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It is possible for asymmetric dark matter (ADM) to accumulate in neutron star interiors and affect their
global properties. Considering the effects of this accumulation, neutron star mass-radius measurements can
deliver new insights into the cold dense matter equation of state (EoS). In this paper, we employ Bayesian
parameter estimation using real and synthetic neutron star mass-radius data to infer constraints on the
combined baryonic matter and fermionic ADM EoS, where the fermionic ADM forms a core in the neutron
star interior. Using currently available mass-radius data, we find that the lower bound of the ratio between
the ADM effective self-repulsion strength (gχ=mϕ) and particle mass (mχ) can be constrained at the 68%
(95%) credible level to 10−6.59 (10−7.77). We also find that, if neutron star mass-radius measurement
uncertainties are reduced to the 2% level, the constraints on the lower bound of the ratio of gχ=mϕ tomχ can

be improved to 10−6.49 and 10−7.68 at the 68% and 95% credible levels, respectively. However, all other
combinations, of mχ , gχ , and the ADM mass-fraction, Fχ (i.e., the ratio of the gravitational ADM mass to
the gravitational mass of the neutron star), are unconstrained. Furthermore, in the pressure-energy density
and mass-radius planes, the inferences which include the possibility of fermionic ADM cores are nearly
identical with the inferences that neglect fermionic ADM for Fχ ≤ 1.7% and neutron star mass-radius
uncertainties ≥ 2%. Therefore, we find that neutron star mass-radius measurements can constrain the ratio
of gχ=mϕ to mχ . Moreover, since the pressure-energy density and mass-radius posteriors which include
fermionic ADM overlap with those that neglect fermionic ADM, we find that neutron stars with ADM are
indistinguishable from purely baryonic stars. This implies that neutron stars with ADM are equally as
consistent with the available mass-radius data as neutron stars without ADM.
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I. INTRODUCTION

The extremely compact nature of neutron stars provides
a unique environment to probe the behavior of matter at
supranuclear densities. Theoretical models of neutron star
interiors predict many different types of baryonic matter,
such as neutron-rich matter, nuclear pasta, hyperons, and
deconfined quarks [1–7]. The microphysics of these hypo-
thetical forms of matter are encoded by the equation of state
(EoS), which describes the relation between the pressure
and energy density maintained throughout the star. The
dense matter EoS can be determined from knowing the
gravitational masses and radii of neutron stars. In parti-
cular, each EoS can be mapped to a unique mass-radius
relation, i.e., the numerical expression that relates all
possible, stable neutron star mass and radii, through the

Tolman-Oppenheimer-Volkoff (TOV) equations [8]. Thus,
measurements of neutron stars can be used to characterize
the mass-radius curve, and thus constrain each hypothetical
dense matter EoS.
Analyzing the x-ray pulse profile (a rotationally phase

and energy-resolved x-ray count spectrum) can be used to
infer the masses and radii of neutron stars through the pulse
profile modeling (PPM) technique. PPM is a relativistic
ray-tracing technique that can be used to extract valuable
information encoded in the pulse profile, such as mass,
radius, and hot spot geometry (for more details on PPM see
[9–11]). So far, data from NASA’s Neutron Star Interior
Composition Explorer (NICER) [12], informed where
possible by mass priors from pulsar timing, has been used
to infer the masses and radii of three millisecond pulsars
using the PPM technique: PSR J0740þ 6620 [13–18],
PSR J0030þ 0451 [19–21], and most recently, PSR
J0437 − 4715 [22,23]. Constraints have also been
placed on a fourth millisecond pulsar, PSR J1231-1411,
but these constraints are weaker than the others and will
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therefore be neglected in this work [24]. The mass-radius
measurements of these pulsars have been used in many
analyses to set constraints on the dense matter EoS (see
e.g., [15,20,25–35]). Most recently, [34] has shown that the
inferences with the newest mass-radius results from NICER
improve the reliability of our understanding on the neutron
star EoS via the updated chiral effective field theory (χEFT)
calculations of [36] and the degree in which the results are
data driven. However, the uncertainty of the cold dense
matter EoS remains.
In the near future, improved mass-radius constraints on

targets already analyzed by NICER are expected.
Additionally, the mass-radius measurements of four more
sources are anticipated. During the next decade, large-area
x-ray spectral-timing missions are anticipated to perform
PPM on more neutron stars with improved uncertainties.
Such missions include the Chinese enhanced X-ray Timing
and Polarimetry mission concept [37], the NASA probe-
class Spectroscopic Time-Resolving Observatory for
Broadband Energy X-rays (STROBE-X) mission concept
[38], and the European Space Agency’s L-class Advanced
Telescope for High ENergy Astrophysics mission [39].
Currently, many of the EoS studies that consider PPM-

derived mass-radius measurements only account for the
presence of baryonic matter and its potential phase tran-
sitions. However, there is a growing understanding that
dark matter may form part of neutron star structures and
therefore affect the observable properties of neutron stars.
To fully assess the range of neutron star EoSs, we must
therefore also study the inclusion of a dark matter compo-
nent in our models. Dark matter can occupy two spatial
regimes: a dark matter halo that extends through and
beyond the baryonic radius of the neutron star, and a dark
matter core inside the neutron star’s interior. Dark matter
halos around neutron stars have been shown to increase the
gravitational masses and tidal deformabilities of the stars
when compared to a neutron star with no asymmetric dark
matter (ADM) with an identical central baryonic energy
density, if the dark matter mass distribution is mostly
beyond the baryonic surface [40–46]. However, if most of
the dark matter halo distribution resides within the baryonic
radii of neutron stars, halos can reduce the gravitational
masses and radii of these stars (see e.g., [47]). In addition,
the presence of any dark matter halo can significantly
impact the exterior space-time around neutron stars, which
would alter the interpretation of NICER’s mass-radius
measurements [47–49]. Interestingly, dark matter halos
could possibly form stable ultracompact neutron stars with
compactness greater than 1=3, which could serve as a black
hole mimicker [50]. If dark matter forms a core inside
neutron star interiors, the gravitational masses, radii, and
tidal deformabilities have been shown to decrease when
compared to their purely baryonic counterparts with the
same central baryonic energy density [51–58]. Therefore, it
is evident that, because dark matter can affect the meas-
urable properties of neutron stars, the possible presence of
it must be accounted for in analyses of the neutron star
mass-radius measurements and the EoS.

There are a variety of proposed methods to constrain the
presence of dark matter in and around neutron stars. For
instance, by considering one or multiple representative
baryonic EoSs, constraints on the dark matter particle mass,
mediator mass, and mass-fraction can be made using
gravitational wave and neutron star mass-radius measure-
ments [45,48,54,55,59–74]. More specifically, using one or
more baryonic EoSs allows for constraints on the dark
matter mass-fraction as a function of particle mass
[45,54,55,63,64], the dark matter Fermi momentum and
particle mass [59,73], several dark matter parameters by
imposing hard cutoffs on the maximum neutron star mass
and tidal deformability of a 1.4M⊙ neutron star [61,62,69–
71,74], correlations between dark matter and baryonic
matter parameters [65–68,72], and Bayesian inferences
to estimate the dark matter parameter space [48,60].
Analytical calculations of the maximum accumulated dark
matter mass before gravitational collapse to a black hole
inside a neutron star can be used to tightly constrain dark
matter models through observations of old neutron stars
[75–78]. When an additional dark matter component is
considered in simulations of binary neutron star mergers it
has been shown that dark matter can leave detectable
signatures on the gravitational wave and electromagnetic
counterparts, which can constrain the dark matter particle
mass and the total accumulated dark matter mass [79–81].
Finally, due to their extremely compact natures, neutron
stars can efficiently capture dark matter within their
interiors and thus can provide constraints on the dark
matter–nucleon cross section and particle mass [82].
In our previous work [83], we investigated constraints on

bosonic ADM cores inside neutron stars by performing a
full Bayesian inference in which all parameters in the
neutron star EoS model are allowed to vary. We assumed
the dark matter was 100% comprised of the self-repulsive
bosonic ADM of [40]. The main motivation of the ADM
paradigm suggests that the cosmic history between dark
matter and baryonic matter is strongly tied together given
that the observed dark matter mass density in the Universe
is only 5 times greater than that of baryonic matter. That is,
similar to the baryon asymmetry in the early Universe, dark
matter also had an asymmetry between it and anti–dark
matter, which produced the relic abundance of dark matter
observed today in the Universe [84,85]. A “dark asymme-
try” between dark matter and anti–dark matter in the early
Universe would allow for small attractive interactions with
baryonic matter and substantial repulsive self-interactions.
By combining the EoS of the [40] bosonic ADM model

with the parametrized piecewise polytropic (PP) model
of [1] and restricting the study to simulated neutron star
mass-radius measurements with and without bosonic ADM
cores, in [83] we explored the possible inferred constraints
on both the bosonic ADM and baryonic EoSs. From these
inferences, we found that the uncertainties on the baryonic
EoS are relaxed when bosonic ADM cores are taken into
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account. Moreover, in [83] we found that, if the baryonic
EoS could be constrained more tightly, constraints on the
ADM mass-fraction and the ratio of the effective bosonic
ADM self-repulsion strength to the particle mass can be
made. Last, we concluded that the ADM particle mass and
self-repulsion cannot be individually constrained using
neutron star mass-radius measurements.
Several studies, that have also studied dark matter

admixed neutron stars using NICER mass-radius measure-
ments and/or gravitational wave measurements from LIGO/
VIRGO are [45,48,49]. In [48], the authors studied the
impact of dark matter halos on the pulse profile of neutron
stars and performed a Bayesian analysis on the [40]
fermionic ADM model with a fixed baryonic matter EoS.
Additionally, they restricted their analysis to dark matter
cores and diffuse halos. Their inference is based on the
posterior distributions of two NICER pulsars, namely PSR
J0740þ 6620 and PSR J0030þ 0451. Although [48] did
not determine constraints on the ADM self-repulsion
strength and mass-fraction, they did infer constraints on
the fermionic ADM particle mass. In particular, they
determined the ADM particle mass is favored to be less
than 1.5 GeV for halos and ADM cores favor masses near
0.6 GeV. In [49], the authors also studied the affect of dark
matter halos on the pulse profile of neutron stars and studied
the constraints on bosonic dark matter using two baryonic
EoS models with different stiffness. Moreover, [49] per-
formed a scan over the bosonic dark matter particle mass,
self-interaction strength, and mass-fraction using both
baryonic matter EoS models and compared the results to
the 95% confidence intervals of the NICER and LIGO/
VIRGOmeasurements. Here, they found that the maximum
allowed darkmattermass-fraction is around 5%and 20% for
the relatively soft and stiff baryonic EoSs, respectively. In
addition, [49] also found that the allowed region of particle
masses and self-repulsion strengths shrinks for increasing
mass-fraction for both baryonic EoSs. Last, in [45], the
authors considered ten baryonic EoS models of varying
stuffiness and a fermionic dark matter model with repulsive
and attractive self-interactions. Their analysis consisted of
comparing various fermionic dark matter configurations
using the 95% contours of the NICER and LIGO/VIRGO
measurements as hard cutoffs to rule one configuration in or
out. Here, [45] found that dark matter particle masses in the
range of [0.1, 30] GeV with Fermi momenta in the interval
[0.01, 0.07] GeV can match the data contours. In order to
constrain dark matter in neutron stars, all three studies used
at most a handful of baryonic EoSs and used NICER and/or
LIGO/VIRGO measurements.
In this work, we take a different approach to those found

in the literature and expand on our prior work in [83] by
taking into account fermionic ADM cores, considering
realistic ADM accumulation mechanisms that apply to all
physically allowed ADM particle masses, and including
both real and synthetic PPM-derived mass-radius data.
Modeling the dark matter core as fermionic ADM instead
of bosonic ADM is physically interesting because fermionic

ADM cores have additional support against gravity through
the Fermi degeneracy pressure, thus expanding the allowed
ADM parameter space to be studied because the self-
repulsion is allowed to be zero. We additionally consider
real neutron star mass-radius data for this work because [58]
showed that the presence of ADMcores does not modify the
universal relations used to model the oblateness of neutron
stars.1 By considering both real and synthetic data in
addition to ADM accumulation mechanisms that apply to
the entire physically allowed parameter space, this workwill
be able to investigate current and potential future constraints
on fermionic ADM cores.
In this work, we assume the fermionic ADM cores are

described by the [40] model and neglect the possibility of
ADMhalo configurations, because the existence of any halo
will alter the exterior space-time and thus modify how PPM
is performed. This work considers the mass-radius mea-
surements of PSR J0740þ 6620 [14] and PSR J0030þ
0451 [19]. There have been several updates to PSR J0740þ
6620 [16,17] and PSR J0030þ 0451 [21], as well as a new
mass-radius measurement for PSR J0437 − 4715 [22],
which was released during the completion of this work.
However, we still consider the mass-radius posteriors of
PSR J0030þ 0451 [19] and PSR J0740þ 6620 [14] for two
key reasons: the first is so that this work is fully comparable
to our previous work on bosonic ADM [83] and the other is
because our synthetic scenario best demonstrates what can
be achieved with tighter mass-radius uncertainties.
For the simulated neutron star data, we consider six

possible STROBE-X sources because the STROBE-X mis-
sion is expected to provide lower uncertainties than NICER
[38,88]. We call this scenario, Future-X, after the original
Future-X scenario in our previous work. By incorporating
fermionic ADM with both real and synthetic data into our
Bayesian framework, this work aims to quantify the possible
constraints on the fermionic ADM EoS for current missions
and future missions, namely NICER and STROBE-X.
Furthermore, the other objective is to determine the effects
of including fermionic ADM on the neutron star pressure–
energy density and mass-radius posteriors.
The work presented in this manuscript shows that the

current NICER and future STROBE-X measurements are
able to place constraints on the lower bound of the ratio
between the ADM particle mass and effective self-repul-
sion strength. However, under the current uncertainties of
the baryonic EoS, neither NICER nor STROBE-X can
constrain the fermionic ADM particle mass, effective self-
repulsion strength, or mass-fraction. Finally, we find that
the mass-radius ADM admixed neutron star posteriors are
equally as consistent with the data as the counterparts that
neglect ADM, which implies that NICER and STROBE-X
cannot distinguish between the two cases.

1For further details on the universal oblateness relations of
neutron stars see [86,87].
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This paper is organized as follows. In Sec. II, we
motivate the two-fluid TOV equations and describe the
baryonic matter and fermionic ADM EoSs. Section III
discusses our Bayesian inference framework for providing
constraints on the ADM admixed neutron star EoS, the
baryonic matter EoS priors, the constraints on the fermionic
ADM EoS parameter space, and the selected neutron star
mass-radius measurements. In Sec. IV, we study the
inferences for both the NICER data and Future-X scenario.
Finally, in Sec. V, we discuss our results. Throughout this
work, we use the metric signature diagð−;þ;þ;þÞ.

II. MODELING THE STRUCTURE OF ADM
ADMIXED NEUTRON STARS

Traditionally, the mass-radius relation of neutron stars is
computed by iteratively solving the TOVequations [89,90]
for a given baryonic matter EoS and range of central energy
densities [8]. However, to compute the mass-radius relation
of neutron stars with ADM, the single fluid mass-radius
relation calculation must be modified. In this section, we
describe how to model the structure of ADM admixed
neutron stars using the two-fluid formalism, and describe
the baryonic matter and ADM EoSs used in our analysis.
The combination of the baryonic matter EoS, ADM EoS,
and two-fluid formalism, allow for the ADM admixed
neutron star mass-radius relation to be computed.

A. The two-fluid formalism

The global properties, such as mass and radius, of an
ADM admixed neutron star can be computed by adopting
the two-fluid formalism, which assumes that the inter-
actions between the Standard Model and ADM are solely
gravitational (see e.g., [47,49,51,55,58,63,80,91,92]). The
two-fluid formalism is an appropriate framework to study
ADM admixed neutron stars because any nongravitational
interfluid interaction between ADM and the Standard
Model is expected to be negligible [93,94].2 The assump-
tion that ADM and baryonic matter interact only gravita-
tionally implies that ADM and baryonic matter satisfy their

own conservation of the energy-momentum equation.
Thus, both ADM and baryonic matter can be treated as
two distinct fluids, which can be expressed in terms of
pressure and energy density as

pðrÞ ¼ pBðrÞ þ pχðrÞ; ð1Þ
εðrÞ ¼ εBðrÞ þ εχðrÞ; ð2Þ

where pB (εB) is the baryonic matter pressure (energy
density) as a function of radius r and pχ (εχ) is the ADM
pressure (energy density) as function of r. The substitution
of Eqs. (1) and (2) into the single-fluid TOV equations
yields the two-fluid TOV equations:

dpB

dr
¼ −ðεB þ pBÞ

Gc2MðrÞ þ 4πr3GpðrÞ
c2r½rc2 − 2GMðrÞ� ; ð3Þ

dpχ

dr
¼ −ðεχ þ pχÞ

Gc2MðrÞ þ 4πr3GpðrÞ
c2r½rc2 − 2GMðrÞ� ; ð4Þ

dMBðrÞ
dr

¼ 4πr2
εBðrÞ
c2

; ð5Þ

dMχðrÞ
dr

¼ 4πr2
εχðrÞ
c2

; ð6Þ

where MχðrÞ is the gravitational mass of ADM, MBðrÞ is
the gravitational mass of baryonic matter, and MðrÞ ¼
MBðrÞ þMχðrÞ. The two-fluid TOVequations can then be
simultaneously solved for the gravitational masses, radii,
and pressures of each fluid given their respective EoSs and
central energy densities. More specifically, the pressures
and gravitational masses of ADM and baryonic matter are
solved simultaneously until either one of the fluid pressures
reaches zero. The integration is stopped and then resumed
using the single-fluid TOVequations with the last pressure
value of the remaining fluid as the initial condition. Since
the two-fluid TOV equations can be solved to obtain the
gravitational masses and radii of both ADM and baryonic
matter, they can also be used to numerically compute the
ADM admixed mass-radius relation. Similar to how the
baryonic matter neutron star mass-radius relation is numeri-
cally computed, the ADM admixed neutron star mass-
radius relation is obtained by iteratively solving the two-
fluid TOV equations for a given EoS and range of central
energy densities for both ADM and baryonic matter,
respectively.
The two-fluid TOVequations allow for a clear distinction

between the ADM core radius (Rχ) and the baryonic matter
radius (RB), which makes it possible to define the ADM
mass-fraction, Fχ . The mass-fraction is defined as the ratio
of the ADM gravitational mass to the total gravitational
mass of the ADM admixed neutron star, and it is given by

Fχ ¼
MχðRχÞ

MχðRχÞ þMBðRBÞ
; ð7Þ

2We would like to note that the choice of using the two-fluid
formalism is not entirely consistent with the ADM paradigm
because it neglects any interaction of dark matter with baryonic
matter, which is necessary to generate the dark asymmetry
between ADM and anti-ADM. However, since this work assumes
that the coupling of baryonic matter to ADM is small compared to
the coupling strength of ADM to itself (see Sec. II B for further
details) and that the dominant interaction between ADM and
baryonic matter is gravitational, the two-fluid formalism is a well-
motivated treatment to study ADM inside neutron stars. Addi-
tionally, since this work considers the [1] parametrized PP model
for the baryonic EoS, the Standard Model baryon current cannot
be computed because there is no associated Lagrangian with the
model. Although capturing the uncertainties of the baryonic EoS
and the interaction term of baryonic matter with ADM in the
ADM EoS needs further work, this can be improved in the future,
e.g., using the two-fluid interacting system considered in [95].
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where MχðRχÞ is the total accumulated ADM gravitational
mass evaluated at Rχ and MBðRBÞ is the baryonic matter
gravitational mass evaluated atRB. The ADMmass-fraction
is useful because the total gravitationalmass and radius of an
ADM admixed neutron star is strongly dependent on the
value of Fχ (see [54,57,96]). Moreover, when specific
assumptions about the baryonic matter EoS are made, the
ADM mass-fraction can be constrained tightly by neutron
star measurements [54,55,83,91] and can be used to place
constraints on theADMparticle mass [49,57,64,91]. TheFχ

is an optimal parameter to consider in our analysis. Finally,
to compute the structure of an ADM admixed neutron star
for a givenFχ and central baryonic energydensity,we follow
the numerical algorithm outlined in [83].

B. The baryonic matter and ADM EoSs

In order to model neutron stars that have baryonic matter
and potential fermionic ADM core components, we need to
solve the two-fluid TOVequations. This requires an EoS for
each type ofmatter.While it is commonpractice tomodel the
baryonic matter EoS using one or more of the available
tabulated EoSs [40,47,48,51–53,58,63], we model the
baryonic matter EoS using the parametrized PP model used
in [1,25–27,34,97]. We employ the PP model because it, as
well as other polytropicmodels, can fit many of the tabulated
EoSs [98]. Moreover, when a wide range of PP EoSs are
sampled, the PP model is able to capture the uncertainties in
the baryonic EoS due to its parametrized nature. This allows
for the PPmodel to spanmuch of the physically viable space
in the mass-radius plane. The parametrized PP model is
described by three varying polytropes connected at two
varying transition densities and considers the calculations of
χEFT at low density. In particular, for densities ≲0.5n0
(n0 ¼ 0.16 fm−3) we consider the neutron star crust to be
described by the Baym-Pethick-Sutherland crust EoS [99],
which we then connect to a single polytropic fit of the χEFT
band of [1] between 0.5n0 and 1.1n0. At densities above 2n0,
the χEFT calculations grow increasingly uncertain and
eventually break down [100]. Although, χEFT calculations
have been considered up to 1.5–2.0n0 in other EoS analyses
(see e.g., [7,34,101]), we do not expect the difference in
these choices to affect the inferences on the fermionic ADM
EoS parameters, as the χEFT calculations only affect the
uncertainties on the baryonic EoS, which is beyond the
scope of this work. Additionally, this work seeks to be
comparable to our previous work [83]. Thus, for densities
≥1.1n0, we connect the [1] χEFT band to the high-density
piecewise polytropic parametrization. Modeling the bar-
yonic EoS in this way allows us to simultaneously consider
the tight constraints delivered by the χEFT formalism
and systemically study the neutron star mass-radius plane
(see [1,98,102]).
Our fermionic ADM core is that of [40], which describes

an MeV–GeV mass-scale spin-1=2 ADM particle χ with

repulsive self-interactions mediated by the exchange of an
eV–MeV mass-scale vector gauge boson ϕμ. The ADM
vector gauge boson also carries the Standard Model baryon
number in order to create the asymmetry between dark
matter and anti–dark matter particles in the early Universe
that is needed to produce the present dark matter mass
density of the Universe.
In order to obtain the fermionic ADM EoS, [40] assumed

that gB ≪ gχ , where gχ is the interacting strength between χ
and ϕμ and gB is the interaction strength of ϕμ with the
Standard Model baryon current. Although robust calcula-
tions of this inequality have not been done yet, assuming
that gB ≪ gχ is physically reasonable because it is expected
that gχ ∈ ½10−6; 1� for ϕμ in the eV–MeV mass scale, which
is at least 4 orders of magnitude greater than the gB ≤ 10−10

constraint [40,94].3 Therefore, in order to obey the
assumption that gB ≪ gχ , we approximate the effective
self-repulsion strength to a nonzero value that produces
ADM cores similar to the physically allowed value of zero
in the Appendix. Given the assumption that gB ≪ gχ , and
by assuming that all of the possible accumulated ADM has
thermally equilibrated within the neutron star then the
ADM EoS can be computed in the zero-temperature limit.
Thus, with ℏ and c restored, the [40] fermionic ADM EoS
is expressed as

εχ ¼
c5m4

χ

8π2ℏ3
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
ð2z3 þ zÞ − lnðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ�

þ g2χ
2m2

ϕ

c5ðmχzÞ6
ℏ3ð3π2Þ2 ; ð8Þ

pχ ¼
c5m4

χ

8π2ℏ3

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p �
2

3
z3 − z

�
þ lnðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ
�

þ g2χ
2m2

ϕ

c5ðmχzÞ6
ℏ3ð3π2Þ2 ; ð9Þ

where εχ is the fermionic ADM energy density, pχ is the
fermionic ADM pressure, and z ¼ ℏkχ=mχc is the relativity
parameter defined in terms of the ADM Fermi momentum
kχ . By inserting the baryonic matter and fermionic ADM
EoSs into the two-fluid TOV equation, the ADM admixed
neutron star mass-radius relation can be computed.

III. METHODOLOGY

We now show how to construct our Bayesian inference
framework that considers both baryonic matter and ADM
inside neutron star interiors. In this section, we discuss
this inference framework, the prior space of the PP

3Note that gχ is allowed be zero in the [40] fermionic ADM
model because the Fermi degeneracy pressure offers the ADM
core support against gravitational collapse.
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parametrization of the baryonic EoS, constraints on the
fermionic ADM EoS parameters, and the source selection
for both the real and synthetic data analyses.

A. Bayesian framework

We use the inference framework developed in [83],
which adapts the Bayesian analysis of [25–27,34,97] to
include the possible presence of an ADM EoS. In particu-
lar, we use the open source EoS inference code NEoST v2.0.0,
which includes ADM functionality [103].4 A full repro-
duction package, including the posterior samples and
scripts to generate the plots in this work, is available in
a Zenodo repository at [104].
We use Bayes’ theorem to write the posterior distribution

on all ADM and baryonic EoSs as

pðθ; εcjdÞ ∝ pðθÞpðεcjθÞpðdjθ; εcÞ
∝ pðθÞpðεcjθÞp(djMðθ; εcÞ;Rðθ; εcÞ); ð10Þ

where θ is the vector containing all ADM and baryonic EoS
parameters, εc is the vector containing the baryonic and
ADM central energy densities, d is the vector containing
the masses and radii of the sources from each scenario,
Mðθ; εcÞ is the mass of a produced admixed neutron star,
and Rðθ; εcÞ is the radius of the admixed neutron star.
Moreover, by assuming each of the mass-radius data sets
are independent of one another and equating the mass-
radius data sets to those derived from PPM, we obtain

pðθ; εcjdÞ ∝ pðθÞpðεcjθÞ
Y

i

pðMi; RijdPPM;iÞ; ð11Þ

where i runs over the number of stars for which PPM
delivers the mass and radius and dPPM;i is an element in the
d vector in which PPM was used. Furthermore, since the
ADM mass-fraction is a function of baryonic and ADM
EoS parameters and central energy densities, we can
sample over the ADM mass-fraction instead of the
ADM central energy density by introducing Fχ ¼
Fχðθ; εc;B; εc;ADMÞ. This implies that the posterior distri-
bution θ and εc can be rewritten as

pðθ; εc;B;Fχ jdÞ ∝ pðθÞpðεc;BjθÞpðFχ jθ; εcÞ
×
Y

i

pðMi; RijdPPM;iÞ; ð12Þ

where εc;B and εc;ADM are the central energy densities of
baryonic matter and ADM, respectively. Sampling over the
ADM mass-fraction rather than the ADM central energy
density allows for a direct comparison between the poten-
tial accumulation methods of ADM in neutron stars and the
Fχ prior space.

B. Baryonic matter priors

We now define the priors on the baryonic matter EoS,
which we describe using the parametrized PP EoS model
used in [1,25–27,34] from Sec. II B. Since the neutron star
crust is modeled after the fixed Baym-Pethick-Sutherland
crust EoS [99], the prior ranges that need to be defined are
those on the [1] χEFT band, the three polytropes, and the
two varying transition densities between each polytrope. As
described in Sec. II B, the [1] χEFT band is fitted between
0.5n0 and 1.1n0 using a single polytrope, which is of the
form

PχEFTðnBÞ ¼ KðnB=n0ÞΓ; ð13Þ

where PχEFT is the χEFT pressure as a function of baryo-
nic number density nB, K is the matching constant to PχEFT

in units of MeV fm−3, and Γ is the adiabatic index.
Following the fitting procedure in [27], which fits the
maximum and minimum pressure bands of a given χEFT
using Eq. (13), the [1] band is well reproduced by
K ∈ ½1.676; 2.814� MeV fm−3 and Γ∈ ½2.486; 2.571�. We
take the fit parameters forK and Γ to be the prior bounds on
the [1] χEFT band.
In order to produce the three polytropic priors, we

consider the allowed ranges described in [1,97], which
define the priors on the first polytropic index (Γ1), the
transition density between the first and second polytropes
(n1), the second polytropic index (Γ2), the transition density
between the second and third polytropes (n2), and the third
polytropic index (Γ3). The priors on each parameter are
given as Γ1 ∈ ½1; 4.5�, Γ2 ∈ ½0:; 8:�, Γ3 ∈ ½0.5; 8�, and
1.5n0 ≤ n1 < n2 ≤ 8.3n0. Here, the priors on Γ1 in [1]
are restricted to a smaller range relative to the other two
polytropes because it controls the stiffness of the EoS
between 1.1n0 ≤ n ≤ 1.5n0, which is still well constrained
by the [1] χEFT calculations. Therefore, in order to remain
consistent with causality and with the χEFT band at 1.1n0,
the variations in Γ1 must be restricted to [1, 4.5] [1]. The
priors of Γ2 where chosen to allow for the possibility of a
first-order phase transition (i.e., Γ2 ¼ 0), such as those in
quark matter EoSs, and to capture the maximally stiff EoSs
of this PP framework, which corresponds to Γ2;max ¼ 8,
which is determined by causality and a maximum neutron
star mass of 3M⊙. For densities beyond n2, the prior of Γ3 is
chosen similarly to Γ2, but 0 is excluded to avoid numerical
artifacts associated with a first-order phase transition in the
density range of Γ2. The transition densities between the
three polytropes, n1 and n2, are allowed up to 8.3n0 as this
is the maximal central density of the PP model [1,97]. Since
each polytropic segment in the [1] PP model is determined
by three parameters, Ki, Γi, and the number density n, then
a prior on Ki must also be defined. However, according
to [98], when an EoS is specified at lower density,
continuity of pressure forces Ki to

4https://github.com/xpsi-group/neost
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Ki ¼
PðntÞ
nΓi
t

; ð14Þ

where nt is the transition density. In this case the nt’s are set
by the χEFT band for the first polytrope, n1 for the second
polytrope, and n2 for the third polytrope. Last, for each PP
EoS parameter, we uniformly sample the considered prior
ranges.

C. Fermionic ADM priors

We now define the priors on each of the fermionic ADM
EoS parameters. In particular, we use the available liter-
ature and physical constraints (if any) to construct the prior
spaces onmχ , Fχ , and gχ=mϕ, all three of which completely
define the fermionic ADM EoS.
To define the prior space on the fermionic ADM particle

mass, we consider the physical constraints on mχ from
[78,105]. The considered lower bound on mχ was obtained
by [105], which showed that the minimum mχ such that no
ADM particle can exceed the neutron star escape velocity is

mχ ≥ 10−2 MeV: ð15Þ
On the other hand, [78] considered fermionic ADM core
collapse to a black hole inside the host neutron star.
The authors showed that in order to avoid the formation
of a black hole, regardless of whether the ADM is self-
interacting,

mχ ≤ 109 MeV: ð16Þ
Therefore, the prior space on the fermionic ADM particle
mass is defined by

mχ ∈ ½10−2 MeV; 109 MeV�: ð17Þ

While the prior space on the fermionic ADM particle
mass is well constrained, the ADM mass-fraction prior
space is not. Typically, the fermionic ADM mass-fraction
prior space is defined using physically motivated ADM
accumulation methods, such as neutron bremsstrahlung
[40,51], production of ADM in supernovae [40,96], and
neutron conversion to ADM [51,56,106]. The neutron
bremsstrahlung reaction of ADM produces the gauge boson
ϕμ via the conversion of the kinetic energy produced
between the scattering of two neutrons (NN), i.e.,
NN ⟶ NNϕμ. Moreover, since ϕμ is strongly coupled
to ADM, the reaction of NN ⟶ NNχ̄χ proceeds at a
similar rate as that of the neutron bremsstrahlung reaction.
In order to ensure that the ADM does not annihilate with

the anti-ADM particles after the neutron bremsstrahlung
reaction, Nelson et al. [40] assumed that anti-ADM is
repulsed by baryonic matter and ADM is attracted to it. By
making this assumption, Nelson et al. [40] showed that the
energy difference of anti-ADM to ADM in the mean-field

approximation is given by, in units of ℏ ¼ c ¼ 1,

ΔE ¼ Eχ̄ − Eχ ¼
2gχgB
m2

ϕ

nB; ð18Þ

where Eχ̄ is the energy of the anti-ADM particle, Eχ is the
energy of the ADM particle, and nB is the baryon number
density. Thus, for the mass scales of mϕ for this model and
when gBgχ ≃ 10−16–10−10, ΔE is comparable to the gravi-
tational binding energy of ADM/anti-ADM, which will
preferentially trap the ADM particles and expel the anti-
ADM particles. Thus, neutron bremsstrahlung provides a
mechanism to produce and trap ADM inside neutron stars
without having it diminished by annihilation, which allows
for the maximum amount of ADM to be accumulated.
Since young neutron stars have temperatures around

50 MeV and assuming mχ ¼ 100 MeV, neutron brems-
strahlung of ADM can produce ≈0.02MNS, where MNS is
the mass of the neutron star [51]. Since neutrons inside
compact objects can reach Fermi momenta of several
hundred MeV, neutrons can decay to ADM for ADM
particle masses less than mn þOðk2F;χ=2mnÞ, where mn is
the mass of the neutron. This process allows for total ADM
masses of ≈0.05MNS [51,96]. Last, ADM can accumulate
inside neutron stars via the production of ADM in super-
novae. Since supernovae are very energetic events with
luminosities in excess of Oð1052 erg=sÞ, they can effi-
ciently produce ADM particles that can then be trapped
within the newly born neutron star. As discussed in [96],
supernovae events can produce total accumulated ADM
masses up to about 0.15M⊙ for MeV-scale ADM particles.
Although neutron bremsstrahlung of ADM, neutron

conversion of ADM, and production of ADM in super-
novae each are capable of producing total ADM masses in
the range of 0.02–0.15M⊙, all three of these processes are
effective for ADM particle masses up to Oð102−3Þ MeV,
which would only apply to a small fraction of the mχ prior
space. Since the aforementioned physically motivated
mechanisms only apply to a few order magnitudes within
the mχ prior space, we choose to not consider these ADM
accumulation methods within our Fχ prior space. Other
accumulation methods, such as a neutron star passing
through an ADM overdensity, accretion of baryonic matter
onto a preexisting ADM core, and a dark star–neutron star
merger, could be considered (see [54,96] and references
therein). However, such ADM accumulation mechanisms
are highly speculative, and thus we also neglect these
accumulation methods. Therefore, to define the Fχ prior
space, we follow the upper bound ADM mass-fraction
estimate of [52] using the Navarro-Frenk-White dark matter
mass density profile [107] to compute the local dark matter
density around our considered sources. The Navarro-Frenk-
White dark matter profile is given by
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ρχðrÞ ¼
ρ0

rs
r ð1þ r

rs
Þ2 ; ð19Þ

where ρχðrÞ is the ADM mass density a radius, r, from the
Galactic center (GC), ρ0 ¼ 5.22� 0.46 × 107M⊙=kpc3 is
the central density [108], and rs ¼ 8.1� 0.7 kpc is the
scale radius [108]. By considering the Fχ approximation
of [52], an upper limit on Fχ can be determined without a
heavily restricted ADM particle mass prior space or having
to consider a very hypothetical accumulation scenario.
In order to estimate the upper bound on Fχ , [52]

calculated the ratio of the ADM mass density to the
combined mass density of baryonic matter and ADM in
the vicinity of PSR J0740þ 6620 and PSR J0348þ 0432,
which are 8.6 and 9.9 kpc from the GC, respectively. To
model the baryonic mass density distribution, [52] used
only the contribution of the Milky Way’s stellar disc
because both pulsars were taken to be sufficiently far away
from the Galactic bulge. The shape of Galactic stellar disc
profile is

ρBðrÞ ¼ ρs;Be−r=rs;B ; ð20Þ

where ρBðrÞ is the baryonic mass density as a function of r,
from the GC, ρs;B ¼ 15M⊙=pc3 is the baryonic mass
density scale, and rs;B ¼ 3.0 kpc is the baryonic scale
radius [109]. Since this work seeks to constrain fermionic
ADM using neutron stars delivered by PPM, we only
consider PSR J0740þ 6620. Using the radial distance of
PSR J0740þ 6620 to the GC, [52] found the Fχ upper
bound near PSR J0740þ 6620 to be Fχ ≤ 1.7%. By
repeating the Fχ upper bound estimation for the two other
PPM sources from NICER, we find that the maximum
possible ADM mass-fraction is ≤1.69% and ≤1.67% for
PSR J0030þ 0451 and PSR J0437 − 4715, respectively.
Note that we have found the radial distances to the GC to
be 8.45 and 8.35 kpc, for PSR J0437 − 4715 and PSR
J0030þ 0451, respectively. Therefore, because all three
PPM delivered pulsars have similar Fχ upper estimates and
PSR J0740þ 6620 can achieve the highest possible ADM
mass-fraction, we adopt the upper bound on the ADM
mass-fraction prior space to be

Fχ ≤ 1.7%: ð21Þ
Last, we want to caution that the [52] calculation provides a
best case upper estimate on Fχ in all of the NICER targets
and that the true ADM mass-fraction in each pulsar due to
their respective ADM surroundings is likely smaller
than 1.7%.
Depending on the assumed ADM accumulation mecha-

nism and scenario, the Fχ prior space can be constrained to
be a finite size, but the effective fermionic ADM self-
repulsion strength has yet to be physically constrained. In
order to ensure that the gχ=mϕ prior space is bounded from

above, we adopt the upper bound of gχ=mϕ ≤ 103 MeV−1

to capture the highest self-repulsion strengths used in [40].
From below, gχ=mϕ is physically allowed to be zero
because the ADM fermionic degeneracy pressure provides
enough support against gravitational collapse to a black
hole. However, in Sec. II B, we have additionally assumed
that gB ≪ gχ , and thus a nonzero approximation to
gχ=mϕ ¼ 0 MeV−1 is necessary. To accomplish this, we
compute the relative radial percent difference (RRPD)
between 0 MeV−1 and a small nonzero self-repulsion for
various baryonic matter EoSs and pairs of (mχ , Fχ). We find
that the RRPDs between gχ=mϕ ¼ 10−5 MeV−1 and zero
self-repulsion do not exceed 4 × 10−3%. This shows that
10−5 MeV−1 is an adequate approximation for 0 MeV−1

down to mass-radius measurements with uncertainties
Oð10−3%Þ (see the Appendix for further details).
In summary, the fermionic ADM EoS prior space is

taken to be

log10ðmχ=MeVÞ∈ ½−2; 9�; ð22Þ

Fχ ∈ ½0; 1.7�%; ð23Þ

log10

�
gχ

mϕ=MeV

�
∈ ½−5; 3�: ð24Þ

Within each interval above, we uniformly sample each
ADM parameter. We also assign all halo configurations to
have a zero likelihood because the existence of any ADM
halo has been shown to modify the pulse profile of neutron
stars and thus the interpretation of the NICER mass-radius
measurements [47]. This results in only ADM cores within
the prior space. Moreover, within the remaining ADM
core configurations, we also assign any ADM admixed
neutron star with a mass <1M⊙ to have a zero likelihood
evaluation. The minimum neutron star mass constraint is
motivated by the theoretical description of a newly born
neutron star [110]. In addition, the 1M⊙ constraint is
compatible with the minimum neutron star remnant masses
from core-collapse supernovae simulations (see e.g.,
[111,112]).5 The consequences of the no-ADM halo and
1M⊙ constraints can be seen as the nonshaded regions
above and below the stripe in the log10 (gχ=ðmϕ=MeVÞ) vs
log10ðmχ=MeVÞ plot of Fig. 1. In Fig. 1, we show the prior
corner plots of fermionic ADM EoS parameters, which
shows a nonuniform distribution for all three fermionic
ADM EoS parameters.

5We also want to note that our imposed 1M⊙ constraint,
although well supported, is in tension with the mass-radius
measurement of the HESS J1731 − 347 supernova remnant
[113]. However, this measurement was challenged by [114]
because the [113] analysis relied on several assumptions about
the distance to the star, the spectral modeling, and the data set
chosen in the analysis.
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D. Source selection: Real and synthetic

By considering both real and synthetic data, we are able
to demonstrate the current constraining power of NICER,
and the potential future constraints of large-area x-ray
telescopes, like STROBE-X.
In order to assess the current capabilities of PPM

delivered measurements, we consider the mass-radius
posteriors of the NICER targets PSR J0740þ 6620 from
[14] and PSR J0030þ 0451 from [19]. In the top panel of
Fig. 2, we show the mass-radius posteriors of PSR J0740þ
6620 of [14] and PSR J0030þ 0451 of [19] for our real
data inferences.
Although the current mass-radius uncertainties on the

NICER targets are at the ∼10% level, it is interesting to
consider the impact of future measurements in which more
neutron stars will be observed at significantly lower mass-
radius uncertainties. For the inferences where we consider
synthetic neutron star mass-radius measurements, we
model our sources using the Future-X scenario of [83].
The Future-X scenario assumes six sources in the mass
range of 1.2–2.2M⊙ with mass-radius uncertainties at the
2% level. This scenario is modeled after a best-case

possibility for the proposed NASA probe mission
STROBE-X, where STROBE-X performs long targeted
observations of the six best candidates. We expect this
scenario to deliver uncertainties at the 2% level, which
would provide the strongest constraints on the neutron star
EoS. The bottom panel of Fig. 2 shows the uncertainty
ellipses corresponding to the Future-X scenario.

IV. RESULTS AND DISCUSSION

In all of our Bayesian parameter estimations, we take the
most conservative approach of simultaneously varying all
EoS parameters. By sampling all parameters in the neutron

FIG. 1. Prior corner plot of the fermionic ADM EoS. Here, the
ADM particle mass, effective self-interaction strength, and mass-
fraction are plotted against each other, where the dark shaded
regions represent a higher prior probability and lighter shaded
regions represent a lower prior probability. The dashed blue lines
in the 2D contour plots represent the 0.5, 1, 1.5, and 2σ contour
levels. The top panels in each column show the 1D prior
histogram. The figure titles on the diagonal show the median
value with the 0.16 and 0.84 fractional quantiles. In the
log10ðmχ=MeVÞ − log10ðgχ=ðmϕ=MeVÞÞ plane we observe that
the prior density has two large regions of no shading.

FIG. 2. Top panel: the 68% and 95% level uncertainty ellipses
of the mass-radius measurements of PSR J0740þ 6620 from
[14] and PSR J0030þ 0451 from [19]. Bottom panel: uncertainty
ellipses from the 1σ level of the 2D Gaussian for each of the
synthetic Future-X sources calculated from both ground truth
models defined in Sec. IV B.
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star EoS model, the most likely combined EoS of baryonic
matter and fermionic ADM can be inferred. Additionally,
this approach also allows for the constraints on the
fermionic ADM EoS to be determined. In this section,
we first study the posteriors of the fermionic ADM EoS and
baryonic EoS using the mass-radius measurements of PSR
J0740þ 6620 [14] and PSR J0030þ 0451 [19]. Using the
synthetic data of the Future-X scenario, we again perform
Bayesian inference on the fermionic ADM and baryonic
matter EoSs to study the future promise of constraining
fermionic ADM cores using neutron star mass-radius
measurements.

A. Real data inferences

In Fig. 3, we show the posterior distributions on the
fermionic ADM EoS in which we consider the mass-radius
measurements of PSR J0740þ 6620 [14] and PSR
J0030þ 0451 [19]. Here, the corner plot in the left panel
of Fig. 3 shows that all of the 1D histograms and 2D
posterior density contours strongly overlap with their
respective priors. The strong overlap of the priors and
posteriors on the fermionic ADM EoS parameters is due to
the apparent degeneracy between the ADM EoS parame-
ters. That is, varying both the baryonic matter and ADM

EoSs allows for scenarios in which neutron stars with a
baryonic EoS and an ADM core described by one set of
(mχ , gχ=mϕ, Fχ) can be equally well described by a
relatively similar baryonic EoS with an ADM core
described by a different set (m0

χ , g0χ=mϕ, F0
χ), which would

give both sets of ADM parameters similar likelihoods.
For example, a neutron star with an ADM core defined
by (mχ ¼ 45 GeV, gχ=mϕ ¼ 0.01MeV−1, Fχ ¼ 1%) radi-
ally differs by <0.6% from another ADM core with
(mχ ¼ 0.5 GeV, gχ=mϕ ¼ 0.001MeV−1, Fχ ¼ 1.7%).
Therefore, because the radial difference between the two
sets of parameters is much smaller than the Oð10%Þ
measurement uncertainties, both sets will receive similar
likelihood evaluations. From the observation that the
fermionic ADM priors and posteriors are approximately
identical, we conclude that the fermionic ADM EoS
parameters cannot be constrained under the chosen priors
and current uncertainties of the baryonic EoS.
If the fermionic ADM posteriors and priors are trans-

formed into the log10ð gχ
ðmϕ=MeVÞ =ðmχ=MeVÞÞ-Fχ plane

(right panel of Fig. 3), we find that the lower bound on
the ratio of gχ=mϕ and mχ can be constrained when
compared to the prior. In particular, we find that the prior
68% (95%) credible level on log10 ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ

FIG. 3. Left panel: posterior distribution of the fermionic ADM EoS parameters (solid black lines) in which real data is considered. For
comparison, we overlay the posteriors with their respective priors (dashed blue lines). The contour levels are the same as in Fig. 1. Right
panel: probability density contour plot of the ADM posteriors in the Fχ vs log10 ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ plane. Note that the contours
represent the 1σ (light gray) and 2σ (dark gray) levels for both the prior and posterior. Here we see that the 1σ level posteriors favor
slightly higher ratios of gχ=mχ and mχ , but the 2σ posteriors are almost touching the priors for all Fχ . In the left panel, we find that the
priors and posteriors are nearly identical in all panels. However, in the right panel, we find that the 1σ and 2σ level posteriors favor
slightly higher ratios of gχ=mχ and mχ than their respective priors.
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is −5.7þ1.08
−1.15 (−5.7

þ1.62
−2.3 ). For the posteriors, we find the 68%

(95%) credible level to be −5.57þ0.97
−1.02 (−5.57þ1.48

−2.2 ). Thus,
the lower bound on log10 ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ can be

constrained to −6.59 and −7.77 at the 68% and 95%
credible levels, respectively. The lower bound on the ratio
of gχ=mϕ andmχ can be constrained while the upper bound
cannot because small ratios produce compact ADM cores
with ADM central densities that are several orders of
magnitude larger than the baryonic central densities for a
given Fχ , which significantly reduce the resulting neutron
star mass below the 1M⊙ constraint. However, for the same
Fχ , large ratios of gχ=mϕ and mχ produce more diffuse
fermionic ADM cores with ADM central densities less than
baryonic central energy densities, which affect the overall
neutron star mass less than the lower ratios. For instance,
for log10 ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ ¼ −8 and Fχ ¼ 0.75%,

the maximum central ADM density is ≈1020 g=cm3 and
the maximum central baryonic density is ≈1015 g=cm3,
which results in the maximum neutron star mass of
≈0.86M⊙. However, if we again take Fχ ¼ 0.75% and
the same maximum baryonic central density, but
log10 ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ ¼ −4, the maximum central

ADM density is reduced to ≈1013.4 g=cm3 and the maxi-
mum neutron star mass increases to 2.38M⊙.
In Fig. 4, the priors and posteriors of Fig. 3 are converted

to the pressure-energy density plane (left) to study the
effect that fermionic ADM cores have on the uncertainties

of the baryonic EoS.6 In particular, we consider the
posteriors that only vary the baryonic EoS parameters
(“Neglecting ADM”) and the posteriors that vary the
combined ADM and baryonic matter EoS parameters
(“Including ADM”). Figure 4 shows that the 95% confi-
dence region of the “Including ADM” band (orange dashed
dotted band) is marginally wider than the 95% confi-
dence region of the “Neglecting ADM” band (light green
band). Quantitatively, we calculate that the “Including
ADM” band is 1.021% and 1.025% wider than the
“Neglecting ADM” band at log10ðε cm3=gÞ ¼ 14.381
and log10ðε cm3=gÞ ¼ 15.010, respectively. Accounting
for the possibility of fermionic ADM cores broadens the
uncertainties on the baryonic EoS because ADM cores
decrease the neutron star mass and radius, which allows the
baryonic EoS to be more stiff and remain in agreement with
the source data. However, since including fermionic ADM
broadens the 95% confidence interval on the baryonic EoS
by Oð1%Þ, we conclude that fermionic ADM cores do not
significantly impact the uncertainties on the baryonic EoS
within the considered ADM priors.
Figure 4 additionally shows the posterior distributions on

both the fermionic ADM admixed neutron star mass-radius
relation (“Including ADM”) and the purely baryonic mass-
radius relation (“Neglecting ADM”). Along the radial axis,

FIG. 4. Left panel: pressure-energy density posterior and prior distributions for the baryonic EoS for when fermionic ADM is included
and neglected. Right panel: mass-radius posterior and prior distributions for the total combined ADM and baryonic EoSs for when
fermionic ADM is included and neglected. For both panels, the black dashed line represents the 95% prior distribution, the orange
dashed-dotted lines represent the 68% and 95% confidence regions of the posteriors that vary both the baryonic and fermionic ADM
EoS parameters, and the light/dark green regions are the 68% and 95% confidence regions of the posteriors that only vary the baryonic
EoS. Note that in the left panel we only show the 95% confidence region of the “Including ADM” band. Here we see that the “Including
ADM” bands are nearly identical to the “Neglecting ADM” bands in both panels.

6Note that we have scaled the energy density by a factor of c−2

such that it has units of g=cm3.
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Fig. 4 shows that the “Including ADM” contours predict
similar radii to the “Neglecting ADM” contours. Figure 4
also shows that the “Including ADM” band favors margin-
ally lower maximum masses than the “Neglecting ADM”
band. In particular, the 68% and 95% confidence regions
of the “Including ADM” band predict maximum masses
of 2.167M⊙ and 2.475M⊙, respectively, while the
“Neglecting ADM” band predicts maximum masses of
2.241M⊙ and 2.518M⊙ for the 68% and 95% confidence
regions, respectively. The “Including ADM” posterior
favors lower maximummasses than the “Neglecting ADM”
posterior because ADM cores decrease neutron star masses
when compared to an identical neutron star with the same
baryonic central energy density. This reduction in mass
from the presence of ADM cores would push the posteriors
to predict lower maximum masses than inferences done
with only baryonic matter. Since the “Including ADM”
band only marginally favors lower maximum masses and
strongly overlaps with the “Neglecting ADM” band, we
find that the inclusion of fermionic ADM cores is equally as
consistent with the NICER data as the posteriors which
only account for baryonic matter.

B. Synthetic data inferences

We now consider the synthetic mass-radius measure-
ments of a potential STROBE-X scenario using the Future-
X scenario of [83]. To study such a potential scenario, it is
useful to define two ground truth models i.e., models in
which the synthetic neutron star mass-radius measurements
will be computed: one with an ADM core and onewith only
baryonic matter. Considering two ground truth models
allows for statements about the ADM EoS, regardless
of whether ADM cores are actually present in neutron
stars. The first ground truth model that we consider is the
“ADM Core” model, which is described by the PP model
in Sec. II B with an ADM core defined by the ADM
parameters

mχ ¼ 15 GeV; ð25Þ
gχ

mϕ=MeV
¼ 0.01; ð26Þ

Fχ ¼ 1.5%: ð27Þ

The second ground truth model is defined identically to the
“ADM core” model, but Fχ ¼ 0% in order to account for
the possibility that neutron stars do not accumulate an
appreciable total ADM mass, but the possibility of ADM is
still considered during sampling. Using the Future-X
scenario with the “No ADM” and “ADM core” models
in this way allows for the best-case future constraints
on fermionic ADM to be determined (see [83]). In Fig. 2,
the uncertainty ellipses and ground truth models for the
Future-X scenario are shown.

In Fig. 5, we show the fermionic ADM prior and posterior
distributions of the “No ADM” (left) and “ADM Core”
(right) models for the Future-X scenario. In the top two
panels, we show the corner plots of the “No ADM” and
“ADM Core” models. In both the 2D density and 1D
histograms plots, the posteriors of both ground truth models
are identical to each other, despite having different ground
truth ADM mass-fractions. In addition, the posterior dis-
tributions of the “ADM Core” and “No ADM” models are
approximately identical to the prior distribution. Since the
corner plots of both the “No ADM” and “ADM Core”
models are nearly identical to each other as well as the prior,
the Future-X scenario will not be able to provide any
additional constraints on the fermionic ADM particle mass,
effective self-repulsion strength, and mass-fraction than the
inferences using the neutron star data from [14,19].
In the bottom two panels of Fig. 5, the fermionic

ADM posteriors and priors are transformed to the
log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ-Fχ plane. Figure 5 shows that

the “ADM Core” model posteriors narrow on the left side
more than the “No ADM” posteriors for increasing Fχ . The
posteriors on the ratio of gχ=mϕ and mχ differ along the Fχ

axis because the ground truth mass-fractions are 1.5% and
0% for the “ADM Core” and “No ADM” models, respec-
tively. That is, a given ratio of gχ=mϕ andmχ could produce
mass-radius curves satisfying the “No ADM” model data
for Fχ near 0%, but simultaneously not produce neutron
stars satisfying the “ADMCore”model data for Fχ ≈ 1.5%.
Since the posteriors on the ratio of the fermionic ADM self-
repulsion and particle mass differ between both ground
truth models and the priors, we find that Future-X
will be able to constrain the lower bound on the ratio of
gχ=mϕ and mχ . In particular, the lower bound on
log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ is constrained to be ≳ − 6.49

and ≳ − 7.68, at the 68% and 95% confidence intervals,
respectively. However, when compared to the real data
posteriors of Fig. 3, the Future-X scenario can only slightly
tighten the constraints on log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ at

both the 68% and 95% confidence intervals.
Figure 6 shows the “No ADM” and “ADM Core” model

posteriors on the baryonic EoS uncertainty in the pressure-
energy density plane (top two panels) and the combined
fermionic ADM and baryonic matter EoS in the mass-
radius plane (bottom two panels). In the pressure-energy
density plane, the 95% confidence region of the “Including
ADM” band predicts baryonic EoS uncertainties that are
comparable to those of the “Neglecting ADM” band for
both the “No ADM” and “ADMCore”models. In the mass-
radius plane, the 68% and 95% confidence intervals on the
“Including ADM” band also do not significantly deviate
from their corresponding “Neglecting ADM” bands. The
strong overlap between the “Neglecting ADM” and
“Including ADM” posteriors is due to an apparent degen-
eracy between the fermionic ADM and baryonic matter
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EoSs. Moreover, a strong degeneracy between fermionic
ADM and baryonic matter implies that a stiff baryonic EoS
with an ADM core can yield an identical mass-radius
relation to a relatively softer baryonic EoS without an ADM

core, which would result in both neutron star models
receiving the same likelihood evaluations. Based on the
observations that the “Including ADM” bands favor nearly
identical posteriors to the “Neglecting ADM” bands, this

FIG. 5. Left two panels: Future-X fermionic ADM posteriors for the “No ADM”model. Right two panels: same as the left two panels,
but for the “ADM Core” model. The top two panels are the corner plots of the fermionic ADM EoS posteriors for the “No ADM” and
“ADM Core” ground truth models. The posterior and prior contour levels of the upper panels are same as in Fig. 3. In the bottom panels,
we show the fermionic ADM posteriors and priors in the log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ-Fχ plane. The contour levels of both the priors and
posteriors are identical to the levels of Fig. 3. In all panels, the orange solid lines represent the ground truth values for the “ADM Core”
model. We find that the corner plots of both ground truth models are approximately identical to one another, while the bottom contour
plots differ slightly along the Fχ axis.
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figure shows that neutron stars with fermionic ADM cores
are indistinguishable from purely baryonic neutron stars.
Thus, we conclude that the presence of fermionic ADM
cores inside neutron stars is fully consistent with purely
baryonic neutron stars down to the 2% mass-radius
uncertainty level.

V. SUMMARY AND CONCLUSIONS

In this work, we have presented a full Bayesian analysis
for fermionic ADM cores in neutron stars using the
framework developed in [83]. Here we have modeled the
fermionic ADM cores using the [40] ADM model, which
describes ADM as spin −1=2 fermions with repulsive self-
interactions. We have considered the mass-radius data of
PSR J0740þ 6620 [14] and PSR J0030þ 0451 [19] as
well as synthetic mass-radius data from a best-case scenario
of the NASA STROBE-X mission. By considering both
real and synthetic mass-radius measurements, we inferred
the current and possible future constraints on the fermionic
ADM particle mass mχ , effective self-repulsion strength
gχ=mϕ, and mass-fraction Fχ .

For the inferences which consider the PSR
J0740þ 6620 and PSR J0030þ 0451 mass-radius
measurements, we found that the 2D posterior
densities of log10ðmχ=MeVÞvs log10ðgχ=ðmϕ=MeVÞÞ,
Fχvs log10ðmχ=MeVÞ, and Fχvs log10ðgχ=ðmϕ=MeVÞÞ
are nearly identical to their respective prior densities.
In addition, the 1D posterior histograms of each fermionic
ADM EoS parameter also strongly coincide with their prior
counterparts. The fermionic ADM EoS posteriors are nearly
identical to their corresponding priors because the EoS
parameters are degenerate with one another such that one
set of (mχ , gχ=mϕ, Fχ) produces similar neutron stars as
another set of (m0

χ , g0χ=mϕ, F0
χ). Thus, we conclude that the

fermionic ADMEoS parameters cannot be constrained using
the NICER mass-radius measurements of PSR J0740þ
6620 and PSR J0030þ 0451. If the ADM posteriors are
transformed to the log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ-Fχ plane, the

lower bound on the ratio of the fermionic ADM effective
self-repulsion strength to the particle mass can be con-
strained to −6.59 and −7.77 at the 68% and 95% confidence
levels, respectively. These results show that, within
the current uncertainties of neutron star mass-radius

FIG. 6. Left two panels: Future-X fermionic ADM and baryonic matter EoS posteriors and priors of the “No ADM” model converted
to the pressure-energy density plane (top panel) and mass-radius plane. Right two panels: same as the left two panels, but for the “ADM
Core” model. Note that the top two panels follow the same legend and contour levels as Fig. 4, and the bottom two follow the same
legend and contour levels as Fig. 5. Note that the solid orange lines in the bottom two panels are the “No ADM” and “ADMCore”model
ground truth mass-radius curves, respectively. In all quadrants, we find that the “Including ADM” bands are nearly identical to the
“Neglecting ADM” bands.
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measurements delivered by NICER, the lower bound of the
ratio of gχ=mϕ and mχ can only be marginally constrained.
However, all other combinations of fermionic ADM param-
eters cannot be constrained.
Converting the fermionic ADM and baryonic matter EoS

posteriors to the mass-radius and pressure-energy density
planes, we find that the posteriors on the neutron star EoS
are largely unaffected by the inclusion of fermionic ADM
cores. In the mass-radius plane, we find that the maximum
masses of the posteriors which include fermionic ADM
differ from the purely baryonic ones at the 95% percent
level by 0.0043M⊙. Moreover, the combined fermionic
ADM and baryonic mass-radius posteriors predict similar
radii to the purely baryonic posteriors. In the pressure-
energy density plane, the baryonic EoS uncertainty slightly
broadens when fermionic ADM is accounted for. In
particular, at log10ðε cm3=gÞ ¼ 14.381 and, the baryonic
EoS uncertainty widens by 1.021%. The small differences
between the posteriors that include fermionic ADM cores
and the ones that do not, show that fermionic ADM cores
inside neutron star interiors can be fully consistent with
their purely baryonic counterparts.
In order to determine the promise of constraining fer-

mionic ADM cores by missions, like the NASA STROBE-X
mission, this work has also considered the Future-X scenario
from [83]. The Future-X scenario describes six synthetic
neutron star mass-radius measurements with mass and radius
uncertainties at the 2% level. Within the Future-X scenario,
the fermionic ADM posteriors remain nearly identical to the
real data inferences for both the “ADM core” and “No
ADM”models. However, we found that the posteriors on the
ratio of gχ=mϕ and mχ differ between the “No ADM” and
“ADM core” models. In particular, the “ADM core” model
infers marginally tighter constraints on the lower bound of
log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ than the “No ADM” model. The

posteriors on the lower bound of log10ð gχ
mϕ=MeV =ðmχ=MeVÞÞ

are slightly more narrow in the “ADM core” model than in
the “No ADM” model because the ground truth mass-
fraction of the “ADM core” model is higher than that of the
“No ADM” model. This allows for ratios of gχ=mϕ and mχ ,
which produce neutron stars satisfying the “No ADM” data
for a given Fχ , to be given a nonzero likelihood. However,
the same ratios of gχ=mϕ and mχ would be given a zero
likelihood because they would not satisfy the data of the
“ADM core” model for the same given Fχ . Since the
posteriors in the log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ-Fχ plane differ

between the “No ADM” and “ADM core” models, we
found that Future-X will be able to constrain the lower
bound of the ratio of gχ=mϕ and mχ .
According to the posteriors on the lower bound

of the ratio of gχ=mϕ and mχ , we found that Future-X
slightly tightens the constraints to −6.49 and −7.68 at
the 68% and 95% confidence levels, respectively. It
is physically reasonable that the constraints on

log10ð gχ
mϕ=MeV =ðmχ=MeVÞÞ improve in the Future-X sce-

nario because the mass of an admixed neutron star is
sensitive to the compactness of the fermionic ADM core,
which is partially controlled by the ratio of gχ=mϕ and mχ .
Therefore, the posteriors on the lower bound of
log10ð gχ

mϕ=MeV =ðmχ=MeVÞÞ will slightly improve with the

tighter mass and radius uncertainties of the Future-X
scenario. Note, however, that the Future-X scenario is a
best-case scenario for the STROBE-X mission and our
constraints will relax accordingly for larger mass-radius
credible intervals.
In the pressure-energy density and mass-radius planes,

we found that the uncertainties on the baryonic matter EoS
and the total neutron star mass-radius remain unaffected
when the possibility of fermionic ADM cores is considered.
That is, similar to the real data inferences, we found that the
pressure-energy density and mass-radius of the “Including
ADM” bands are identical to their respective “Neglecting
ADM” bands in both the “No ADM” and “ADM core”
models. Our results highlight that neutron star EoS models
that additionally allow for fermionic ADM cores are
indistinguishable from the baryonic EoS inferences for
mass and radius uncertainties down to the 2% level, which
implies that ADM admixed neutron stars are equally as
consistent with neutron star data as purely baryonic
neutron stars.
The “Including ADM” posteriors in the pressure-energy

density and mass-radius planes of both the real data from
NICER and the hypothetical data from the Future-X
scenario (STROBE-X) strongly coincide with their corre-
sponding “Neglecting ADM” posteriors in part because,
under the ADM mass-fraction priors considered, the
presence of ADM cores does not significantly affect the
uncertainties of the baryonic EoS. This is most clearly
shown in Fig. 2, where the “ADM core” and “NO ADM”
mass-radius relations are closely aligned. The other reason
why including fermionic ADM cores is physically con-
sistent with the purely baryonic matter posteriors is because
of the strong degeneracy between the ADM and baryonic
matter EoSs. That is, the mass-radius relation can be
equally well described by both a stiff baryonic EoS with
an ADM core and a softer baryonic EoS without ADM. Our
results show this in the mass-radius posteriors of Figs. 4
and 6, where the purely baryonic posteriors strongly
overlap with the fermionic ADM posteriors. Last, [63]
pointed out several scenarios that could break this degen-
eracy, such as a reduction of neutron star masses toward the
center of the Galaxy, searching for supplementary peaks in
gravitational wave spectra from binary neutron star merger
simulations, detecting objects that are in contrast to our
understanding of neutron star structure, and by finding a
new feature in the binary Love relation.
Overall, this work shows that the current neutron star

measurement of the NASA NICER mission, as well as the
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potential future measurements of the NASA STROBE-X
mission, can provide constraints on the lower bound of the
ratio of gχ=mϕ and mχ , but not the individual quantities Fχ ,
mχ , and gχ=mϕ. Moreover, within the uncertainties on the
baryonic EoS, neutron stars with ADM cores are equally
consistent with the mass-radius data as stars only made of
baryonic matter, which means that neither NICER nor
STROBE-X will be able to distinguish between neutron
stars with an ADM core and those without. Although
fermionic ADM cores inside neutron stars are indistin-
guishable from their purely baryonic counterparts to
NICER and STROBE-X, when specific assumptions about
the neutron EoSs are made, small ADM mass-fractions
have been shown to trigger rapid neutron star cooling for
low-mass neutron stars through the direct Urca process,
which could shed light on the presence of ADM in these
stars [57,115,116].
In a similar analysis, [48] inferred that the ADM particle

mass favors masses near 0.6 GeV for ADM cores using a
fixed baryonic EoSwith the NICER PSR J0740þ 6620 and
PSR J0030þ 0451measurements, which is in contrast with
the findings of this work. However, when comparing our
respective priors on mχ , we observe that their priors are flat
while ours are not. The observed difference between our
priors and theirs could be due to the fact that our analysis
strictly enforces a minimum neutron star mass constraint of
1M⊙, while the analysis of [48] does not specify one.
Imposing a minimum neutron star mass constraint modifies
the priors on theADMparameters,which in-turn canmodify
the interpretation of the ADM posteriors. Moreover, [48]
fixed their analysis to one baryonic EoS while our work
varied the baryonic EoS, which can also change the ADM
EoS posteriors (see e.g., [83]).
Another recent work, [45], considered ten different

choices of baryonic matter EoS and a fermionic ADM
model with self-interactions mediated by both a massive
scalar and vector mediator. By directly comparing the
mass-radius relations of the ten baryonic EoSs for a range
of mχ and ADM Fermi momenta values with the 95%
contours of the NICER and LIGO/VIRGO, measurements,
[45] found that mχ ∈ ½0.1; 30� GeV for Fermi momenta in
the range of [0.01,0.07] GeV is consistent with the
observational data. Our results differ from those of [45]
for two key reasons. The first reason is that our analysis
fully varied the baryonic EoS and considered the full
distribution of the NICER PSR J0740þ 6620 and PSR
J0030þ 0451 mass-radius posteriors as part of our analy-
sis. Reference [45], by contrast, approximated the baryonic
EoS uncertainty by considering ten representative choices
and used the NICER and LIGO/VIRGO posterior contours
as hard cutoffs. Although the approach of [45] had the
advantage of determining tight constraints for a handful of
fixed baryonic EoSs, our Bayesian analysis was less
dependent on the baryonic EoS because it varied both
the ADM and baryonic EoS during inference, allowing the

most likely combination of ADM and baryonic matter to be
determined. The second is that our analysis directly
considered the ADM mass-fraction while [45] considered
the ADM Fermi momentum, which can result in Fχ ≳ 50%

for many combinations of ADM parameters and different
Fχ along the entire admixed mass-radius relation.
Therefore, it is physically reasonable that the results of
[45] more tightly constrainedmχ than this work because, in
combination with choosing ten fixed baryonic EoSs, large
Fχ will increasingly significantly affect the resulting mass-
radius relation as mχ increases, which will preferentially
favor lower mχ. However, our analysis allows for relatively
smaller, and physically grounded, values of Fχ , which, of
course, affect the resulting mass-radius relation less.
Finally, future work will explore how the proper

inclusion of fermionic (as well as bosonic) ADM halos
affects our inferences on both the ADM and baryonic
matter EoSs. The work of [47] constructed a framework for
interpreting neutron star mass-radius measurements in the
presence of ADM halos. While many works considered
a variety of different plausible ADM mass-fractions (see
e.g., [47–49,51,54,58,61,96,117] and references therein),
an in-depth analysis of the possible accumulation methods
of ADM in neutron stars has yet to be done and is left for
future work. By appropriately accounting for the possible
presence of ADM halos and physically constraining Fχ ,
full inferences on the neutron star EoS will be able to
determine the most general constraints on the ADM EoS.
Software used for the development of this article include

Python/C language [118], GNU Scientific Library [119],
NumPy [120], Cython [121], SciPy [122], MPI for Python [123],
Matplotlib [124], Jupyter [125], MultiNest [126], PyMultiNest

[127], KALEPY [128], CORNER [129], SEABORN [130],
and NEoST [103].
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APPENDIX: APPROXIMATING gχ=mϕ = 0 MeV − 1

In order to capture the physically allowed parameter
space of the effective fermionic self-repulsion strength,
gχ=mϕ ¼ 0 MeV−1 must be considered. However, since we
have assumed gB ≪ gχ (see Sec. III C), a nonzero approxi-
mation of gχ=mϕ ¼ 0 MeV−1 is necessary. Here we
approximate zero self-repulsion strength by calculating
the average RRPD between the mass-radius curves of zero
self-repulsion and a nonzero self-repulsion strength, which
we take to be 10−5 MeV−1, for all neutron star masses
≥1M⊙. We define the RRPD at a fixed neutron star mass as

RRPD ¼
��R−5 − R0

��
R0

· 100; ðA1Þ

where R−5 is the radius of the neutron star produced by
gχ=mϕ ¼ 10−5 MeV−1 and R0 is the radius of the neutron
star produced by zero self-repulsion strength.
To calculate the average RRPD values between the mass-

radius relations with zero self-repulsion and gχ=mϕ ¼
10−5 MeV−1 in a given interval of mχ and Fχ for a
fixed baryonic EoS, we adopt the following procedure.
First, we compute the entire mass-radius relation for both

FIG. 7. Top Left: The three underlying baryonic mass-radius curves of varying stiffness from soft (left most blue) to intermediately
stiff (middle orange) to stiff (right most green) used in the remaining three panels, respectively; Top Right: Color plot of the RRPD
between gχ=mϕ ¼ 0 MeV−1 and gχ=mϕ ¼ 10−5 MeV−1 in the ADM mass-fraction and particle mass plane for the Soft baryonic EoS;
Bottom Left: Same as the top right panel, but for the intermediately stiff baryonic EoS; Bottom Right: Same as the top right panel, but for
the stiff baryonic EoS. In all Color plots, the dark to light shading indicates an increase in RRPD value. For the top right panel and the
bottom two panels, the RRPD values do not exceed 0.004%.
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gχ=mϕ ¼ 10−5 MeV−1 and gχ=mϕ ¼ 0 MeV−1 for fixed
mχ and Fχ . Second, we linearly interpolate both mass-
radius relations to obtain RðMÞ, i.e., neutron star radius as a
function of gravitational mass. With RðMÞ in hand, a direct
comparison of identical masses between both mass-radius
relations can made. Third, we draw 20 evenly spaced
masses from 1M⊙ to the maximum mass of the two mass-
radius curves and compute the RRPD for all 20 masses.
Fourth, we average over the RRPD values of all masses
>1M⊙ and save the average value. Finally, steps 1–4 are
repeated until the averaged RRPD value of each combi-
nation of mχ and Fχ is obtained.
Using the above procedure to calculate the ave-

rage RRPD values between gχ=mϕ ¼ 0 MeV−1 and

gχ=mϕ ¼ 10−5 MeV−1, we compute the average RRPD
for ADM particle masses within mχ ∈ ½400; 4500� MeV
and ADM mass-fractions within Fχ ∈ ½0; 3�%. The interval
on Fχ was chosen such that it extends through and beyond
the ADM mass-fraction prior space defined in Sec. III C.
The lower bound on the ADM particle mass interval is
determined such that no ADM halo configurations are
produced for neutron stars with mass>1M⊙ with Fχ ¼ 3%

and gχ=mϕ ¼ 0 MeV−1, which ensures only ADM cores
will be accounted for all Fχ ∈ ½0; 3�%. Moreover, the upper
bound ofmχ ¼ 4500 MeV is calculated by determining the
largest ADM particle mass such that the maximum mass
is at least 1M⊙ for Fχ ¼ 3% and gχ=mϕ ¼ 0 MeV−1.

FIG. 8. Top left: RRPD color plot in the ADM mass-fraction and particle mass plane for the intermediately stiff EoS. Top right: same
as the top left panel, but the step size along themχ axis is changed from 250 to 100 MeV. Bottom: same as the top left panel, but the step
size along the Fχ axis is changed from 0.1% to 0.05%. For all three panels, the maximum RRPD value does not exceed 0.004%.
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Adopting the upper bound of the ADM particle mass
interval to be mχ ¼ 4500 MeV captures the physically
relevant ADM core configurations because our Bayesian
analysis framework assigns all neutron stars with masses
<1M⊙ a zero likelihood evaluation.
In Fig. 7 we show the RRPD distribution between the

mass-radius relations of zero self-repulsion and gχ=mϕ ¼
10−5 MeV−1 for three representative baryonic EoSs, each
of varying stiffness (top left panel), in the mχ-Fχ plane. For
each baryonic EoS, we space each ADM particle mass by
Δmχ ¼ 250 MeV and each mass-fraction by ΔFχ ¼ 0.1%
because, when all other EoS parameters are held fixed, both
Δmχ and ΔFχ have a small overall effect on the resulting
mass-radius relation between each respective step.
Although the RRPD distribution is different between each
of the baryonic EoSs using Δmχ and ΔFχ , the maximum
RRPD value is 4 × 10−3% for the soft, intermediately stiff,
and stiff baryonic EoSs. Therefore from this observation,
we conclude that gχ=mϕ ¼ 10−5 MeV−1 is a sufficient
approximation for gχ=mϕ ¼ 0 MeV−1, regardless of the
baryonic EoS, because the maximum RRPD value is
4 × 10−3% which is several orders of magnitude below
the observational uncertainties of neutron star radii con-
sidered in this work.

Figure 8 shows the RRPD distribution between the
mass-radius relations of gχ=mϕ ¼ 0 MeV−1 and gχ=mϕ ¼
10−5 MeV−1 in which the step size between ADM particle
mass points (Δmχ) and ADM mass-fractions (ΔFχ) is
reduced. Note that we fix the underlying baryonic EoS to
be the intermediately stiff EoS from Fig. 7. Reducing
the ADM particle mass and mass-fraction step sizes will
impact the overall mass-radius relation less between each
successive step, thus allowing for better interpolations
between grid points in the mχ-Fχ plane. An improved
interpolation between (mχ , Fχ) grid points will allow for the
dependency of the RRPD distribution on the grid spacing to
be determined. Here we have reduced Δmχ from 250 to
100 MeV (top right panel) and ΔFχ from 0.1% to 0.05%
(bottom left panel). Figure 8, shows that for both cases in
which we set Δmχ ¼ 100 MeV and ΔFχ ¼ 0.05%, the
maximum RRPD value remains below 4 × 10−3%. From
this observation, we find that the RRPD values are
insensitive to variations in Δmχ and ΔFχ .
Finally, based on all of the previous observations,

we conclude that gχ=mϕ ¼ 10−5 MeV−1 is an adequate
approximation to 0 MeV−1 within the interval of
mχ ∈ ½400; 4500� MeV and Fχ ∈ ½0; 3�%, regardless of
the choice of Δmχ , ΔFχ , and baryonic EoS.
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