parity violations become
detectable by constraining the
scale

58.73� 0.08% 49.87� 0.08%

C-PV-1-R3 PV-0.1-R3, but scale of parity violations
now same scale as average interpoint
distance. No longer visibly parity
violating. Groups drawn with scale
constraint

Check parity violations detectable
on more realistic scales with
scale constraint

54.37� 0.05% 49.87� 0.06%

TABLE V. Results for the vector input method on the 3D toy
datasets, as defined in Table XII The detection column contains
the positive fraction detection, and the control column shows the
positive fraction for the control group for each test.

Data code Detection Control

R3 50.11� 0.07% 50.21� 0.06%
PV-0.1-R3 99.83� 0.02% 50.3� 0.31%
S-PV-0.1-R3 50.16� 0.07% 49.84� 0.07%
C-PV-0.1-R3 52.44� 0.10% 50.11� 0.11%
C-PV-1-R3 52.68� 0.07% 49.91� 0.07%

TABLE VI. Summary of the required net fraction of the inputs
containing a “parity violating” object for the network to return a
fraction significantly different from random input data.

Method Fraction to detect

2D images < 0.1%
3D images ∼0.5%
2D angles ∼1.0%
3D angles ∼1.0%
3D vectors ∼2.0%

FIG. 12. A sample of images taken from CMASS. The black
squares show testing images, and the red squares show training
images.
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approximating a spherical surface onto a flat projection and
reduce overlap of images onto survey artifact regions. A
full list of tests on different sizes can be found in
Appendix A.

B. Curation for 2D CNN with color

To generate the 3D images, the method outlined in
Sec. IV B was used. Each voxel of the space had a side
length of 0.5° and a redshift depth of 0.33. Since there is no
approximation of the 3D distribution, there is no constraint
on the upper size of the images, and so varying image sizes
were tested.

C. Curation for geometric nets

For the 2D angle method, groups were constructed
from the 2D projection of the data, with points in a group
constrained to be within 1° of each other. Groups were
constructed on the 3, 4, and 5 point levels. In the 3D case,
for both the angle and vector input methods, groups
were constructed to contain 4 points, allowing for direct
comparison to the 4PCF method. These groups were drawn
from the CMASS catalog, with the constraint that the
points must be separated by a distance in the range of
20h−1 Mpc to 160h−1 Mpc. In all cases datasets of 500,000
data groups were constructed; 400,000 for training and
100,000 for testing.

D. Results

The average level of detection from bootstrapping over
the testing sets and their controls for each method are given
in Table VII. We also include results from running over the
random catalog provided by BOSS. For every method,
no significant deviation from the control or random data is
detected. This is confirmed in the σ levels displayed in
Table VIII. We do not find evidence of parity violation.

VI. DISCUSSION

The results suggest there is no parity violation to be
found in the LSS represented in the NGC of the CMASS
catalog. For the 2D projections, parity violation is not
expected, because compression of a three-dimensional
dataset down to two dimensions removes information about
the three-dimensional distribution.
For the three-dimensional cases, the results obtained are

at odds with the work of Philcox [18] and Hou et al. [17].
Recent analyses which account for the 8PCF bias term,
have also disputed the detection of parity violation [23].
During a recent talk at the Royal Society [48],
Philcox announced results that cast doubt on the parity
violation detection [16,18], suggesting that sample variance
could be the cause of the detection [49].
An important consideration is the “artifacts” of the

dataset. The 2D projection in Fig. 2 displays notable
sample artifacts, which could interfere with the analyses.
In all methods, the weights applied Sec. III act to account
for sampling issues, reducing the impact. For the CNN,
images were constructed to further offset the impact:
sampling a large enough set of small enough patches
minimized overlap with artifact regions, displayed in
Fig. 13. That the overall impact is negligible is perhaps
best displayed by the null results in all cases. Given that no
parity violation is detected, if the artifacts were interfering,
it would have to be in a way that perfectly cancels with
some underlying parity violation of the dataset. Since no
detection is made in either 2D or 3D, the probability of this
being the case is negligible. To further the rigorousness of
these claims, the analyses were performed over the random
catalog of the BOSS dataset. This catalog is constructed

TABLE VII. The average deviation from parity even of the CMASS NGC catalog for the different methods.
Results for the control groups and random catalog are also shown.

Method Detection Control Random

2D images 50.4� 0.3% 50.1� 0.3% 50.8� 0.3%
Color images 49.7� 0.3% 49.4� 0.3% 49.3� 0.3%
2D angles, n ¼ 3 50.15� 0.09% 50.02� 0.09% 50.35� 0.10%
2D angles, n ¼ 4 50.05� 0.06% 49.85� 0.06% 50.20� 0.06%
2D angles, n ¼ 5 50.30� 0.06% 50.27� 0.06% 49.65� 0.06%
3D angles 49.91� 0.06% 50.09� 0.05% 49.84� 0.05%
3D vectors 50.08� 0.03% 50.09� 0.03% 50.13� 0.03%

TABLE VIII. σ-level significances calculated for both (i) the
difference between the CMASS data and the CMASS controls,
and (ii) the difference between the CMASS data and the BOSS
random catalog data. No significant parity violation is found.

Method CMASS-control CMASS-random

2D images 1.00 1.33
Color images 1.00 1.33
2D angles, n ¼ 3 1.44 2.00
2D angles, n ¼ 4 1.67 2.50
2D angles, n ¼ 5 0.500 0.833
3D angles 0.00 1.00
3D vectors 0.333 1.67
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to match the sampling geometry of the BOSS data, but is
∼50 times the size. To resolve this size mismatch, the
random data was split into 50 chunks, 10 of which were
used for the analysis. The results given in Table VIII show
that sampling geometry indeed introduces no parity vio-
lation. To make a final confirmation, the sky was split into 8
bins by position, displayed in Fig. 14, and inspired by Hou
et al. [17]. Treating each of these separately, no significant
difference was found between regions (Appendix D). Since
every region is differently affected by artifacts, this sug-
gests they have no noticeable impact on results.
A final important consideration is to note that the errors

quoted for each dataset represent the model variance
arising from our network and the resampling process.
Cosmic variance from the single realization of the

Universe will contribute an extra source of uncertainty
to the BOSS catalog, such that even in the limit of infinite
samples of the data, some underlying nonzero baseline
variance would remain.
Given the sensitivity of the methods, and the issues with

searching on different scales, the CNN seems to be the most
suitable method for these analyses. Its main advantage is
that each image contains the full distribution for a region
of space, making it the most general search method for
parity violations across scales. In this work we proposed
and demonstrated the effectiveness of conveying three-
dimensional information through color creating a cCNN.
We do not claim that this is the most suitable method,
but the success of our test cases provides evidence to show
the power of this method. To further this pursuit, con-
volutions could be extended into three dimensions; exten-
sive further work would be required to ensure the model
would correctly detect chirality. A possible implementation
of this three-dimensional structure could be layers of
two-dimensional images, stacked into three-dimensional
voxel inputs, similar to the application in classification of
medical images [50,51].

VII. CONCLUSION

We used machine learning methods to search for parity
violations in the large-scale structure of the Universe. Five
variations of the method were employed, two investigating
the two-dimensional projection of the data, and three
investigating the three-dimensional distribution. It was
shown that all of these methods can detect chiral datasets
down to significance fractions outlined in Table VI. Over
various samples from the BOSS CMASS catalog, no parity
violation was detected in any of these methods. As such, we
cannot provide further support for the recent claims by
Philcox et al. [16] and Hou et al. [17]. To consolidate the
work outlined in this paper, the CMASS SGC and LOWZ
catalogs should be explored. Uncertainties in the fiducial
cosmology used (Sec. III) would alter the spatial distribu-
tion in three dimensions, and so the implications of these
uncertainties should be investigated. Additionally, it would
be useful to directly compare these methods to the 4PCF,
and see how each performs against mock parity violating
datasets. Further work should also be made in creating a
three-dimensional CNN architecture to better explore local
regions for parity violations across all orders in three
dimensions. All of these methods should be applied to
upcoming DESI, EUCLID, and Roman data releases.
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FIG. 14. The CMASS catalog split into 8 regions, each of
which was investigated separately. Each region showed the same
level of parity violation, as shown in Appendix D. This further
suggests that the artifacts are not skewing the results.

FIG. 13. The set of images generated from points near the large
artifact between (210, 35) and (240, 50). Few images are affected
by the presence of the artifact, and those which are affected have
small overlaps into the affected region.
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DATA AVAILABILITY

The data that support the findings of this article are
openly available [52,53].

APPENDIX A: IMAGE SIZE AND TYPE TESTS

The work carried out by James Gibbon [39] demon-
strated that using different image types has no effect on
the function of the net, JPEG and PNG images could both
be used equally. We chose to use PNG images because
space-saving was not an issue, and the higher quality would
make the pngs easier to work with.
When investigating the size, the primary considera-

tions were:

(1) Does each image contain enough points to be able to
detect parity violation on real scales. We required
3 < hNi, since we need at least 3 points to create a
chiral object in 2D.

(2) Are images small enough to get a large sample of
images, where training and testing images do not
overlap, and each set suitably represents the data.

(3) Are images small enough to minimize effects of
approximating 3D distribution to 2D plane.

These considerations led to square side lengths in the
range 0.3 < l < 1.0. A few sizes were tested on real and
random data, the results of which are given in Table IX.
No method had a specific advantage in testing, so we
chose to use 0.5° square images because while larger point
clouds could be used, 22.3 points is a reasonable level to
look for parity violations while minimizing any effects of
projecting onto 2D space.

APPENDIX B: IMPORTANT TEST RESULTS

The following tables list more fully the important results
from the validation of the methods. Table X gives the
results from the cCNN; Table XI the results from the 2D
angle method; Table XII results from the 3D angle method;
and Table XIII the results from the 3D vector method.

TABLE IX. Test results on different size image patches. On
each size, tests were run on the real CMASS data and randomly
generated data.

Side length Average points Detection Random detection

l ¼ 0.3 8.0 50.8 51.2
l ¼ 0.5 22.3 50.1 50.6
l ¼ 0.7 43.7 51.1 50.5
l ¼ 1.0 89.2 50.1 49.3

TABLE X. A summary of the important color image based toy datasets. Each dataset is given a code and a description and has its
testing purpose outlined. The detection column contains the positive fraction detection; the control column shows the positive fraction
for the control group and the uncolored column shows the detection for the same images colored monochrome.

Data code Description Purpose Detection Control Uncolored

RCI Random generated image data Check sampling method is not
introducing parity violation

49.8� 0.3% 50.3� 0.3% 49.9� 0.3%

HE-CI Field of left-handed helices Check detection of complex parity
violation

97.6� 0.3% 50.5� 0.3% 62.8� 0.3%

F-HE-CI HE-CI, but each helix 50% chance of
being left- or right-handed

Check method does not detect
where there is none

51.0� 0.3% 50.6� 0.3% 50.5� 0.3%

HE-RCI RCI with 1 left-handed helix inserted
into the dataset for every 100
random points

Check detection of complex parity
violation

57.5� 0.3% 50.2� 0.3% 49.8� 0.3%

F-HE-RCI HE-RCI, but each helix has a 50%
chance of being left- or right-
handed

Check method of insertion is not
causing spurious detection

50.5� 0.3% 50.4� 0.3% 50.2� 0.3%

PV-RCI Parity violating groups of 4 points
randomly oriented and distributed.
Local separation ≪ average
interpoint distance.

Can parity violations be detected
where the 2D dataset does not
detect.

87.2� 0.1% 49.6� 0.3% 50.8� 0.3%

PV-RCI-W PV-RCI with wider field of view, each
image contains ∼5 groups of 4.

Check detection still possible when
parity violating groups have very
similar pixel colors

67.0� 0.1% 50.2� 0.3% 50.1� 0.3%

CHE-RCI HE-RCI, but now each helix tapers in,
giving it an orientation as well as a
handedness

Check detection of more complex
parity violation

58.9� 0.3% 49.8� 0.3% 49.6� 0.3%

(Table continued)
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TABLE XI. 2D toy datasets. Each dataset is given a code and a description and has its testing purpose outlined. The detection column
contains the positive fraction detection, and the control column shows the positive fraction for the control group for each test.

Data code Description Purpose Detection Control

R2d Random generated 2D point data Check parity violation is not
detected where there is none

50.41� 0.10% 50.10� 0.09%

PV-0.1-R2d R2d with two extra points generated near
each R2d point, these are generated in a
way that all groups of three are of the same
chirality. Groups of three are separated on
the scale of one tenth the average
interpoint distance

Check detection of parity
violating inputs

90.77� 0.06% 49.74� 0.10%

Fx-PV-0.1-R2d PV-0.1-R2d with 50% of the extra points
inserted with their relative x coordinate to
the original point inverted

Check method of generating points
is not injecting parity violation

49.66� 0.10% 49.98� 0.10%

Fy-PV-0.1-R2d Fx-PV-0.1-R2d flipped in y instead of x Check method of generating points
is not injecting parity violation

49.98� 0.10% 49.57� 0.10%

PV-0.1-R2d-5% PV-0.1-R2d, but only 5% of inputs generated
in this way. The rest are random

Check fraction of inputs needed to
detect

52.46� 0.10% 50.0� 0.10%

PV-0.1-R2d-1% PV-0.1-R2d, but only 1% of inputs generated
in this way. The rest are random

Check fraction of inputs needed to
detect

50.96� 0.10% 50.0� 0.10%

S-PV-0.1-R2d PV-0.1-R2d, but after generating parity
violating groups all points shuffled
together and new groups drawn at random

Can parity violations be detected
when they are visibly present,
and groups sampled randomly
from the dataset

49.70� 0.10% 49.68� 0.10%

C-PV-0.1-R2d S-PV-0.1-R2d, with a distance constraint
when generating groups from the shuffled
data

Can parity violations become
detectable by constraining the
scale

65.10� 0.04% 49.85� 0.04%

C-R2d R2d with groups constructed after
constraining the scale

Check action of constraining scale
is not causing spurious detection

50.34� 0.09% 50.12� 0.10%

C-PV-1-R2d PV-0.1-R2d, but scale of parity violations
now same scale as average interpoint
distance. No longer visibly parity
violating. Groups drawn with scale
constraint

Check parity violations detectable
on more realistic scales with
scale constraint

55.12� 0.10% 49.63� 0.10%

C-R2d-LH5 Generate groups of three from R2d with
distance in range 1-5 x average interpoint
distance. Remove groups of three where
θ12 < θ13. Reshuffle and drawn new
groups on same scale

Can different methods of
generating parity violations be
detected

52.46� 0.10% 50.07� 0.10%

TABLE X. (Continued)

Data code Description Purpose Detection Control Uncolored

F-CHE-RCI CHE-RCI, but each helix
has a 50% chance of being
left- or right-handed

Check method of insertion is not
causing spurious detection

50.5� 0.3% 50.4� 0.3% 50.2� 0.3%

HE-RCI-0.1 HE-RCI with 10 times fewer helices Check detection of complex parity
violation

54.3� 0.3% 50.6� 0.3% 49.9� 0.3%

HE-RCI-0.01 HE-RCI with 100 times fewer helices Check detection of complex parity
violation

52.2� 0.3% 50.1� 0.3% 49.8� 0.3%
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APPENDIX C: ADDITIONAL TESTS ON
NETWORKS

1. 2D angles: n= 4;5

As with the method using angles from groups of 3,
the methods using 4 and 5 points per group were also

TABLE XII. 3D toy datasets. Each dataset is given a code and a description and has its testing purpose outlined. The detection column
contains the positive fraction detection, and the control column shows the positive fraction for the control group for each test.

Data code Description Purpose Detection Control

R3 Random generated 3d point data Check parity violation is not
detected where there is none

49.90� 0.11% 50.11� 0.10%

PV-0.1-R3 R3 with three extra points generated near
each R3 point, these are generated in a
way that all groups of four are of the same
chirality. Groups of four are separated on
the scale of one tenth the average inter
point distance

Check detection of parity violating
inputs

87.59� 0.11% 49.69� 0.07%

F-PV-0.1-R3d PV-0.1-R3d with 50% of the extra points
inserted with their relative x coordinate to
the original point inverted

Check method of generating points
is not injecting parity violation

50.17� 0.11% 50.21� 0.10%

PV-0.1-R3-5% PV-0.1-R3, but only 5% of inputs generated
in this way. The rest are random

Check fraction of inputs needed to
detect

53.67� 0.07% 50.01� 0.08%

PV-0.1-R3-1% PV-0.1-R3, but only 1% of inputs generated
in this way. The rest are random

Check fraction of inputs needed to
detect

49.37� 0.08% 50.05� 0.07%

S-PV-0.1-R3 PV-0.1-R3, but after generating parity
violating groups all points shuffled
together and new groups drawn at random

Can parity violations be detected
when they are visibly present,
and groups sampled randomly
from the dataset

50.37� 0.08% 50.15� 0.08%

C-PV-0.1-R3 S-PV-0.1-R3, with a distance constraint
when generating groups from the shuffled
date

Can parity violations become
detectable by constraining the
scale

58.73� 0.08% 49.87� 0.08%

C-R3 R3 with groups constructed after
constraining the scale

Check action of constraining scale
is not causing spurious detection

49.87� 0.04% 50.32� 0.07%

C-PV-1-R3 PV-0.1-R3, but scale of parity violations now
same scale as average interpoint distance.
No longer visibly parity violating. Groups
drawn with scale constraint

Check parity violations detectable
on more realistic scales with
scale constraint

54.37� 0.05% 49.87� 0.06%

C-R3-LH5 Generate groups of 4 from R3 with distance
in range 1-5x average interpoint distance.
Remove groups of 4 where θ13 < θ14.
Reshuffle and drawn new groups on same
scale

Can different methods of
generating parity violations be
detected

53.11� 0.07% 50.64� 0.06%

TABLE XIII. Results for the vector input method on the 3D toy
datasets, as defined in Table XII The detection column contains
the positive fraction detection, and the control column shows the
positive fraction for the control group for each test.

Data code Detection Control

R3 50.11� 0.07% 50.21� 0.06%
PV-0.1-R3 99.83� 0.02% 50.3� 0.31%
F-PV-0.1-R3d 50.35� 0.07% 49.87� 0.07%
PV-0.1-R3-5% 53.18� 0.07% 49.78� 0.07%
PV-0.1-R3-1% 50.43� 0.07% 49.91� 0.07%
S-PV-0.1-R3 50.16� 0.07% 49.84� 0.07%
C-PV-0.1-R3 47.56� 0.10% 50.11� 0.11%
C-R3 49.98� 0.11% 50.09� 0.10%
C-PV-1-R3 47.36� 0.07% 49.91� 0.07%
C-R3-LH5 48.12� 0.07% 50.04� 0.07%

TABLE XIV. 2D toy datasets for n ¼ 4: The datacodes are
defined in Table XI.

Data code Detection Control

R2d 50.22� 1.0% 49.87� 1.0%
PV-0.1-R2d 98.32� 0.9% 50.91� 1.0%
PV-0.1-R2d-1% 52.62� 1.0% 50.43� 1.0%
PV-0.1-R2d-0.5% 51.56� 0.3% 50.52� 1.0%
S-PV-0.1-R2d 50.36� 0.3% 50.22� 1.0%
C-PV-0.1-R2d 55.57� 0.3% 50.22� 1.0%
C-R2d 50.61� 0.3% 50.21� 1.0%
C-PV-1-R2d 53.69� 0.3% 50.32� 1.0%
C-R2d-LH5 51.26� 0.3% 50.62� 1.0%
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tested. These were tested using the same tests as the
n ¼ 3 case. The results are given in Tables XIV and XV.
The tests demonstrate that these methods are equally
suitable.

APPENDIX D: PATCHES OF THE SKY

In order to confirm the arguments which propose that the
artifacts are having no significant impact, the CMASS
NGC was split into eight regions. And image datasets
compiled from each separately, the full results follow in
Table XVI, where we see that no significant difference
occurs between the regions. Suggesting that the artifacts are
indeed having no impact. For these tests, the same size
patches of the sky were used, and each region had 3,000
images generated from it. The image distribution for the
first region is shown in Fig. 15.
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